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ABSTRACT

We consider a 3-level hierarchical generative model for memories which are sam-
pled and stored in a dense Hopfield network with polynomial activation. We ana-
lytically derive conditions for each level of this hierarchy to be locally stable – that
is they are local energy maxima. We find that it takes only a polynomial amount of
information to generalize beyond particular memories and even particular groups
in the hierarchy. Our theory predicts the qualitative features a phase diagram in
the number of memories, sharpness of the activation function (polynomial degree)
for data from Fashion-MNIST.

1 INTRODUCTION

Understanding the structure of Hopfield networks could help us understand when they merely re-
produce memorized data, and when they can generalize beyond what they have already seen. This
question is closely related to the notion of capacity in generalized Hopfield models but is more subtle
as it is insufficient to say that generalization happens precisely when we exceed a capacity threshold.
In this work we show that intuition is true, under certain assumptions on the data.

Additionally Ambrogioni (2023) shows that diffusion models at zero temperature have the same
energy landscape as a modern Hopfield network. This relationship implies that our studies here
may contextualize the memorization/generalization behavior of models deployed at scale. While
we study this generalization behavior in modern Hopfield networks, under a particular hierarchical
model of data, we expect that our qualitative results should transfer with the appropriate modification
in more general settings.

Data with latent hierarchical structure is very common. Because modern Hopfield networks have an
energy function which depends only on the distance to all the memories (on the sphere) we may ex-
pect that generically only the clustering structure of can be memorized by Hopfield networks. While
general diffusion models can exhibit much more complicated behavior, clustering is a universal
property of data.

This motivates our attempt at understanding the following questions:

1. With hierarchically correlated memories, do dense Hopfield models memorize and remem-
ber patterns?

2. Can these Hopfield models recover generalized patterns from the underlying correlation
structure?

While there is a role for understanding how the structure of a diffusion model impacts its memo-
rization or generalization behavior here we focus primarily on how hierarchical features in the data
can be learned, and how that is precisely related to memorization/forgetting in an exactly solvable
model.

We note that Hopfield networks with correlated patterns have been studied in previous work Dot-
senko (1986); Engel (1990); Agliari et al. (2013). However, these previous works all considered a
quadratic activation function and we find that precisely because of the stronger activation function,
interesting phenomena may occur.
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Figure 1: Schematic of the hierarchical memory structure we consider in this work. Here,
A,B, · · · ∈ {1, . . . , G} and µ, ν, · · · ∈ {1, . . . ,K}. Only the ξ are encoded into the network.

2 MODEL DESCRIPTION

We consider a system of binary neurons, each of which is denoted by a variable σi which can take
on values ±1 (Hopfield, 1982). The state of the entire system is denoted σ ∈ {0, 1}N . A pattern
to be stored, or memory, is denoted as ξ, where the ith index ξi is the state of the ith neuron in the
memory. We define the following as the energy function for the system:

E(σ) = −
M∑
µ=1

F (ξµ · σ), (1)

where F (x) is an activation function which here takes in as input the dot product between the
memory and the current state of the system. Recovery of memories happens by performing local
hill-climbing starting at a probe point σ0 until a fixed point (local maximum) is reached.

The original work by Hopfield (1982) utilized a quadratic activation function and Amit et al. (1985)
found that the memories are reliably minima of the system as long as M ≤ αN , with α ≈ 0.14. For
a higher density of memories, the “basins of attraction” surround the memory states begin interfering
with one another and the memories cannot reliably be recovered. More recently, dense Hopfield
networks Krotov & Hopfield (2016) were introduced as a generalization of the original idea in
which the quadratic activation function is replaced with a higher order polynomial or an exponential
function. Such functions induce a much greater energy penalty for a system being evolving away
from a memory state and this effectively sharpens the energy wells of the memories and “pulls
apart” closely correlated memories. Here, we will consider polynomial activation functions, i.e.
F (x) = xn.

