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A Details of Experimental Results1

A.1 Limitation on physical realism2

Figure 6 in the main paper visualizes the trajectories of Gaussian primitives from 4DGS [1] alongside3

ground-truth particle trajectories, clearly illustrating the limitations in capturing physical realism. To4

further support this observation, Figure 7 demonstrates results from all the baseline algorithms.5

Across all tested recent DyNVS algorithms, the reconstructed motions consistently fail to accurately6

follow the true physical trajectories. Specifically, trajectories produced by D-3DGS [2] and 4DGS [1]7

show only localized fluctuations. In the case of STG [3], the primitives remain largely static in the8

Box-smoke and Pisa scenes, requiring the addition of markers for better visualization. Similarly, the9

trajectories generated by SOM [4] exhibit erratic motion, primarily due to errors introduced by its10

reliance on external point trackers.11

This comprehensive analysis highlights a critical limitation—relying solely on RGB reconstruction12

loss ensures photorealism but does not guarantee physical realism. We believe that our PhysGaia13

dataset, which provides ground-truth trajectories, will be instrumental in advancing future research14

toward physics-aware dynamic scene reconstruction.15

(a) GT image (b) D-3DGS [2] (c) 4DGS [1] (d) STG [3] (e) SOM [4]

Figure 7: Comparison of reconstructed trajectories and its ground truth on the Box-smoke and Pisa
scenes. The reconstructed trajectories do not accurately follow the true physical trajectories.

A.2 Implementation details16

We implement recent DyNVS methods, including D-3DGS [2], 4DGS [1], STG [3], and SOM [4].17

We follow the default training settings provided for each method. For 4DGS, we adopt the training18

configuration used for the HyperNeRF [5] dataset and reduce the grid learning rate to improve training19

stability. For SOM, we apply the recommended hyperparameters for the DyCheck [6] dataset. For20
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point cloud initialization, we run COLMAP with dense matching and fusion, followed by uniform21

downsampling to approximately 40,000 points. All experiments are conducted on NVIDIA RTX22

A5000 and A6000 GPUs, with training times ranging from 30 minutes to 2 hours depending on the23

method. Note that all experiments are implemented based on their public codes 1 2 3 4.24

A.3 Details of Quantitative Results25

To supplement Table 3 of the main paper, we report more detailed quantitative results.26

A.3.1 Average performance: all scenes27

Table 4 presents the average performance of all methods under both monocular and multiview settings,28

aggregated across all 17 scenes. For SOM [4], we observed better performance when scaling the29

estimated depth map using the COLMAP point cloud obtained from dense matching, compared to30

sparse matching.31

Table 4: Average quantitative results for both monocular and multiview settings, averaged across all
17 scenes. While multiview setups generally offer better reconstruction performance than monocular
ones, even multiview results achieve PSNR scores below 30. This highlights the substantial difficulty
in reconstructing the complex multi-body interactions in our dataset.

Method Monocular Multiview
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 21.7 0.86 0.18 24.2 0.89 0.14
4DGS [1] 22.7 0.85 0.19 24.4 0.87 0.17
STG [3] 19.3 0.76 0.30 21.0 0.79 0.30
SOM [4] 19.3 0.80 0.26 N/A N/A N/A

A.3.2 Average performance: per each materials32

Table 5 shows the average quantitative results for each material category across all baseline algorithms,33

with updated performance of SOM. Overall, D-3DGS [2] and 4DGS [1] demonstrate the most stable34

performance. Performance tends to be higher on textile materials but worsens on viscoelastic35

materials, which typically exhibit complex motion involving many independent objects.36

Table 5: Average quantitative results for each material category across all baseline algorithms

Capture Type Method Liquid Gas
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Monocular

D-3DGS [2] 22.7 0.87 0.22 21.9 0.89 0.16
4DGS [1] 24.2 0.87 0.23 21.7 0.88 0.17
STG [3] 19.2 0.72 0.39 21.9 0.85 0.24
SOM [4] 19.6 0.80 0.32 20.0 0.84 0.27

