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ABSTRACT

The article considers methods for constructing solution error estimates in opti-
mization problems. Solution error estimates can be divided into two classes: the-
oretical and numerical. Estimates of the first class are based on a theoretical analy-
sis of the convergence of the problem-solving method. These theoretical estimates
are functions of the problem parameters and solution methods, whose values are
often difficult to determine. Therefore, they are primarily useful for qualitative
analysis. Numerical estimates, known for a limited number of optimization meth-
ods, provide explicit numerical values. In this paper, we propose two new meth-
ods for constructing numerical error estimates where the error estimate is a known
function of values calculated during the optimization process. These new meth-
ods apply to a broad class of optimization problems and solution methods: the
objective function is defined on a closed set in an n-dimensional Euclidean space
and is continuous. The optimization method involves a monotonically decreasing
sequence of objective function values.
The first method is based on a three-point scheme. From the decreasing sequence
of function values, a group of three elements is selected where the ratio of con-
secutive deviations is less than unity. An exact error estimate formula is derived,
which depends on the optimal value of the objective function. Using a function
value calculated at a finite step, a sufficiently accurate error estimate can be ob-
tained.
The second method, called the rounding method, assumes that the number of sig-
nificant digits in the optimal solution increases with iterations. This condition
allows for estimating the solution error at each iteration. The objective function
value in this method corresponds to the rounding of the optimal solution.
This paper presents numerical experiment results for estimating the solution error
based on the objective function values and the norm of the argument values as
deviations from the optimal values.

1 INTRODUCTION

The article considers methods of constructing error estimates for numerical solutions of optimization
problems of the form (1):

f(x) → min
x∈G

, (1)
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where objective function f : Rn → R1 is continuous function and the feasible set G ⊂ Rn is
connected.

Further we assume that:

• problem’s (1) solution x∗ ∈ G, f(x∗) exists;

• the problem is solved by some numerical method, which generates in the process of solv-
ing a sequence of points xk∞

k=0 and a corresponding sequence of values of the objective
function {fk}∞k=0;

• x∗ = lim
k→∞

xk;

• fk = f(xk) → f∗ where k → ∞;

• the sequence {fk}∞k=0 is strictly decreasing: fk > fk+1 ∀k ≥ 0;

• the execution of the numerical method is stopped at the step N in the point xN with the
function’s value fN = f(xN ).

Let ε1 and ε2 be a small numbers.

Proposition 1 The problem’s (1) solution is calculated with ε1 accuracy by coordinate, if

∥xN − x∗∥ ≤ ε1;

The problem’s (1) solution is calculated with ε2 accuracy by function, if

f(xN )− f(x∗) ≤ ε2.

In practice, it is not always possible to obtain the estimates indicated in the Proposition 1, so often
some heuristic rules are used instead (Gill et al., 1981), for example:

• ∥∇f(x)∥ ≤ ε for the unconstrained minimization problem;

• ∥xk+1 − xk∥ ≤ ε or
∣∣f(xk)− f(xk+1)

∣∣ ≤ ε.

Currently in the study of optimization methods, estimates (2) that depend on the parameters of the
problem are widely used.

f(xk)− f(x∗) ≤ φ(L,R, µ, k) ≤ ε. (2)

In (2) L is the Lipschitz constant for ∇f(x) or f(x), µ is the strong convexity constant, R =
∥x0 − x∗∥ (Gasnikov, 2018) is the distance between initial point and problem’s solution. Ideas for
constructing the function φ were proposed in Nemirovski & Iudin (1979) and extended in Nesterov
(2018),Bubeck (2015) and other works. However, the task of calculating such parameters often
turns out to be more complicated than the original optimization problem, and it is difficult to use
such estimates in practice.

In Biryukov & Grinevich (2012),Biryukov & Grinevich (2013), calculations with variable mantissa
length were used to obtain estimates of the solution error according to the Proposition 1. Such
approaches were used in numerical experiments, the analysis of which is given in this paper. In this
paper, we build estimates of the error of solving the problem (1) of the form (3) and (4):

f(xk)− f(x∗) ≤ φ1(x
k,xN ,∇f(xk), f(xk)) ≤ ε; (3)

∥xk − x∗∥ ≤ φ2(x
k,xN ,∇f(xk), f(xk)) ≤ ε. (4)

In (3), (4) xN , f(xN ) is some approximate solution of the (1) and N is the number of the iteration
it was obtained.

Definition 1 The control solution of task (1) is the point xN , f(xN ).
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Figure 1: Classification of the solution error estimates

These types of solution error estimates (2), (3), (4) are not unique. Figure 1 suggests some classifi-
cation of them also mentioned in Biryukov & Chernov (2021).