In this work, we consider the ability of these dense Hopfield networks to recover hierarchically
correlated memories. In particular, we imagine the memories correlated in a tree structure, such
that groups of memories are derived from prototypes, and the prototypes are further derived from a
singular root, see Fig. 1. We call the central root prototype g0 the level 1 root prototype, and the
prototypes underneath it are the level 2 prototypes gA. Importantly, we initialize the network with
only leaf memories ξAµ.

We minimally model this system by initializing the level 1 root prototype g0 as a random binary
vector. We then generate G level 2 prototypes via the following:

gAi =

{
−g0i , with probability p

g0i , with probability 1− p
. (2)

In principle, the parameter p will be different for each of the gAµ but for simplicity, we maintain a
uniform correlation between all gAµ and g0. From these prototypes, the memories are generated via

ξA,µ
i =

{
−gAi , with probability p

gAi , with probability 1− p
. (3)
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for µ = 1, . . .K. With this structure of memories, each memory ξ is conditionally independent with
every other memory within the same group. We again note that the prototypes are not encoded into
the network as memories.

Memory Stability

We investigate the stability of memory retrieval in the dense Hopfield networks by initializing the
state in a memory state, perturbing the system in an arbitrary direction, and determining whether
the magnitude of fluctuations about the memory state is greater than the energy gap. Specifically,
calculate the mean and variance of the following energy gap:

∆E = E(σ)− E(σ − 2σiêi) (4)

This measures the gap between the energy at a point σ and σ with the ith coordinate flipped, and the
variance allows us to upper-bound the probability that ∆E < 0. This analysis yields the familiar
linear memory capacity of the Hopfield model, and superlinear memory capacities of dense Hopfield
networks.

3 MEMORY RETRIEVAL

We first investigate the ability of the network to retrieve each of the individual encoded memories.
We find in this case that the ratio of the variance to the squared mean of the energy gap (eq. 4) is(

var∆E

E[∆E]2

)
ξ

≈ K2 · G
2q4n(q−2 − 1) +Gq4n−3

(1 +Kqn +GKq2n)2
. (5)

Here, q = (1− 2p)2, and n is the power of the activation function (i.e. F (x) = xn). The derivation
of this and the following equations are presented in the Appendix B. From this equation, we observe
that for any fixed value of n, as the number of memories within a group K is increased, the fluc-
tuations become more and more prevalent. However, even a modestly large n can overwhelm this
effect.

We may also calculate the statistics of the energy gap from a prototype state. For a level 2 prototype,
we find(

var∆E

E[∆E]2

)
gA

≈ 1

Kqn

(
1 + (Gqn)qn−2

(1 +Gqn)2

)
+

(
(Gqn)qn−2 + (Gqn)2

(
q−1 − 1

)
(Gqn + 1)2

)
. (6)

This interesting relation indicates that for very small n and finite G the second term will always be
O(1) and hence prototype states will not be stable when N is large. Once n becomes large enough
so that Gqn ≡ ϵ ≪ 1 is small (remember q ∈ [0, 1]) then the second term becomes small and the
network might remember the prototype states.

The first term of eq. (6) becomes approximately (Kqn)−1 = G/(Kϵ) for small ϵ. For stability this
term also needs to be small, so we require that G/(Kϵ) = ϵ or K = Gϵ−2 (ϵ has only a weak
dependence on N ). The level 2 prototypes become stable minima at K = O(Gϵ−2) despite not
being encoded into the network as memories. Indeed we only need K polynomially large before we
begin to see this kind of generalization so long as n is tuned carefully.

Finally, calculate the same quantity for the level 1 root probability:(
var∆E

E[∆E]2

)
g0

=
1

G

(
1

q
+

1

Kq2

)
. (7)

In addition to the stability of the level 2 prototypes, the level 1 root prototype also remains stable,
with stability growing with G and K. We interpret this as the memories within each group ”coa-
lesce” into the prototype for each group, so that the entire system behaves akin to a single group,
with the level 2 prototypes now forming the memories based upon the level 1 root prototype. In-
terestingly, this quantity shows no dependence on n, and only requires that the groups have at least
some minimal correlation q ̸= 0.

