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PhysGaia: A Physics-Aware Dataset of Multi-Body
Interactions for Dynamic Novel View Synthesis
—Supplmentary document—

A Details of Experimental Results

A.1 Limitation on physical realism

Figure 6 in the main paper visualizes the trajectories of Gaussian primitives from 4DGS [[]] alongside
ground-truth particle trajectories, clearly illustrating the limitations in capturing physical realism. To
further support this observation, Figure[7]demonstrates results from all the baseline algorithms.

Across all tested recent DyNVS algorithms, the reconstructed motions consistently fail to accurately
follow the true physical trajectories. Specifically, trajectories produced by D-3DGS [2]] and 4DGS [1]]
show only localized fluctuations. In the case of STG [3], the primitives remain largely static in the
Box-smoke and Pisa scenes, requiring the addition of markers for better visualization. Similarly, the
trajectories generated by SOM [4] exhibit erratic motion, primarily due to errors introduced by its
reliance on external point trackers.

This comprehensive analysis highlights a critical limitation—relying solely on RGB reconstruction
loss ensures photorealism but does not guarantee physical realism. We believe that our PhysGaia
dataset, which provides ground-truth trajectories, will be instrumental in advancing future research
toward physics-aware dynamic scene reconstruction.

(a) GT image (b) D-3DGS (c) 4DGS (d) STG [3] (e) SOM
Figure 7: Comparison of reconstructed trajectories and its ground truth on the Box-smoke and Pisa

scenes. The reconstructed trajectories do not accurately follow the true physical trajectories.

A.2 TImplementation details

We implement recent DyNVS methods, including D-3DGS [2]], 4DGS [1]], STG [3], and SOM [4].
We follow the default training settings provided for each method. For 4DGS, we adopt the training
configuration used for the HyperNeRF [J3]] dataset and reduce the grid learning rate to improve training
stability. For SOM, we apply the recommended hyperparameters for the DyCheck [6] dataset. For
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point cloud initialization, we run COLMAP with dense matching and fusion, followed by uniform
downsampling to approximately 40,000 points. All experiments are conducted on NVIDIA RTX
A5000 and A6000 GPUs, with training times ranging from 30 minutes to 2 hours depending on the
method. Note that all experiments are implemented based on their public codes E]E]E]%

A.3 Details of Quantitative Results

To supplement Table 3 of the main paper, we report more detailed quantitative results.

A.3.1 Average performance: all scenes

Table[d] presents the average performance of all methods under both monocular and multiview settings,
aggregated across all 17 scenes. For SOM [4], we observed better performance when scaling the
estimated depth map using the COLMAP point cloud obtained from dense matching, compared to
sparse matching.

Table 4: Average quantitative results for both monocular and multiview settings, averaged across all
17 scenes. While multiview setups generally offer better reconstruction performance than monocular
ones, even multiview results achieve PSNR scores below 30. This highlights the substantial difficulty
in reconstructing the complex multi-body interactions in our dataset.

Method Monocular Multiview
PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS |
D-3DGS [2] 21.7 0.86 0.18 24.2 0.89 0.14
4DGS [1] 22.7 0.85 0.19 24.4 0.87 0.17
STG [3] 19.3 0.76 0.30 21.0 0.79 0.30
SOM [4] 19.3 0.80 0.26 N/A N/A N/A

A.3.2 Average performance: per each materials

Table[5]shows the average quantitative results for each material category across all baseline algorithms,
with updated performance of SOM. Overall, D-3DGS [2] and 4DGS [1] demonstrate the most stable
performance. Performance tends to be higher on textile materials but worsens on viscoelastic
materials, which typically exhibit complex motion involving many independent objects.

Table 5: Average quantitative results for each material category across all baseline algorithms

Liquid Gas
Capture Type Method PSNR+  SSIM+  LPIPS|  PSNR1  SSIMt  LPIPS
D-3DGS [2] 227 0.87 0.22 21.9 0.89 0.16
Monocular 4DGS [ 24.2 0.87 0.23 21.7 0.88 0.17
u STG [3] 19.2 0.72 0.39 21.9 0.85 0.24
SOM [4] 19.6 0.80 0.32 20.0 0.84 0.27
D-3DGS [2] 222 0.87 0.24 23.7 0.91 0.13
Multiview 4DGS [ 25.1 0.88 0.22 242 0.89 0.17
STG [3] 20.8 0.75 0.40 25.0 0.91 0.19
Viscoelastic materials Textile
Capture Type Method PSNRT  SSIM+  LPIPS| | PSNR{  SSIMt  LPIPS
D-3DGS [2] 20.1 0.84 0.15 22.1 0.83 0.18
Monocular 4DGS [0 19.5 0.82 0.18 24.9 0.84 0.18
u STG [3] 13.6 0.63 0.40 21.9 0.84 0.21
SOM [4] 16.7 0.75 0.23 20.7 0.79 0.22
D-3DGS [2) 22.2 0.89 0.10 277 0.90 0.12
Multiview 4DGS [ 21.0 0.85 0.15 26.6 0.87 0.15
STG [3] 17.2 0.70 0.36 21.1 0.81 0.25