The classes of solution error estimates (SEE) presented in Figure 1 are the following:

• Parametric estimate of the solution error (an example of such an estimate is (2), which
includes such parameters as the Lipschitz constant L, the strong convexity constant µ,
etc.). Such estimates are often used to analyze the convergence rate of the method.

• Finite step – solution error estimate for finite-step numerical methods (namely, methods
that in exact arithmetic find the exact solution of the problem in a finite number of steps).

• Numerical (or experimental) estimates of the solution error, e.g., (3) and (4), where the
functions φ1 and φ2 are known, and the values of arguments at each step of the iterative
process are also known.

• Interval solution error estimates;
• Upper / lower solution error estimates.

Various examples of estimates can be given for the most of these classes, but the upper numerical
estimates of the solution error are unknown to the authors of this article. The purpose of this work
is to obtain estimates of the error of the solution fi − f∗, where fi is the element of the sequence
fk, k = 1, . . . generated by numerical method.

Let us introduce the following notations for i = 0, 1, 2, . . .:

δi = fi − fi+1; gi = δi+1/δi ≡
fi+1 − fi+2

fi − fi+1
< 1.

Then the following lemma is proved in Appendix A:

Lemma 1 Let the sequence {fi}∞i=0 satisfy the condition gi < 1 ∀i ≥ 0, the value ĝ = max
i≥0

gi

exists and ĝ < 1, then the following solution error estimate takes place:

fi − f∗ ≤ δi
1− ĝ

. (5)

To obtain an estimate of the value ĝ for the sequence {gk}∞k=i requires a separate study, which is
beyond the scope of this paper.

2 THE BASIS FOR THE THREE-POINT SCHEME

Consider one way of constructing an estimate of the solution error based on Lemma 1.

From the sequence {fk}∞k=i where fk = f(xk) and fk > fk+1, select the elements fi, fj , fl and
fN such that

fN < fl < fj < fi; fi + fl − 2fj > 0. (6)

Let us denote the difference of function values at points with the indices i and j as δij : δij = fi−fj ,
and the value gijl as the ratio of the corresponding values between points j and l and points i and j
respectively: gijl = δjl/δij . Therefore, by virtue of the assumption (6) we obtain gijl < 1.
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Consequently, the estimate (5) with ĝ = gijl are of the form:

fi − f∗ ≤ δij
1− ĝ

=
fi − fj

1− δjl/δij
=

(fi − fj)
2

fi + fl − 2fj
. (7)

Next, we investigate the conditions for the fulfillment of the formula given fi, fl, and varying fj .

Theorem 1 Let the condition (6) be satisfied. Then the estimate (7) is valid if and only if

0 ≤ f2
j − fifl + f∗(fi + fl − 2fj). (8)

The proof is presented in Appendix B.

Remark 1 The values fi, fi+1, fi+2 in the lemma 1 is identified by the only index i. The identifi-
cation of the elements fi, fj , fl are determined according to (6) and thus except the variation of the
one index i, one can variate three indexes i, j, l. It is shown further that for the selected indexes i, l
one can find the index j for which estimate (7) are exact.

Remark 2 The union of the numerical method used to solve the optimization problem (1) which
builds the decreasing sequence {fk}∞k=0 and the method used to retrieve estimates fi − f∗ from
(6) is called the three-point scheme of the solution error estimation method (7) for the optimization
problem (1).

Remark 3 The three-point scheme of the solution error estimation method is usefull for the wide
class of the optimization problems (1) and numerical methods that are used to solve this problems.
For example three-point scheme is applicable for the gradient descent method, conjugate gradient
method, quasi-newtons methods in case of unconstrained optimization problems and for conditional
gradient method, gradient projection method, modified Lagrange function method in case of mathe-
matical programming problems where a decreasing sequence {fk}∞k=0 is generated.

Further, we can state the following.

Theorem 2 In the sequence {fk}, k = 1, 2, 3, . . ., which converges to f∗, there are points i and l
such that f∗ < fl < fi. And there exists j̃ where the inequality (6) is satisfied. Then there exists a
point j such that f∗ < fl < fj < fi and fl < f0 ≤ fj < fc, f0 = f∗ +

√
(fi − f∗)(fl − f∗) and

the condition (7) is satisfied. If fj = f0, i.e.

fj = f∗ +
√
(fi − f∗)(fl − f∗). (9)

then the estimate (7) is exact.

The proof is presented in Appendix C.

Remark 4 For the practical implementation of the following proposed three-point scheme for con-
structing an estimate of the solution error it is necessary to carry out the lower and upper estimates
of the value fj = f0 in (9), which are done further in Section 4.

Remark 5 The scheme studied above for estimating the error of the solution considered the varia-
tion of fj when fi and fl are known. However, when fi, fj are known, it is possible to find the value
of fl at which the estimate of (7) is accurate. It follows from (9) that

fl = f∗ +
(fj − f∗)2

fi − f∗ .