3
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Figure 2: Failure probability for ξAµ (a) and gA (b) calculated from eq. 8, with q = 0.7 and G = 10.
Relative difference between these two (Eq. 9) is shown in (c).

With this ratios, we may calculate failure probabilities to remember each of these levels of memories,
assuming that ∆E is Gaussian. That is, for ξAµ, gA, g0, we calculate

P[∆E < 0] =
1

2
erfc

(
E[∆E]√
2var∆E

)
. (8)

Here, erfc(x) is the complementary error function. If this value is large, then the state is likely to
not be stable minima in the energy landscape.

We plot this failure probability as a function of n and K in fig. 2. In (a) and (b), we observe
the relationships on the independent variables discussed above. That is, the failure probability in
remembering ξAµ increases with K but decreases rapidly with n. In (b), we observe that the network
is better able to remember the intermediate level 2 prototypes at small n and larger K, but at larger
n, the energy minima corresponding to the individual memories become well separated and the
network ceases to be able to recall the level 2 prototypes. Note that at the chosesn model parameters,
the failure probability of remembering the root protoype was approximately 0.

In order to further capture the behavior of the network, in fig. fig. 2(c), we plot the relative difference
between the failure probability of remembering the level 3 memories and the level 2 prototypes:

P[∆E(ξAµ) < 0]− P[∆E(gA) < 0]

P[∆E(ξAµ) < 0] + P[∆E(gA) < 0]
. (9)

conditioned on one of them being unstable. We additionally assume that the events are disjoint
(which is in approximate accord with fig. 2(a,b)) to simplify the denominator into a sum of probabil-
ities. When this quantity is close to 1, the probability of failing to remember ξAµ is much larger than
that of failing to remember gA. As a result, the system is likely to evolve towards gA. Conversely, if
this quantity is close to −1, then the probability of failing to remember gA is much larger than that
of failing to remember ξAµ. Thus, in this regime, the system is likely to remain in a level 3 memory
state.

4 EXPERIMENTS

The model of data we rely on in this manuscript aims to model hierarchy, while assuming that every
level in the hierarchy is related to the one above it via isotropic, and independent link variables. Real
data will violate these assumptions so to ensure that our modeling assumptions are not fine-tuned
with respect to real data we consider a Hopfield model on various subsets of Fashion-MNIST (Xiao
et al., 2017). This dataset is composed of 10 classes. These classes also have non-trivial overlaps, so
we might initially model the latent structure of this data as a tree of the type shown fig. 1, composed
of sixty-thousand leaf nodes, ten nodes above those with gA corresponding to prototypes of the ten
classes, and some small amount of structure between these and the root node. For further details
about the experimental setup see appendix A.

We chose this dataset in part because all the images are centered, with the same rotation, so our
results will not be confounded by those symmetries typically present in images. In more complex

4
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Figure 3: A phase diagram depicting the final location of the flow initialized at an ankle boot image.
The colors depict Hamming distance from the original image where red (the circle in the legend) is
exactly zero. We sample the final image at five points and show them on the right with corresponding
shape and color legend. We see four well-separated phases, and a regime on the left corresponding
to the root (purple star) fixed point slowly moving as n decreases. At the lower triple point (teal
plus) we can see the shoe prototype taking on some features of the bootprototype (e.g. a lift at the
front of the shoe) but remains largely consistent with the blue triangle shoe prototype.

settings these symmetries may result in further structure (see for example the analysis by Kamb &
Ganguli (2024) which takes translation symmetry into account) which we do not aim to describe
here.

Additionally these experiments will show to what extent our nearest-neighbor calculations agree
with global properties of the energy landscape. We expect to see transitions as soon as one direction
becomes unstable, but our theory only suggests that the memory flows to the basin of attraction
formed by its parent. We will be able to test this hypothesis as well.

In fig. 3 we see that the leaf prototype (ankle boot) is stable for large n and small K as expected
by our calculation, with a stability frontier which looks qualitatively similar to that shown in fig. 2.
Additionally we see that for small n, we do not need very large K to remember higher-order pro-
totypes (yellow square, blue triangle, green cross from fig. 3), and that for K too large we simply
remember the root prototype.