Multiview
D-3DGS [2] 22.2 0.87 0.24 23.7 0.91 0.13

4DGS [1] 25.1 0.88 0.22 24.2 0.89 0.17
STG [3] 20.8 0.75 0.40 25.0 0.91 0.19

Capture Type Method Viscoelastic materials Textile
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Monocular

D-3DGS [2] 20.1 0.84 0.15 22.1 0.83 0.18
4DGS [1] 19.5 0.82 0.18 24.9 0.84 0.18
STG [3] 13.6 0.63 0.40 21.9 0.84 0.21
SOM [4] 16.7 0.75 0.23 20.7 0.79 0.22

Multiview
D-3DGS [2] 22.2 0.89 0.10 27.7 0.90 0.12

4DGS [1] 21.0 0.85 0.15 26.6 0.87 0.15
STG [3] 17.2 0.70 0.36 21.1 0.81 0.25

1D-3DGS: https://github.com/ingra14m/Deformable-3D-Gaussians
2STG: https://github.com/oppo-us-research/SpacetimeGaussians
34DGS: https://github.com/hustvl/4DGaussians
4SOM: https://github.com/vye16/shape-of-motion
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A.3.3 Performance breakdown: monocular setting37

We provide per-scene breakdown performance of monocular video reconstruction setting in Table 6.38

We report the performance of D-3DGS [2], 4DGS [1], STG [3], and SOM [4], which serve as the39

most common and recent baselines for the DyNVS task.40

Table 6: Per-scene breakdown results for all 17 scenes under the monocular setting.

Method Cereal Ship Hanok
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 23.3 0.88 0.15 25.9 0.90 0.16 16.3 0.78 0.28
4DGS [1] 26.3 0.90 0.14 25.9 0.91 0.15 15.5 0.74 0.32
STG [3] 15.8 0.54 0.54 22.8 0.87 0.23 14.8 0.60 0.41
SOM [4] 21.2 0.81 0.22 23.8 0.87 0.23 14.7 0.67 0.40

Method Ice Pisa Box-smoke
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 25.3 0.92 0.30 20.7 0.72 0.26 20.7 0.96 0.13
4DGS [1] 29.2 0.92 0.29 19.3 0.67 0.26 21.3 0.96 0.12
STG [3] 23.1 0.87 0.39 20.1 0.68 0.33 22.7 0.95 0.16
SOM [4] 18.7 0.84 0.41 17.1 0.65 0.41 23.8 0.95 0.18

Method Single smoke Falling Jelly party
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 26.5 0.97 0.08 19.6 0.90 0.18 16.3 0.81 0.21
4DGS [1] 26.1 0.97 0.08 20.1 0.90 0.19 14.9 0.70 0.28
STG [3] 24.5 0.97 0.10 20.2 0.77 0.37 11.1 0.51 0.44
SOM [4] 23.9 0.95 0.18 15.3 0.81 0.33 14.9 0.69 0.28

Method Pancake Bouncing balls Cow
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 22.8 0.88 0.13 19.8 0.77 0.15 21.6 0.92 0.10
4DGS [1] 17.0 0.78 0.22 22.7 0.86 0.10 23.6 0.92 0.11
STG [3] 10.6 0.60 0.39 11.9 0.51 0.60 20.6 0.87 0.16
SOM [4] 13.9 0.68 0.34 17.4 0.79 0.14 20.7 0.85 0.17

Method Lucy Basin Flags
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 22.8 0.92 0.10 18.2 0.67 0.36 23.6 0.94 0.12
4DGS [1] 27.5 0.94 0.08 18.0 0.68 0.38 31.9 0.96 0.08
STG [3] 19.6 0.86 0.19 16.8 0.66 0.43 24.7 0.90 0.17
SOM [4] 21.0 0.90 0.17 16.3 0.61 0.43 27.4 0.93 0.12

Method Single flag Tube Average
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 18.3 0.68 0.24 27.7 0.96 0.05 21.7 0.86 0.18
4DGS [1] 18.0 0.65 0.29 28.8 0.96 0.08 22.7 0.85 0.19
STG [3] 26.0 0.87 0.14 22.1 0.92 0.12 19.3 0.76 0.30
SOM [4] 16.3 0.60 0.24 22.5 0.93 0.15 19.3 0.80 0.26
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A.3.4 Performance breakdown: multiview setting41