3 THE METHOD OF ROUNDING FUNCTION VALUES IN SOLUTION ERROR
ESTIMATION

It is difficult to use the condition (9) because f∗ is unknown. To get around this, we consider two
estimates for the value. Let f∗ and f∗ be the upper and lower estimates of f∗, respectively. Then the
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estimate for fi − f∗ take the form: fi − f∗ ≤ fi − f∗ , which is incorrect. For example, the upper
estimate is fN = f(xN ). Also we have the inequality fi − f∗ ≤ fi − f∗ , which is already the
required estimate of the solution error. Finding a lower estimate f∗ ≤ f∗ can sometimes be easy,
but it can be rough.

Consider one method that can give fairly accurate estimates of both the lower and upper estimate of
the solution error (Biryukov & Chernov, 2021). Let the decimal representation (10) of the value of
function fs at some step s with mantissa length m+ 1.

fs = ±as0, a
s
1a

s
2 . . . a

s
m · 10ts (10)

In (10) ts is the order of the number, 1 ≤ as0 ≤ 9, 0 ≤ asi ≤ 9, i = 1,m. Since the sequence {fi}
is convergent, for large enough N the value of fN is ”close enough” to f∗, i.e. the numbers fN and
fi have the same first few digits of ar: ar = aNr = air, r = 0,mi. And the number of mj matching
digits increases monotonically as the value of j changes from i to N − 1. We assume that fi and f∗

also have mi matching digits. Under such conditions it is possible to specify solution error estimate.
Indeed, if we have mi + 1 of matching digits, then for f∗ > 0

f∗
i = a0, a1a2 . . . ami−1ami

· 10t; f∗
i = a0, a1 . . . ami−1(ami

+ 1) · 10t. (11)

Thus, the number f∗ is rounded both downward and upward. Now let f∗ < 0. To round a negative
number down, we round the number |f∗| up and vice versa. If the number of matching signs mi+1,
then

f∗
i = −a0, a1a2 . . . ami−1(ami

+ 1) · 10t; f∗
i = −a0, a1 . . . ami−1ami

· 10t. (12)

Hence the following estimate follows, which is proved in Appendix D.

Theorem 3 Let the numbers fs, s = i,N − 1 and fN have the same first ms + 1 digits, and
ms+1 ≥ms. Then there is a solution error estimate

fs − f∗ ≤ fs − f∗
s ≤ 10t−ms .

Remark 6 The applicability of the rounding method for estimating solution error is based on the
assumption that fN−1, fN , f∗ have the same number of the matching first digits mN−1.

4 A THREE-POINT SCHEME FOR CONSTRUCTING AN ESTIMATE OF SOLUTION
ERROR

The previously obtained estimates f∗ and f∗ (11), (12) are applicable to obtain the estimate (7).
Note that in the strictly decreasing sequence f∗ < fs, s = 1, N and fs are upper estimates for f∗.
If s is large enough, fs − f∗ can be small enough, fN is the best upper estimate of f∗ (see Figure
7). Then fN ≤ f∗

N , where f∗
N is defined in (11) and (12) at i ≡ N .

Theorem 4 Let the Theorem 3 estimate the error of the solution and the lower and upper estimates
(27) of the number fj = f0 in (9) be valid. Then for the elements of the sequence with numbers
s = i,N − 1, the following solution error estimate is valid.

fi − f∗ =
(fi − f0)

2

fi + fl − 2f0
≤

(fi − fj)
2

fi + fl − 2fj
, (13)

where

fj = f∗ +
√
(fi − f∗)(fl − f∗); fj = f∗ +

√
(fi − f∗)(fl − f∗). (14)
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Proof 1 The quation (13) is obtained from (7). Substituting the lower and upper estimates for fj
fj and fj in (9), we get an estimate of the error of the solution fi − f∗. Here i is a number of
1, . . . , N − 1, and fj , fl are numbers satisfying the conditions (6) for the selected i. The most
accurate lower estimates in (13) and (14) for f∗ are determined by the formulas (11) and (12) for
mi ≡ mN−1 ≡ mN , and for the upper estimate f∗: f∗ = fN .

Using (9) and (14), we also get an estimate for fj − f∗:

fj − f∗ ≤
√
(fi − f∗)(fl − f∗).

The method of constructing an estimate of the error of the solution using (13) and (14) is called a
three-point scheme, and the method of constructing an estimate of the error of the solution based on
(28) is the rounding method.

5 ON THE ACCURACY OF ERROR ESTIMATION IN THE ROUNDING METHOD

The next step in analyzing the methods of constructing the estimation of the solution error is to
compare the accuracy of the above methods.