We see an additionally interesting phenomenon that several different prototypes are remembered
based on the value of n, with more complicated prototypes requiring larger K to be resolved, and
are resolved at larger n. The stability criterion for a small second term in eq. (6) implies that
n = log1/q(Geff), and Geff ought to be larger for more fine-grained prototypes as they correspond to
a larger effective number of groups. Similarly K = Geffϵ

−2 has to be larger.

5 CONCLUSIONS

In this work, we have examined dense Hopfield networks in the presence of hierarchically correlated
memories. We find that as a function of the number of correlated patterns and the activation function,
there are interesting regimes of generalization, where the network remembers states corresponding to
patterns which are higher up in the correlation structure of the memories, despite not being encoded
into the network outright. We interpret this as a form of generalization and notice that we only
require polynomial data to generalize for an appropriate potential F .

This work may be extended in numerous directions. First, the case of exponential activation func-
tions is being currently explored by the authors. From a different perspective, the statistical physics
of these models would be interesting to explore given other recent work Lucibello & Mézard (2024).
The connection to diffusion models as well as the attention mechanism in transformers would be
worth exploring as well.

5
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A DATA AND MODEL PREPARATION

Fashion-MNIST is an image dataset with pixels taking on values in [0, 255]. To match the setting of
our calculations we first rescale the range to [−1, 1] and then dither the images, choosing either ±1
with probabilities so that the average pixel value matches the original pixel value.

We then consider two tuneable parameters, the number of elements per group K, and the power for
the potential n where F (x) = sign(x)|x|n. We don’t consider G as a tuneable parameter because
of the limited dynamic range (1-10).

B STABILITY CRITERION DERIVATIONS

In this appendix we derive stability criterion for the retrieval of prototypes within the hierarchical
memory structure. These stability criterion are derived for the dense associative memories with
polynomial activation.

B.1 LEVEL 3 MEMORY RETRIEVAL STABILITY CRITERION

To derive the stability criterion for retrieval of a level 3 memory, we begin again with the gap to an
excitation from a memory state, ξBν :

∆E = 2
∑
A

∑
µ∈A

∑
k odd

(
n
k

)
(ξAµ

i ξBν
i )

 N∑
j ̸=i

ξAµ
j ξBν

j

n−k

. (10)

The expectation value to be evaluated is

E [∆E] = 2
∑
A

∑
µ∈A

∑
k odd

(
n
k

)
E
[
(ξAµ

i ξBν
i )
]
E


 N∑

j ̸=i

ξAµ
j ξBν

j

n−k
 . (11)

Terms contributing to this expectation value are

1. A = B, µ = ν. M = 1.

T1 = 2
∑
k odd

(
n
k

)
E


 N∑

j ̸=i

ξBν
j ξBν

j

n−k


≈ 2n(N − 1)n−1

2. A = B, µ ̸= ν. M = K − 1.

T2 = 2
∑
k odd

(
n
k

)
E
[
(ξBµ

i ξBν
i )
]
E


 N∑

j ̸=i

ξBµ
j ξBν

j

n−k


≈ 2n(N − 1)n−1qn.

3. A ̸= B. M = (G− 1)K.

T3 = 2
∑
k odd

(
n
k

)
E
[
(ξAµ

i ξBν
i )
]
E


 N∑

j ̸=i

ξAµ
j ξBν

j

n−k


≈ 2n(N − 1)n−1q2n.
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The full mean is then

E[∆E] ≈ 2n(N − 1)n−1 ×
(
1 + (K − 1)qn +G(K − 1)q2n

)
. (12)

Next, we calculate the second moment.

E[(∆E)2] = 4
∑
A,A′

∑
µ∈A,µ′∈A′

∑
k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξA

′µ′

i

]
E


 N∑

j ̸=i

ξAµ
j ξBν

j

n−k N∑
j ̸=i

ξA
′µ′

j ξBν
j

n−k′ .