'D-3DGS: |https://github.com/ingraldm/Deformable—3D-Gaussians
2STG: https://github.com/oppo-us-research/SpacetimeGaussians
34DGS: https://github.com/hustvl/4DGaussians

4SOM: https://github.com/vyel6/shape-of-motion


https://github.com/ingra14m/Deformable-3D-Gaussians
https://github.com/oppo-us-research/SpacetimeGaussians
https://github.com/hustvl/4DGaussians
https://github.com/vye16/shape-of-motion
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A.3.3 Performance breakdown: monocular setting

We provide per-scene breakdown performance of monocular video reconstruction setting in Table [6}
We report the performance of D-3DGS [2]], 4DGS [1]], STG [3]], and SOM [4]], which serve as the
most common and recent baselines for the DyNVS task.

Table 6: Per-scene breakdown results for all 17 scenes under the monocular setting.

Method Cereal Ship Hanok
PSNR1 SSIMt LPIPS| PSNR{t SSIM{t LPIPS|, PSNR{t SSIMt LPIPS|
D-3DGS [2] 233 0.88 0.15 259 0.90 0.16 16.3 0.78 0.28
4DGS [1] 26.3 0.90 0.14 259 0.91 0.15 15.5 0.74 0.32
STG [3] 15.8 0.54 0.54 22.8 0.87 0.23 14.8 0.60 0.41
SOM [4] 21.2 0.81 0.22 23.8 0.87 0.23 14.7 0.67 0.40
Method Ice Pisa Box-smoke
PSNR1 SSIM?T LPIPS| | PSNR1 SSIM{1 LPIPS| | PSNRT SSIM1 LPIPS|
D-3DGS [2] 25.3 0.92 0.30 20.7 0.72 0.26 20.7 0.96 0.13
4DGS [1] 29.2 0.92 0.29 19.3 0.67 0.26 21.3 0.96 0.12
STG [3] 23.1 0.87 0.39 20.1 0.68 0.33 227 0.95 0.16
SOM [4] 18.7 0.84 0.41 17.1 0.65 0.41 23.8 0.95 0.18
Method Single smoke Falling Jelly party
PSNR1 SSIM?T LPIPS| | PSNR1 SSIM1 LPIPS| | PSNRT SSIM1 LPIPS|
D-3DGS [2] 26.5 0.97 0.08 19.6 0.90 0.18 16.3 0.81 0.21
4DGS [1] 26.1 0.97 0.08 20.1 0.90 0.19 14.9 0.70 0.28
STG [3] 245 0.97 0.10 20.2 0.77 0.37 11.1 0.51 0.44
SOM [4] 239 0.95 0.18 15.3 0.81 0.33 14.9 0.69 0.28
Method Pancake Bouncing balls Cow
PSNR1 SSIMT LPIPS| ' PSNR1 SSIM{1 LPIPS| ' PSNRT SSIM1 LPIPS|
D-3DGS [2] 22.8 0.88 0.13 19.8 0.77 0.15 21.6 0.92 0.10
4DGS [1] 17.0 0.78 0.22 22.7 0.86 0.10 23.6 0.92 0.11
STG [3] 10.6 0.60 0.39 11.9 0.51 0.60 20.6 0.87 0.16
SOM [4] 13.9 0.68 0.34 17.4 0.79 0.14 20.7 0.85 0.17
Method Lucy Basin Flags
PSNR1 SSIM{ LPIPS| PSNR+ SSIM1 LPIPS| PSNRT SSIMt LPIPS |
D-3DGS [2] 22.8 0.92 0.10 18.2 0.67 0.36 23.6 0.94 0.12
4DGS [1] 27.5 0.94 0.08 18.0 0.68 0.38 31.9 0.96 0.08
STG [3] 19.6 0.86 0.19 16.8 0.66 0.43 24.7 0.90 0.17
SOM [4] 21.0 0.90 0.17 16.3 0.61 0.43 27.4 0.93 0.12
Method Single flag Tube Average
PSNR1 SSIM{ LPIPS| PSNR+ SSIM1 LPIPS| PSNRT SSIMT LPIPS |
D-3DGS [2] 18.3 0.68 0.24 27.7 0.96 0.05 21.7 0.86 0.18
4DGS [1] 18.0 0.65 0.29 28.8 0.96 0.08 22.7 0.85 0.19
STG [3] 26.0 0.87 0.14 22.1 0.92 0.12 19.3 0.76 0.30
SOM [4] 16.3 0.60 0.24 22.5 0.93 0.15 19.3 0.80 0.26
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A.3.4 Performance breakdown: multiview setting