The above methods of constructing the error estimate of the solution of the form δ̂i = fi − f∗, i =
1, N for optimization problems are based on the assumption that {fi} is a monotonically convergent
sequence. We can consider a class of sequences assuming that {fi} is only a convergent sequence,
but not necessarily monotone.

Let us mention the following example. Suppose we are solving an extremal problem , where {fi} is
a monotonically convergent sequence, and {∥xi∥} is also a convergent sequence, but not necessarily
monotone. Consider two sequences of points ∥xk∥

L+ =
{
k ∈ [1, N ] : ∥xk∥ ≥ ∥xN∥

}
;

L− =
{
k ∈ [1, N ] : ∥xN∥ ≥ ∥xk∥

}
.

(15)

Obviously, L+ ∪ L− = [1, N ]. We assume that ∥x∗∥ = ∥xN∥ and ∥x∗∥ = ∥xN∥.

Similarly to the monotonically convergent sequence, combining L+ and L−, we obtain an estimate
of the error of the solution

For xk ∈ L+ : ∥xk∥ − ∥x∗∥ ≤ ∥xk∥ − ∥xN∥
For xk ∈ L− : ∥x∗∥ − ∥xk∥ ≤ ∥xN∥ − ∥xk∥. (16)

The accuracy of the solution error estimate in Theorem 3, which depends obviously on ms, may not
be sufficient for small ms. However, using the inequality fs+1 < fs (for a monotonically decreas-
ing sequence) at ms+1 > ms and the corresponding inequalities for a monotonically increasing
sequence, we construct upper and lower estimates of the solution error with varying accuracy; in
doing so, it is possible, if the specifics of the problem allow it, to achieve the required accuracy.

The error estimates have the form:

fi − f∗
r ≤ fi − f∗ ≤ fi − f∗

s , s = i,N, r = i,N, mi ≥ 0 (17)

for a monotonically decreasing sequence;

f∗
r − fi ≤ f∗ − fi ≤ f∗

s − fi, s = i,N, r = i,N, mi ≥ 0 (18)

for a monotonically increasing sequence;

∥xi∥ − ∥x∗
r∥ ≤ ∥xi∥ − ∥x∗∥ ≤ ∥xi∥ − ∥x∗

s∥, i ∈ L+

∥x∗
r∥ − ∥xi∥ ≤ ∥x∗∥ − ∥xi∥ ≤ ∥x∗

s∥ − ∥xi∥, i ∈ L−
s ∈ [l, N ], r ∈ [i,N ], mi ≥ 0

(19)
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for arguments from (16).

The relations (17), (18), (19) determine the range of solution error estimates for the above problems.
The lowest accuracy of the solution error estimates is at s = i and r = i, and the highest at s = N ,
r = N . The corresponding number of matching digits in the representation of f∗

s , f
∗
s , ∥x∗

s∥, ∥x∗
s∥,

f∗
r , etc. is ms + 1 and mr + 1 numbers. The resulting values of the lower and upper estimates, if

they are redundant in accuracy, can also be rounded.

Remark 7 The inequalities (17), (18), (19) are estimates of the solution error, and their boundary
values can be interpreted as the accuracy of the solution in terms of function and argument, as
follows

εi,r ≡ fi − f∗
r ; εi,s ≡ fi − f∗

s

εi,r ≡ f∗
r − fi; εi,s ≡ f∗

s − fi
− accuracy by function; (20)

δi,r ≡ ∥xi∥ − ∥x∗
r∥; δi,s ≡ ∥xi∥ − ∥x∗

s∥
δi,r ≡ ∥x∗

r∥ − ∥xi∥; δi,s ≡ ∥x∗
s∥ − ∥xi∥

− accuracy by argument; (21)

However, a question arises. What is the limit point (x∗, f∗) for a monotonically convergent and
simply convergent sequence? Is it a point of minimum or maximum, local or global, or perhaps a
saddle point? To get the answer, we need to apply some sufficient extremum condition to the point
xN . If it is satisfied for the neighborhood ∥x − x∗∥ ≤ ∥xN − xk∥ ≤ ε, then the error estimate
found δk = fk − f∗,

∣∣∥xk∥ − ∥x∗∥
∣∣ is correct.

6 PRACTICAL ASPECT

In practice, many optimization problems are solved. In this case, users (solvers) believe that the
problem is solved (i.e., the sufficient extremum condition is satisfied for xN , f(xN )) with sufficient
accuracy for their purposes. However, they often cannot guarantee that they can estimate the solution
error δ̂k = f(xk) − f∗,

∣∣∥xk∥ − ∥x∗∥
∣∣. Their estimates are approximate. The proposed methods

for estimating the solution error when the above requirements are met give guaranteed estimates
∀k : k = 1, N .