(13)

Terms contributing to this are the following:

1. A = A′ = B, µ = µ′ = ν. M = 1.

T1 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξBν
i ξBν

i

]
E


 N∑

j ̸=i

ξBν
j ξBν

j

n−k N∑
j ̸=i

ξBν
j ξBν

j

n−k′
≈ 4n2(N − 1)2n−2.

2. A = A′ = B, µ = µ′ ̸= ν. M = K − 1.

T2 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξBµ
i ξBµ

i

]
E


 N∑

j ̸=i

ξBµ
j ξBν

j

n−k N∑
j ̸=i

ξBµ
j ξBν

j

n−k′
≈ 4n2(N − 1)2n−2q2n−2

3. A = A′ = B, µ ̸= µ′ = ν (or µ′ ̸= µ = ν). M = 2(K − 1).

T3 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξBµ
i ξBµ′

i

]
E


 N∑

j ̸=i

ξBµ
j ξBν

j

n−k N∑
j ̸=i

ξBν
j ξBν

j

n−k′
≈ 4n2(N − 1)2n−2qn.

4. A = A′ = B, with µ, µ′, and ν distinct. M = (K − 1)(K − 2).

T4 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξBµ
i ξBµ′

i

]
E


 N∑

j ̸=i

ξBµ
j ξBν

j

n−k N∑
j ̸=i

ξBµ′

j ξBν
j

n−k′
≈ 4n2(N − 1)2n−2q2n−1.

5. A = A′ ̸= B,µ = µ′. M = (G− 1)K.

T5 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξAµ

i

]
E


 N∑

j ̸=i

ξAµ
j ξBν

j

n−k N∑
j ̸=i

ξAµ
j ξBν

j

n−k′
≈ 4n2(N − 1)2n−2q4n−4.

6. A = A′ ̸= B, µ ̸= µ′. M = (G− 1)K(K − 1).

T6 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξAµ′

i

]
E


 N∑

j ̸=i

ξAµ
j ξBν

j

n−k N∑
j ̸=i

ξAµ′

j ξBν
j

n−k′
≈ 4n2(N − 1)2n−2q4n−3.

8
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7. A ̸= A′ = B, µ′ = ν (or A′ ̸= A = B). M = 2(G− 1)K.

T7 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξBν

i

]
E


 N∑

j ̸=i

ξAµ
j ξBν

j

n−k N∑
j ̸=i

ξBν
j ξBν

j

n−k′
≈ 4n2(N − 1)2n−2q2n.

8. A ̸= A′ = B, µ′ ̸= ν (or A′ ̸= A = B). M = 2(K − 1)(G− 1)K.

T8 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξBµ′

i

]
E


 N∑

j ̸=i

ξAµ
j ξBν

j

n−k N∑
j ̸=i

ξBµ′

j ξBν
j

n−k′
≈ 4n2(N − 1)2n−2q3n−1

9. A,A′, and B distinct. M = (G− 1)(G− 2)K2

T9 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξA

′µ′

i

]
E


 N∑

j ̸=i

ξAµ
j ξBν

j

n−k N∑
j ̸=i

ξA
′µ′

j ξBν
j

n−k′
≈ 4n2(N − 1)2n−2q4n−2

Putting these all together, the full second moment, taking N,K,G ≫ 1, is
E[(∆E)2] = 4n2N2n−2

[
1 +Kq2n−2 + 2Kqn

+K2q2n−1 +KGq4n−4 +GK2q4n−3 + 2KGq2n + 2K2Gq3n−1 +K2G2q4n−2
]

(14)

From this, we obtain the ratio of the variance to the squared mean:
var∆E

E[∆E]2
=

G2K2q4n(q−2 − 1) + 2GK2q3n(q−1 − 1) +GK2q4n−3 +GKq4n−4 +K2q2n(q−1 − 1) +Kq2n−2

(1 +Kqn +GKq2n)2

(15)

To simplify this arduous expression, we neglect terms in the numerator which are lower than
quadratic in K, as since the denominator is quadratic in K, these terms will vanish in the large
K limit. Furthermore, terms which contain powers of q smaller than 4n vanish faster than the oth-
ers, so we neglect these as well (which results in only small qualitative or visible changes to the
figures and calculated metrics). This yields

≈ K2 · G
2q4n(q−2 − 1) +Gq4n−3

(1 +Kqn +GKq2n)2
(16)

This is eq. 5 in the main text.