We provide per-scene breakdown performance for the multiview video reconstruction setting in
Table We report results for D-3DGS [2]], 4DGS [1]], and STG [3l], which serve as the most common
and recent baselines for the DyNVS task. Note that since SOM [4]] is specialized for monocular video
setups, we omit its performance in the multiview evaluation.

Table 7: Per-scene breakdown results for all 17 scenes under the multiview setting.

Method Cereal Ship Hanok
PSNR1 SSIMt LPIPS| PSNRT SSIM{t LPIPS| PSNRT SSIMT LPIPS|
D-3DGS [2] 28.1 0.93 0.11 28.8 0.93 0.11 15.6 0.76 0.31
4DGS [1] 27.6 0.92 0.13 25.6 0.91 0.15 15.8 0.75 0.33
STG [3] 15.8 0.58 0.59 25.9 0.90 0.20 15.7 0.65 0.43
Method Ice Pisa Box-smoke
PSNR1 SSIMt LPIPS|) | PSNR1 SSIM{1 LPIPS| | PSNRT SSIM1 LPIPS|
D-3DGS [2] 16.4 0.86 0.43 22.3 0.75 0.23 20.5 0.96 0.11
4DGS [1] 314 0.93 0.28 22.8 0.74 0.24 22.6 0.97 0.07
STG [3] 259 0.89 0.38 28.7 0.90 0.18 19.0 0.95 0.17
Method Single-smoke Falling Jelly party
PSNR1 SSIM?T LPIPS| | PSNR1 SSIM1 LPIPS| | PSNRT SSIM1 LPIPS |
D-3DGS [2] 26.4 0.98 0.07 25.7 0.95 0.11 18.2 0.87 0.16
4DGS [1] 28.2 0.98 0.07 23.4 0.87 0.30 16.1 0.80 0.24
STG [3] 27.0 0.98 0.07 25.1 0.83 0.34 12.5 0.60 0.39
Method Pancake Bouncing balls Cow
PSNR1 SSIM?t LPIPS) ' PSNRT SSIM{1 LPIPS| ' PSNRT SSIM?T LPIPS|
D-3DGS [2] 25.3 0.90 0.08 25.7 0.91 0.07 19.8 0.87 0.10
4DGS [1] 18.7 0.84 0.18 25.0 0.84 0.09 24.1 0.92 0.10
STG [3] 11.7 0.65 0.36 12.9 0.59 0.54 31.8 0.95 0.15
Method Lucy Basin Flags
PSNR1 SSIMt LPIPS| PSNRT SSIMt LPIPS| PSNRtT SSIMT LPIPS|
D-3DGS [2] 30.2 0.96 0.06 23.6 0.82 0.24 30.5 0.96 0.09
4DGS [1] 28.6 0.95 0.07 20.5 0.75 0.33 32.8 0.96 0.08
STG [3] 21.2 0.88 0.19 17.5 0.70 0.45 26.0 091 0.17
Method Single flag Tube Average
PSNR1 SSIMT LPIPS]| PSNR1 SSIM{1 LPIPS| PSNR{1 SSIM{1 LPIPS|
D-3DGS [2] 21.6 0.81 0.14 32.6 0.98 0.05 24.2 0.89 0.14
4DGS [1] 19.7 0.72 0.21 31.3 0.97 0.07 244 0.87 0.17
STG [3] 16.9 0.62 0.36 23.8 0.93 0.11 21.0 0.79 0.30




A.4 Additional Qualitative Results

Figure 8] shows additional qualitative results, where all methods fail to accurately capture multi-body
interactions, producing blurred or under-reconstructed outputs. For the 4DGS [[], using the default
grid learning rate frequently causes NaN values in the loss. Reducing the learning rate stabilizes
training but results in poor dynamic capture, with outputs resembling static scenes.