7 EXPERIMENTS

At the beginning of this section note, that experiments were completed on the PC with RAM 32
GB and CPU Intel Core I9 2.40(3.10) GHz with OS Windows HE 10 (64) in PyCharm IDE (Python
3.8). In this article we consider two test optimization problems: unconstrained optimization problem
and mathematical programming problem. Also we completed the next step in the analysis of the
solution error estimates and decided to select the test problems analyzed in Biryukov & Chernov
(2021). Each test problem is described in the corresponding subsection below.

In all tables in the subsections below we use the notions defined in the table 1.

7.1 SMOOTH CONVEX UNCONSTRAINED OPTIMIZATION PROBLEM

Let us consider the problem (1) where G = Rn with the following strongly convex objective func-
tion:

f(x) =

n∑
i=1

αi(xi − βi)
2 + expc

Tx +γ exp−cTx, (22)

where αi = i2, βi = 1, ci = 0.1 for all i = 1, . . . n, γ = 2, n = 40.

To solve the problem Polak-Ribiere-Polyak method (Polyak, 2021) with golden search as a one-
dimensional search is used (initial point x0 = 1n, the mantissa is 50, the required accuracy of
the solution is 10−8 for the norm of the objective function gradient (stop condition of the iteration
process), one dimensional search accuracy is 10−11). The results are summarized in Tables 2 and 3.
Tables with detailed results of this and subsequent experiments can be found in Appendix E.
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Column Name Description
# Iteration index k

f(xk) The value of the function f at the point xk

ε1 The value of the ε1 at the point xk, where ε1 = 10t−mk , mk is the amount of
the first same digits for values f(xk) and f(xN )

ε2 The error estimate calculated according to (13) with f∗ = f(xN )
∥xk∥ The difference between 2-norms of the k-th point xk and the last point xN .
ε3 The value of the ε3 at the point xk, where ε3 = 10t−m′

k , m′
k is the amount of

the first same digits for values ∥xk∥ and ∥xÑ∥, where Ñ is the last number
from the set I+ or I− respectively

ε4 The error estimate calculated according to (13) with f(x) := ∥x∥ and
f∗ = ∥xÑ∥, where Ñ is the last number from the set I+ or I−

Table 1: Notions in the experiment tables

# f(xk) ε1 ε2
0 627387.11631838745289500864 1 · 106 509894.77
8 11131996.90602183602538406045 1 · 105 14504.56
18 117117117854.15903353102929779504 1 · 103 361.81
28 1174911749117496.62956020062317238274 1 · 101 4.28
48 117492.345117492.345117492.34599695254306091291 1 · 10−3 0.00024
63 117492.34575223117492.34575223117492.34575223507416076358 1 · 10−8 2.3 · 10−9

83 117492.34575223275789117492.34575223275789117492.34575223275789716425 1 · 10−14 3.1 · 10−15

98 117492.3457522327578940667117492.3457522327578940667117492.34575223275789406677 1 · 10−19 2.6 · 10−20

103 117492.34575223275789406675117492.34575223275789406675117492.34575223275789406675 1 · 10−20 4.3 · 10−22

Table 2: Smooth unconstrained convex optimization problem output (short). Function.

# ∥xk∥ ε3 ε4
0 001.2728880402482 1 · 103 227.031
13 22212.8510755796911 1 · 102 15.45
23 2222227.5905753548338 1 · 101 0.71
43 228228228.2592315075667 1 · 100 0.044
73 228.303564228.303564228.3035643821351 1 · 10−6 2.9 · 10−7

88 228.30356409228.30356409228.3035640941619 1 · 10−8 7.0 · 10−10

98 228.3035640935228.3035640935228.3035640935230 1 · 10−10 2.9 · 10−11

103 228.303564093514228.303564093514228.3035640935142 1 · 10−12 2.0 · 10−13

Table 3: Smooth unconstrained convex optimization problem output (short). Points.

7.2 NON-SMOOTH CONVEX UNCONSTRAINED OPTIMIZATION PROBLEM

In this section we provide results of the experiment for the problem (1) for G = Rn with continuous
non-smooth convex objective function:

f(x) =

2∑
j=1

dj
∣∣cTj x− bj

∣∣+ n∑
i=1

αi(xi − βi)
2, (23)

where αi = i2, βi = 1/2, i = 1, . . . , n, d1 = 2, d2 = 1, c1 = 1n, c2,j = (−1)j+1, j = 1, . . . , n,
bj = cTj β, j = 1, 21, n = 20.

7.3 SMOOTH CONSTRAINED CONVEX OPTIMIZATION PROBLEM

In this section we consider the following constrained convex optimization problem:

1Parameters of the objective function allows explicitly find problem solution x∗ = β, f(x∗) = 0.
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f(x) =
n∑

i=1

αi(xi − βi)
2 + expc

Tx +γ exp−cTx → min
x∈G

G =

{
x ∈ Rn : xi ≥ 0, i = 1, . . . , n− 1;

n−1∑
i=1

ix2
i + xn ≤ n

} (24)

In the problem (24) we use parameters αi = i2, βi = 1, ci = 0.1 for all i = 1, . . . n, γ = 2, n = 40.