B.2 PROTOTYPE RETRIEVAL

Next, we focus on the ability of the dense Hopfield network to recover the higher level prototypes
within the tree, that is, the level 2 memories as well as the root level 1 memory. We begin with
the expression for the change in energy upon perturbing a prototype state. We denote the prototype
states as follows: g0 will refer to the root level 1 prototype. gA, A ∈ {1, . . . , G} will refer to one
of the G level 2 prototypes. The energy gap to perturbing a level 2 prototype is

∆E =
∑
A

∑
µ∈A

F

ξAµ
i gBi +

N∑
j ̸=i

ξAµ
j gBj

− F

−ξAµ
i gBi +

N∑
j ̸=i

ξAµ
j gBj

 (17)

= 2
∑
A

∑
µ∈A

∑
k odd

(
n
k

)
(ξAµ

i gBi )k

 N∑
j ̸=i

ξAµ
j gBj

n−k

. (18)

9
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We now evaluate the expectation value of the above. In order to evaluate terms such as

E
[(∑N

j ̸=i ξ
Aµ
j gBj

)n−k
]

, we will make use of the fact that at large N , inner products involving

a random vector concentrate around the their mean. We may therefore neglect fluctuations in such

quantities and make such approximations as E
[(∑N

j ̸=i ξ
Aµ
j gBj

)n−k
]
∼ E

[(∑N
j ̸=i ξ

Aµ
j gBj

)]n−k

.

This expectation may be separated into a sum over cases. We enumerate the cases and their mul-
tiplicity here. In each of these, will we approximate the combinatorial sum with its largest term
(leading order in N ). Finally, we define note that q ≡ (1− 2p)2.

1. A = B, with multiplicity M = K.

T1 = 2
∑
k odd

(
n
k

)
E
[
ξBµ
i gBi

]
E


 N∑

j ̸=i

ξBµ
j gBj

n−k


≈ 2n(N − 1)n−1qn/2

2. A ̸= B, with multiplicity M = (G− 1)K.

T2 = 2
∑
k odd

(
n
k

)
E
[
ξAµ
i gBi

]
E


 N∑

j ̸=i

ξAµ
j gBj

n−k


≈ 2n(N − 1)n−1q3n/2.

With these expressions, we obtain for the expectation value of the energy gap

E[∆E] ≈ 2n(N − 1)n−1qn/2K (1 + (G− 1)qn) . (19)

We will require the squared mean:

E[∆E]2 ≈ 4n2(N − 1)2n−2qnK2
(
1 + 2(G− 1)qn + (G− 1)2q2n

)
(20)

Now we require the second moment.

(∆E)2 = 4
∑
A,A

∑
µ∈A,µ′∈A′

∑
k,k′ odd

(
n

k

)(
n

k′

)
E
[
ξAµ
i ξA

′µ′

i

]
E


 N∑

j ̸=i

ξAµ
i gBi

n−k N∑
j ̸=i

ξA
′µ′

i gBi

n−k′
(21)

We enumerate the cases in order to take the expectation value:

1. A = A′ = B, µ = µ′. M = K.

T1 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E


 N∑

j ̸=i

ξBµ
i gBi

2n−k−k′
≈ 4n2(N − 1)2n−2qn−1

2. A = A′ = B, µ ̸= µ′. M = K(K − 1).

T2 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξBµ
i ξBµ′

i

]
E


 N∑

j ̸=i

ξBµ
i gBi

n−k N∑
j ̸=i

ξBµ′

i gBi

n−k′
≈ 4n2(N − 1)2n−2qn.

10
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3. A ̸= A′ = B (or symmetrically A′ ̸= A = B). M = 2K2(G− 1).