We provide per-scene breakdown performance for the multiview video reconstruction setting in42

Table 7. We report results for D-3DGS [2], 4DGS [1], and STG [3], which serve as the most common43

and recent baselines for the DyNVS task. Note that since SOM [4] is specialized for monocular video44

setups, we omit its performance in the multiview evaluation.45

Table 7: Per-scene breakdown results for all 17 scenes under the multiview setting.

Method Cereal Ship Hanok
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 28.1 0.93 0.11 28.8 0.93 0.11 15.6 0.76 0.31
4DGS [1] 27.6 0.92 0.13 25.6 0.91 0.15 15.8 0.75 0.33
STG [3] 15.8 0.58 0.59 25.9 0.90 0.20 15.7 0.65 0.43

Method Ice Pisa Box-smoke
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 16.4 0.86 0.43 22.3 0.75 0.23 20.5 0.96 0.11
4DGS [1] 31.4 0.93 0.28 22.8 0.74 0.24 22.6 0.97 0.07
STG [3] 25.9 0.89 0.38 28.7 0.90 0.18 19.0 0.95 0.17

Method Single-smoke Falling Jelly party
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 26.4 0.98 0.07 25.7 0.95 0.11 18.2 0.87 0.16
4DGS [1] 28.2 0.98 0.07 23.4 0.87 0.30 16.1 0.80 0.24
STG [3] 27.0 0.98 0.07 25.1 0.83 0.34 12.5 0.60 0.39

Method Pancake Bouncing balls Cow
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 25.3 0.90 0.08 25.7 0.91 0.07 19.8 0.87 0.10
4DGS [1] 18.7 0.84 0.18 25.0 0.84 0.09 24.1 0.92 0.10
STG [3] 11.7 0.65 0.36 12.9 0.59 0.54 31.8 0.95 0.15

Method Lucy Basin Flags
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 30.2 0.96 0.06 23.6 0.82 0.24 30.5 0.96 0.09
4DGS [1] 28.6 0.95 0.07 20.5 0.75 0.33 32.8 0.96 0.08
STG [3] 21.2 0.88 0.19 17.5 0.70 0.45 26.0 0.91 0.17

Method Single flag Tube Average
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

D-3DGS [2] 21.6 0.81 0.14 32.6 0.98 0.05 24.2 0.89 0.14
4DGS [1] 19.7 0.72 0.21 31.3 0.97 0.07 24.4 0.87 0.17
STG [3] 16.9 0.62 0.36 23.8 0.93 0.11 21.0 0.79 0.30
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A.4 Additional Qualitative Results46

Figure 8 shows additional qualitative results, where all methods fail to accurately capture multi-body47

interactions, producing blurred or under-reconstructed outputs. For the 4DGS [1], using the default48

grid learning rate frequently causes NaN values in the loss. Reducing the learning rate stabilizes49

training but results in poor dynamic capture, with outputs resembling static scenes.50

(a) GT image (b) D-3DGS [2] (c) 4DGS [1] (d) STG [3] (e) SOM [4]

Figure 8: Qualitative results of recent DyNVS methods on the Jelly party, Lucy, Basin, Hanok,
Box-smoke, and Cereals scenes with monocular training setup. These results show that all methods
frequently exhibit needle-like artifacts and fail to reconstruct dynamic elements accurately.
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B Details of PhysGaia51

B.1 Scene Lists52

Our dataset consists of 17 scenes divided into four categories: liquid, gas, viscoelastic substances,53

and textile. Each category contains 4 to 5 scenes, and the detailed scene names are listed in Table 8.54

Table 8: List of scenes included in our PhysGaia dataset

Liquid Gas Viscoelastic substance Textile

Scene name

Cereal Pisa Jelly party Lucy
Ship Box-smoke Pancake Basin

Hanok Single smoke Bouncing balls Flags
Ice Falling Cow Single flag
– – – Tube

B.2 Camera Trajectories55

(a) 180◦ scene: 2 cams (b) 360◦ scene: 4 cams

Figure 9: Visualization of training camera’s traj.