To solve the problem (24) we used the method of modified Lagrange function (Polyak, 2021)
(MMLF) where Polak-Ribiere-Polyak method is used to solve unconstrained optimization problem
with accuracy ∥∇M(x, λk)∥ ≤ 10−10 where M(x, λ) is modified Lagrange function.

8 CONCLUSION

This paper is a continuation of Biryukov & Chernov (2021). In that paper, we considered methods
for estimating errors in convex optimization problems, including methods based on the rounding of
strictly decreasing sequences of values of objective functions and their arguments. In this paper,
such a method is used to construct high-precision estimates within the framework of the three-point
scheme for constructing solution error estimates proposed in the paper. This method is applicable to
a wide class of problems, including those not mentioned in this paper.

Tables in Appendix E present the results of numerical experiments on the construction of solution
error estimates using the considered methods for the smooth and nonsmooth convex unconstrained
optimization problem, as well as for the mathematical programming problem. Estimates were ob-
tained at all points of the iterative process.

We believe that the proposed methods for constructing solution error estimates will find practical
application, and further research will allow to obtain and substantiate methods of solution error
estimates for a wider class of problems.
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A PROOF OF LEMMA 1

The error of the solution at the step i can be written in the following form:

fi − f∗ = fi − fi+1 + fi+1 − fi+2 + fi+2 − fi+3 + . . .+ fN−1 − fN + fN − f∗ =
= δi + δi+1 + . . .+ δN−1 + δN =
= δi · (1 + gi + gigi+1 + . . .+ gigi+1 . . . gN−2) + δN ≤
≤ δi · (1 + ĝ + ...+ ĝN−2) + δN =

= δi · 1−ĝN−1

1−ĝ + δN .

Similarly, for a point xN you can get an estimate δN after m steps:

δN = δN · 1− ĝN+m−1

1− ĝ
+ δN+m ≤ δN · 1

1− ĝ
+ δN+m.

Assuming that for m → ∞ at δn+m → 0 we obtain

δN ≤ δN · 1

1− ĝ
=

fN − fN+1

1− ĝ
.

Consequently

δN ≤ δN · 1

1− ĝ
=

δigigi+1 . . . gN−1

1− ĝ
≤ δiĝ

N−1

1− ĝ

Thus

δ̂i = fi − f∗ ≤ δi
1− ĝ

=
fi − fi+1

1− ĝ
.

B PROOF OF THEOREM 1

Let δ̂i = fi− f∗. It is obvious that for all i and j the equalities fi− fj = δ̂i− δ̂ and fi+ fl−2fj =

δ̂i + δ̂l − 2δ̂j are valid. Thus (7) can be written in the form:

δ̂i ≤
(δ̂i − δ̂j)

2

δ̂i + δ̂l − 2δ̂j

Using the assumption (6) we can rewrite the inequality above as: δ̂i(δ̂i + δ̂l − 2δ̂j) ≤ (δ̂i − δ̂j)
2

and simplifying it we obtain the inequality: δ̂i · δ̂j ≤ δ̂2j . Thus, using δ̂i = fi − f∗, we obtain the
inequality (8) from the inequality above. The proof in the other direction is obvious.

C PROOF OF THEOREM 2

Consider the geometric interpretation of (7) in Figure 2.

Denote its right part as a function of the corresponding parameters: φ(fi, fj , fl) =
(fi−fj)

2

fi+fl−2fj
. Let

also fc = (fi + fl)/2. Note that when fj = fc, the denominator of fi + fl − 2fj is 0, and the value
of the function φ is ∞. Denote by f0 the value fj at which φ(fi, f0, fl) = fi − f∗, i.e. there is an
exact estimate (7).

We can also conclude that the region of admissible values for fj is the half-interval [fl, fc). The
sought upper estimate is observed at fj ∈ [f0, fc), and the lower estimate is obtained at fj ∈ [fl; f0].

Let us clarify the obtained conditions. Denote F1 = f2
j − fi · fl, F2 = f∗ · (fi + fl − 2fj). Then

(8) implies that the inequality F1 + F2 ≥ 0 is satisfied, or (7) is satisfied for F1 + F2 ≥ 0.

10
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fl f0 fc fj

φ

fi − fl

fi − f∗

Figure 2: Geometric illustration for φ(fi, fj , fl).

flf∗ f0 fc fifr0

0

F1

F2

Figure 3: f∗ > 0 case

Note also that F1 + F2 < 0 at fj ∈ [fl, f0) and F1 + F2 ≥ 0 at fj ∈ [f0, fc).