T3 = 4

n∑
k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξBµ′

i

]
E


 N∑

j ̸=i

ξAµ
i gBi

n−k N∑
j ̸=i

ξBµ′

i gBi

n−k


≈ 4n2(N − 1)2n−2q2n.

4. A = A′ ̸= B, µ = µ′. M = (G− 1)K.

T4 = 4
∑

k,k′odd

(
n
k

)(
n
k′

)
E


 N∑

j ̸=i

ξAµ
i gBi

2n−k−k′
≈ 4n2(N − 1)2n−2q3n−3

5. A = A′ ̸= B,µ ̸= µ′. M = (G− 1)K(K − 1).

T5 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξAµ′

i

]
E


 N∑

j ̸=i

ξAµ
i gBi

n−k N∑
j ̸=i

ξAµ′

i gBi

n−k′
≈ 4n2(N − 1)2n−2q3n−2.

6. A,A′, and B all distinct. M = (G− 1)(G− 2)K2.

T6 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξA

′µ′

i

]
E


 N∑

j ̸=i

ξAµ
i gBi

n−k N∑
j ̸=i

ξA
′µ′

i gBi

n−k′
≈ 4n2(N − 1)2n−2q3n−1.

With these sub-expressions and approximating N,G,K ≫ 1, the full second moment is
E[(∆E)2] = 4n2N2n−2

[
Kqn−1 +K2qn + 2K2Gq2n +GKq3n−3 +K2Gq3n−2 +K2G2q3n−1

]
.

(22)

From this and the mean we derived above, we obtain the ratio of the variance to the second moment:

var∆E

E[∆E]2
=

K−1qn−1 +GK−1q3n−3 +Gq3n−2 +G2q3n
(
q−1 − 1

)
qn + 2Gq2n +G2q3n

(23)

=
1

Kqn

(
1 +Gq2n−2

1 + 2Gqn +G2q2n

)
+ q2n

(
Gq−2 +G2

(
q−1 − 1

)
1 + 2Gqn +G2q2n

)
(24)

=
1

Kqn

(
1 + (Gqn)qn−2

(1 +Gqn)2

)
+

(
(Gqn)qn−2 + (Gqn)2

(
q−1 − 1

)
(Gqn + 1)2

)
. (25)

This is eq. 6 in the main text.

Now we derive the case of the level 1 root memory g0. We take the expectation value of Eq. 17 with
gB → g0. The expectation value of the energy gap above the root prototype is

E[∆E] ≈ 2n(N − 1)n−1 ·GKqn. (26)

For the second moment, there are only three types of terms which contribute to the summation.
Using eq. 21, with gB → g0, we obtain

1. A = A′, µ = µ′. M = GK.

T1 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E


 N∑

j ̸=i

ξAµ
i g0i

2n−k−k′
≈ 4n2(N − 1)2n−2 · q2n−2.
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2. A = A′, µ ̸= µ′. M = GK(K − 1).

T2 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξAµ′

i

]
E


 N∑

j ̸=i

ξAµ
i g0i

n−k N∑
j ̸=i

ξAµ′

i g0i

n−k′
≈ 4n2(N − 1)2n−2 · q2n−1

3. A ̸= A′. M = G(G− 1)K2.

T3 = 4
∑

k,k′ odd

(
n
k

)(
n
k′

)
E
[
ξAµ
i ξA

′µ′

i

]
E


 N∑

j ̸=i

ξAµ
i g0i

n−k N∑
j ̸=i

ξA
′µ′

i g0i

n−k′
≈ 4n2(N − 1)2n−2 · q2n.

With the simplifying assumptions of N,K,G ≫ 1, we write the second moment:

E[(∆E)2] = 4n2(N − 1)2n−2(GKq2n−2 +GK2q2n−1 +G2K2q2n). (27)

Subsequently, we obtain the ratio of the variance to the squared mean which is eq. 7:

var∆E

E[∆E]2
=

1

G

(
1

q
+

1

Kq2

)
. (28)
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