Figure 9 visualizes our training camera tra-56

jectories, where we adopt either 2 or 4 cam-57

eras depending on the properties of each58

scene. For the Cow, Single flag, and Tube59

scenes–which resemble 180◦ settings with60

background walls placed behind the objects–61

we use only 2 cameras, as shown in Fig-62

ure 9a. In contrast, for 360◦ scenes, we63

place 4 cameras at evenly spaced viewpoints64

around the scene, enabling full coverage65

from four directions. All cameras follow spiral trajectories to capture diverse views over time.66

For the monocular setup, we select one of the training cameras to generate the training data.67

B.3 Implementation Details68

All simulations were conducted on 4 NVIDIA Titan Xp GPUs and Intel Xeon E5-2630 v4 CPUs with69

40 cores. While most scenes rendered in 2–3 hours, the Lucy and Hanok scenes required 12–24 hours70

due to their complex geometry and increased simulation costs. To supplement Section 4, we provide71

additional detailed simulation implementation along with the value of physics parameters. These72

parameters can be served as ground-truth labels for downstream physical reasoning tasks.73

Liquid We assume incompressible, non-Newtonian fluids in our simulations. Table 9 summarizes74

the density and viscosity values, which are the most important factors governing fluid motion.75

External forces are limited to gravity. For the Ship scene, we reduced the particle separation from 0.176

to 0.05 to decrease initial particle displacement and improve simulation accuracy. Also, the particle77

separation during dynamic simulation is set to 0.1 for the Cereal scene and 0.05 for the Ship scene.78

Table 9: Physics parameters used for liquid materials.

Scene name Object Density (kg/m3) Viscosity

Ship Water 800 0
Ship 300 -

Cereal Water 1000 0
Cereal 1000 -

Hanok Snow 1000 10
Ice Water 1000 0

Gas In gas simulations, temperature is the most critical physical parameter, governing buoyancy,79

expansion, and flow dynamics. We initialized the temperature to 3000K for gas materials. As80

temperature evolves locally due to gas movement and interactions, its spatiotemporal variation is81

represented as a temperature field defined on a voxel grid. These temperature fields are accessible82

via the provided simulation source file with Python API, similar to how flow fields are accessed for83

generating ground-truth trajectory data.84
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Viscoelastic substances Gravity is applied to all scenes; however, for the Cow scene, we introduce85

additional internal forces to induce cow motion and increase the complexity of the physical reasoning86

scenarios. Boundaries are set to be open in all directions, allowing objects to move freely without87

collisions against invisible walls. Table 10 lists detailed physics parameters, including Young’s88

modulus (E) and Poisson’s ratio (P ), used in the simulations.89

Table 10: Physics parameters used for viscoelastic materials.

Scene name Object Type E P Viscosity

Pancake Honey Viscous 2.5× 105 0.10 0.125
Pancakes Chunky 8.0× 104 0.23 -

Bouncing balls Balls Elastic 1.0× 105 0.50 -
Fishbowl Static - - -

Jelly party Jelly Elastic 8.0× 104 0.45 -
Cow Cow Elastic 5.0× 104 0.45 -

Textile For textiles, we primarily adopt the default configuration from the Vellum solver, with90

detailed modifications summarized in Table 11.91

Table 11: Physics parameters used for textile materials.