(a) GT image (b) D-3DGS [2] (c) 4DGS [1]] (d) STG (e) SOM [4]

Figure 8: Qualitative results of recent DyNVS methods on the Jelly party, Lucy, Basin, Hanok,
Box-smoke, and Cereals scenes with monocular training setup. These results show that all methods
frequently exhibit needle-like artifacts and fail to reconstruct dynamic elements accurately.
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B Details of PhysGaia

B.1 Scene Lists

Our dataset consists of 17 scenes divided into four categories: liquid, gas, viscoelastic substances,
and textile. Each category contains 4 to 5 scenes, and the detailed scene names are listed in Table|[S]

Table 8: List of scenes included in our PhysGaia dataset

Liquid Gas Viscoelastic substance Textile
Cereal Pisa Jelly party Lucy
Ship Box-smoke Pancake Basin
Scene name Hanok Single smoke Bouncing balls Flags
Ice Falling Cow Single flag
- - - Tube

B.2 Camera Trajectories

Figure ] visualizes our training camera tra-
jectories, where we adopt either 2 or 4 cam-
eras depending on the properties of each
scene. For the Cow, Single flag, and Tube
scenes—which resemble 180° settings with
background walls placed behind the objects—
we use only 2 cameras, as shown in Fig-
ure @ In contrast, for 360° scenes, we
place 4 cameras at evenly spaced viewpoints Figure 9: Visualization of training camera’s traj.
around the scene, enabling full coverage

from four directions. All cameras follow spiral trajectories to capture diverse views over time.
For the monocular setup, we select one of the training cameras to generate the training data.

(a) 180° scene: 2 cams (b) 360° scene: 4 cams

B.3 Implementation Details

All simulations were conducted on 4 NVIDIA Titan Xp GPUs and Intel Xeon E5-2630 v4 CPUs with
40 cores. While most scenes rendered in 2—3 hours, the Lucy and Hanok scenes required 12—-24 hours
due to their complex geometry and increased simulation costs. To supplement Section 4, we provide
additional detailed simulation implementation along with the value of physics parameters. These
parameters can be served as ground-truth labels for downstream physical reasoning tasks.

Liquid We assume incompressible, non-Newtonian fluids in our simulations. Table summarizes
the density and viscosity values, which are the most important factors governing fluid motion.
External forces are limited to gravity. For the Ship scene, we reduced the particle separation from 0.1
to 0.05 to decrease initial particle displacement and improve simulation accuracy. Also, the particle
separation during dynamic simulation is set to 0.1 for the Cereal scene and 0.05 for the Ship scene.

Table 9: Physics parameters used for liquid materials.

Scene name Object Density (kg/m?) Viscosity
. Water 800 0
Ship Ship 300 -
’7777C;r;a17777777\7\7afer 777777777 oo 0
Cereal 1000 -
"7 Hanok S Snow | oo [T
Ice Water 1000 0

Gas In gas simulations, temperature is the most critical physical parameter, governing buoyancy,
expansion, and flow dynamics. We initialized the temperature to 3000K for gas materials. As
temperature evolves locally due to gas movement and interactions, its spatiotemporal variation is
represented as a temperature field defined on a voxel grid. These temperature fields are accessible
via the provided simulation source file with Python API, similar to how flow fields are accessed for
generating ground-truth trajectory data.



85
86
87
88
89

90
91

92

93
94
95
96
97
98
99
100

Viscoelastic substances Gravity is applied to all scenes; however, for the Cow scene, we introduce
additional internal forces to induce cow motion and increase the complexity of the physical reasoning
scenarios. Boundaries are set to be open in all directions, allowing objects to move freely without
collisions against invisible walls. Table [10] lists detailed physics parameters, including Young’s
modulus (F) and Poisson’s ratio (P), used in the simulations.

Table 10: Physics parameters used for viscoelastic materials.

Scene name Object Type E P Viscosity
Pancake Honey Viscous 2.5 x 10° 0.10 0.125
Pancakes | Chunky 8.0 x10* 023 -
) 7B701:n;i;1{t;l;a17157 o foaﬁsf e Elisfié T 1.0x10° 050 - -
Fishbowl Static - - -
T Jellyparty Jelly | Elastic ~ 8.0x10% 045 . -
Cow Cow Elastic 5.0 x 104 0.45 -

Textile For textiles, we primarily adopt the default configuration from the Vellum solver, with
detailed modifications summarized in Table[I1]

Table 11: Physics parameters used for textile materials.