In the inequality (8), the value of f∗ can be equal to zero, greater than zero, or less than zero. If
f∗ = 0, then the error fi − f∗ is the value of fi itself, i.e., the inconsistency of the condition
f(x) = 0. Other variants need to be investigated separately.

Consider the case when f∗ > 0. Consider fi and fl fixed. It is necessary to specify such fj that
fl < fj < fc and for which the condition (6) is satisfied. Figure 3 shows the graphs of the functions
F1 and F2. Denote: fΓ =

√
fifl, fc = fi+fl

2 . (Obviously, fΓ ≤ fc). The feasible region for fj
is the half-interval [f0, fc), where f0 is unknown. If fj = fΓ, then the estimate (7) has the form:
fi−f∗ ≤ fi and is always satisfied, being rough at close values of fi and f∗. In this case, the search
for the best value of fj ∈ [f0, fc) can be performed at fj ∈ [f0, fΓ].

Consider the case f∗ < 0 and assume that fi < 0. Figure 4 shows the graphs of the functions
F1 and F2. In this case: f∗ < fl < f0 < fc < fΓ < fi, where fΓ = −

√
fi · fl. At the point

fj = f0 the condition F1 + F2 = 0 is satisfied, and the point fj = fΓ is invalid because in this case
fi + fl + 2

√
fifl < 0. The point fj = fc is also invalid and fj ∈ [f0, fc).

flf∗ fc fif0 fr 0

0

F1

F2

Figure 4: Geometric illustration. The case fi < 0
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flf∗ fc fif0fr0

0 F1

F2

Figure 5: Geometric illustration. The case f∗ < 0 and fi, fl ≥ 0

flf∗ fc fif00

0

F1

F2

Figure 6: f∗ < 0, fi > 0, fl < 0

Now consider the case f∗ < 0 and fi, fl ≥ 0 (see Figure 5). In this case fΓ =
√
flfi. Then the

point fj = fΓ corresponds to the case f∗ > 0, but the estimate (6) is incorrect. The point fc turns
out to be invalid for (7). The value fj = f0 corresponds to the exact estimate (7).

Now let f∗ < 0, fi > 0, fl < 0 (see Figure 6). Then fj ∈ [f0, fc), and the value fj = f0
corresponds to the exact estimate (7).

Consider now the estimate (8) equivalent to (7):

F1(fj) + F2(fj) = f∗(fi + fl − 2fj) + f2
j − fifl ≥ 0.

The solution error estimates are accurate if F1(·) + F2(·) = 0. In this case: f2
j − 2fjf

∗ + f∗(fi +
fl)− fifl = 0. Then:

fj = f∗ +
√
(f∗)2 − f∗(fi + fl) + fifl = f∗ +

√
(fi − f∗)(fl − f∗). (25)

Equality (25) determines the value of the function fj = f0, at which there is an exact estimate of
the solution error. The estimate (8) is equivalent to the inequality

(fj − f∗)2 − (fi − f∗)(fl − f∗) ≥ 0,

and the equality (25) is equivalent to the equality

(fj − f∗)2 − (fi − f∗)(fl − f∗) = 0.

D PROOF OF TREOREM 3

A geometric illustration of the solution error estimation with f∗ and f∗ is shown in Figure 7. Based
on Figure 7 we can also get some lower estimates, for example: fi−f∗ > fi−fN > fi−fl > fi−fj ,
etc.

Thus, the values f∗ and f∗ are estimates from below and above the values f∗ and fi, i.e.:

f∗ < f∗ < f∗, f∗ < fi < f∗, (26)
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f∗
i f∗

N f∗ fN f∗
N

fl fj fi f∗
i

Figure 7: Geometric interpretation of the solution error estimate at the point f = fi

where the numbers f∗, f∗, fi have equal mi + 1 digits when f∗ > 0 and mi digits when f∗ < 0,
and the numbers f∗, f∗, fi have mi digits when f∗ > 0 and mi + 1 digits when f∗ < 0.

It follows from the inequalities (26) that

f∗ − f∗ < 10t−mi , f∗ − f∗ < 10t−mi , fi − f∗ < 10t−mi ,

f∗ − fi < 10t−mi , f∗ − f∗ < 10t−mi .
(27)

In addition, as stated above, fi − f∗ ≤ fi − f∗. Given (27), we obtain the desired estimate of the
solution error:

fi − f∗ < 10t−mi . (28)

Assume that there exist matching digits in the representation of value fs, i ≤ s ≤ N − 1; fN is
the last value in the iterative process of solving the problem, with which numbers fs and ms + 1
are compared, where ms + 1 is the number of matching digits in numbers fs and fN . Then we can
construct a table of numbers fs, s = i,N − 1 and select in it the digits coinciding with fN . Then,
using (28), we obtain an estimate of the solution error for values s = i,N − 1.