Scene name Object Stretch Bend
Stiffness Damping Ratio Stiffness Damping Ratio

Flags Flag1 (small) 1.0× 1010 1.0× 10−3 1.0× 10−4 1.0× 10−2

Flag2 (big) 1.0× 1011 1.0× 10−3 1.0× 10−4 1.0× 10−2

Basin Boxes 1.0× 1010 1.0× 10−3 N/A N/A
Cloth 1.0× 1013 1.0× 10−3 1.0× 10−4 1.0× 10−2

Single flag Flag 1.0× 1010 1.0× 10−3 1.0× 10−4 1.0× 10−2

Lucy Cloth 1.0× 1010 1.0× 10−3 1.0× 10−4 1.0× 10−2

Tube Tube flag 1.0× 1010 1.0× 10−3 1.0× 10−4 1.0× 10−2

B.4 Scene Visualization92

Figure 10 and Figure 11 visualize more scenes in PhysGaia to supplement the Figure 1 in our main93

paper. As shown in Table 2 of the main paper, textile materials remain underexplored in physics-based94

datasets. To facilitate progressive research development in this domain, we include few simpler95

scenes such as single flag and tube that employ with only basic wind interactions. We believe this96

approach effectively supports advancements by providing more accessible starting points. Similarly,97

our dataset also includes few simpler gas scenes, simple smoke and falling, for the same reason as with98

textile scenarios: to facilitate progressive development. For the cow scene, internal forces intrinsic to99

the cow itself introduce unique and more complex dynamics, rather than using only gravity.100

(a) Liquid: Hanok (top-left), Ship (top-right), Cereal (bottom-left), Ice (bottom-right)

Figure 10: Examples from the proposed physics-aware dataset, PhysGaia.
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(a) Gas: Box-smoke (top-left), Pisa (top-right)), Simple smoke (bottom-left), and Falling (bottom-right)

(b) Viscoelastic substances: Pancake (top-left), Jelly party (top-right), Bouncing balls (bottom-left), and Cow
(bottom-right)

(c) Textile: Lucy (top-left), Basin (top-right), Flags (mid-left), Tube (mid-right), and Singe flag (bottom)

Figure 11: Examples from the proposed physics-aware dataset, PhysGaia. They exhibit complex
physical interactions between multiple bodies composed of diverse materials such as liquid, gas,
viscoelastic substance, and textile. This dataset will foster physics reasoning in dynamic scenes.
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B.5 License101

Our dataset is released under the Creative Commons Attribution-NonCommercial (CC BY-NC)102

license. The mesh used for the Lucy scene is sourced from the Stanford 3D Repository, which103

permits usage for research purposes. Other mesh objects are licensed under CC-BY 4.0, as detailed in104

Table 12. For the texture maps in the textile categories, we utilized images from Pixabay, which are105

freely available with contributor consent and comparable to a CC-BY 4.0 license, also summarized106

in Table 12. Therefore, all data included in our dataset comply with usage rights and do not pose107

intellectual property issues.108

Table 12: License of the sources used for generating data.

Scene Resource name License Access
Ice Glass cup CC BY 4.0 Sketchfab
Hanok Korean building CC BY 4.0 Sketchfab
Ship Ship CC BY 4.0 Sketchfab
Pisa Torre Pisa CC BY 4.0 Sketchfab
Bouncing balls Fish bowl CC BY 4.0 Sketchfab
Cow Cow CC BY 4.0 Sketchfab
Lucy Lucy research only Stanford 3D Scan Repo
Scene Contributor License Access

Flags PaftDrunk Content License Pixabay
Zoeysmom Content License Pixabay

Single flag – Content License Pixabay
Lucy WalterClark Content License Pixabay
Tube – Content License Pixabay
Basin Yourialka Content License Pixabay

C Limitations & Broad Impact109

Limitations Although our PhysGaia dataset holds a crucial position in the DyNVS field by enabling110

accurate evaluation with ground-truth physical properties, it is inherently limited to synthetic scenarios.111

To bridge this gap towards more realistic applications, we believe domain adaptation approaches, such112

as those from Syn2Real [8], could be adopted. However, such methods must be carefully designed to113

maintain multi-view consistency across frames. We leave this important domain transfer for future114

work, confident that our dataset’s precise physical information will be invaluable for developing these115

advanced techniques.116

Broad impact From a positive perspective, our work advances research on physically plausible117

4D reconstruction. This, in turn, significantly improves monocular video reconstruction, an essential118

technology for future AR/VR applications. However, such progress in 4D reconstruction, especially119

given its potential for scene editing of existing videos, may raise intellectual property concerns120

regarding the original video content.121
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