. Stretch Bend
Scene name Object Stiffness Damping Ratio Stiffness Damping Ratio
Flaes Flagl (small) 1.0 x 1010 1.0 x 1073 1.0 x 107 1.0 x 1072
o g Flag2 (big) | 1.0x10"  1.0x107°  1.0x107"  1.0x1072
Basin Boxes 1.0 x 101 1.0x 1073 N/A N/A
77 Cloth | 1 1.0x10%  10x107°  1.0x107%" = 1.0x1072
Single flag Flag 1.0 x 101 1.0x 1073 1.0 x 107 1.0 x 1072
Lucy Cloth 1.0 x 1010 1.0 x 1073 1.0 x 1074 1.0 x 1072
Tube Tube flag 1.0 x 1010 1.0 x 1073 1.0 x 1074 1.0 x 1072

B.4 Scene Visualization

Figure [I0]and Figure [TT] visualize more scenes in PhysGaia to supplement the Figure 1 in our main
paper. As shown in Table 2 of the main paper, textile materials remain underexplored in physics-based
datasets. To facilitate progressive research development in this domain, we include few simpler
scenes such as single flag and tube that employ with only basic wind interactions. We believe this
approach effectively supports advancements by providing more accessible starting points. Similarly,
our dataset also includes few simpler gas scenes, simple smoke and falling, for the same reason as with
textile scenarios: to facilitate progressive development. For the cow scene, internal forces intrinsic to
the cow itself introduce unique and more complex dynamics, rather than using only gravity.

\ 0
n \ .

(a) Liquid: Hanok (top-left), Ship (top-right), Cereal (bottom-left), Ice (bottom-right)

Figure 10: Examples from the proposed physics-aware dataset, PhysGaia.



(b) Viscoelastic substances: Pancake (top-left), Jelly party (top-right), Bouncing balls (bottom-left), and Cow
(bottom-right)

(c) Textile: Lucy (top-left), Basin (top-right), Flags (mid-left), Tube (mid-right), and Singe flag (bottom)

Figure 11: Examples from the proposed physics-aware dataset, PhysGaia. They exhibit complex
physical interactions between multiple bodies composed of diverse materials such as liquid, gas,
viscoelastic substance, and textile. This dataset will foster physics reasoning in dynamic scenes.
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B.5 License

Our dataset is released under the Creative Commons Attribution-NonCommercial (CC BY-NC)
license. The mesh used for the Lucy scene is sourced from the Stanford 3D Repository, which
permits usage for research purposes. Other mesh objects are licensed under CC-BY 4.0, as detailed in
Table[T2] For the texture maps in the textile categories, we utilized images from Pixabay, which are
freely available with contributor consent and comparable to a CC-BY 4.0 license, also summarized
in Table[I2] Therefore, all data included in our dataset comply with usage rights and do not pose
intellectual property issues.

Table 12: License of the sources used for generating data.

Scene Resource name License Access
Ice Glass cup CCBY 4.0 Sketchfab
Hanok Korean building CCBY 4.0 Sketchfab
Ship Ship CCBY 4.0 Sketchtab
Pisa Torre Pisa CCBY 4.0 Sketchfab
Bouncing balls Fish bowl CCBY 4.0 Sketchtab
Cow Cow CCBY 4.0 Sketchfab
Lucy Lucy research only Stanford 3D Scan Repo
Scene Contributor License Access
Flags PaftDrunk Content L@cense P?xabay
Zoeysmom Content License Pixabay
Single flag - Content License Pixabay
Lucy WalterClark Content License Pixabay
Tube - Content License Pixabay
Basin Yourialka Content License Pixabay

C Limitations & Broad Impact

Limitations Although our PhysGaia dataset holds a crucial position in the DyNVS field by enabling
accurate evaluation with ground-truth physical properties, it is inherently limited to synthetic scenarios.
To bridge this gap towards more realistic applications, we believe domain adaptation approaches, such
as those from Syn2Real [8]], could be adopted. However, such methods must be carefully designed to
maintain multi-view consistency across frames. We leave this important domain transfer for future
work, confident that our dataset’s precise physical information will be invaluable for developing these
advanced techniques.

Broad impact From a positive perspective, our work advances research on physically plausible
4D reconstruction. This, in turn, significantly improves monocular video reconstruction, an essential
technology for future AR/VR applications. However, such progress in 4D reconstruction, especially
given its potential for scene editing of existing videos, may raise intellectual property concerns
regarding the original video content.
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