E EXPERIMENT RESULTS

# f(xk) ε1 ε2
0 627387.11631838745289500864 1 · 106 509894.77
1 478900.08308849168197638259 1 · 106 361407.74
2 243348.13069838833605295973 1 · 106 125855.78
3 216169.69227938405276040735 1 · 106 98677.35
8 11131996.90602183602538406045 1 · 105 14504.56
13 11120121.26164074089282338418 1 · 105 2628.92
18 117117117854.15903353102929779504 1 · 103 361.81
23 117117117530.92508592090817802585 1 · 103 38.58
28 1174911749117496.62956020062317238274 1 · 101 4.28
33 117492117492117492.62475777944761005597 1 · 100 0.28
38 117492.3117492.3117492.37875336652483850275 1 · 10−1 0.033
43 117492.3117492.3117492.35603159960543316724 1 · 10−1 0.01
48 117492.345117492.345117492.34599695254306091291 1 · 10−3 0.00024
53 117492.3457117492.3457117492.34576246430599323281 1 · 10−4 1.0 · 10−5

58 117492.345752117492.345752117492.34575232570898953809 1 · 10−6 9.3 · 10−8

63 117492.34575223117492.34575223117492.34575223507416076358 1 · 10−8 2.3 · 10−9

68 117492.345752232117492.345752232117492.34575223285267005296 1 · 10−9 9.5 · 10−11

73 117492.34575223275117492.34575223275117492.34575223275870822855 1 · 10−11 8.1 · 10−13

78 117492.345752232757117492.345752232757117492.34575223275795044578 1 · 10−12 5.6 · 10−14

83 117492.34575223275789117492.34575223275789117492.34575223275789716425 1 · 10−14 3.1 · 10−15

88 117492.345752232757894117492.345752232757894117492.34575223275789410472 1 · 10−15 3.8 · 10−17

93 117492.34575223275789406117492.34575223275789406117492.34575223275789406717 1 · 10−17 4.4 · 10−19

98 117492.3457522327578940667117492.3457522327578940667117492.34575223275789406677 1 · 10−19 2.6 · 10−20

99 117492.3457522327578940667117492.3457522327578940667117492.34575223275789406676 1 · 10−19 2.9 · 10−20

100 117492.3457522327578940667117492.3457522327578940667117492.34575223275789406676 1 · 10−19 1.8 · 10−21

103 117492.34575223275789406675117492.34575223275789406675117492.34575223275789406675 1 · 10−20 4.3 · 10−22

Table 4: Smooth unconstrained convex optimization problem output. Function.
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# ∥xk∥ ε3 ε4
0 001.2728880402482 1 · 103 227.031
1 019.9048908572319 1 · 103 208.4
2 109.9550314835497 1 · 103 118.35
3 124.6780539085920 1 · 103 103.63
8 184.1014031017751 1 · 103 44.2
13 22212.8510755796911 1 · 102 15.45
18 2222224.8625629288455 1 · 101 3.44
23 2222227.5905753548338 1 · 101 0.71
28 228228228.1115512836949 1 · 100 0.19
33 228228228.1781371850296 1 · 100 0.13
38 228228228.2245030510902 1 · 100 0.079
43 228228228.2592315075667 1 · 100 0.044
48 228.30228.30228.3015301041376 1 · 10−2 0.002
53 228.303228.303228.3032722587835 1 · 10−3 0.00029
58 228.30356228.30356228.3035607681773 1 · 10−5 3.3 · 10−6

63 228.3035228.3035228.3035764408335 1 · 10−4 1.2 · 10−5

68 228.30356228.30356228.3035660668867 1 · 10−5 2.0 · 10−6

73 228.303564228.303564228.3035643821351 1 · 10−6 2.9 · 10−7

78 228.303564228.303564228.3035641638766 1 · 10−6 7.1 · 10−8

83 228.303564228.303564228.3035641168132 1 · 10−6 2.4 · 10−8

88 228.30356409228.30356409228.3035640941619 1 · 10−8 7.0 · 10−10

93 228.303564093228.303564093228.3035640937173 1 · 10−9 2.3 · 10−10

98 228.3035640935228.3035640935228.3035640935230 1 · 10−10 2.9 · 10−11

99 228.30356409351228.30356409351228.3035640935150 1 · 10−11 4.0 · 10−13

100 228.30356409351228.30356409351228.3035640935133 1 · 10−11 1.2 · 10−12

103 228.303564093514228.303564093514228.3035640935142 1 · 10−12 2.0 · 10−13

Table 5: Smooth unconstrained convex optimization problem output. Points.

# f(xk) ε1 ε2
1 123.2893499883321 1 · 103 123.29
2 52.09959143810754 1 · 102 52.1
3 30.72335415840225 1 · 102 30.72
38 0.0.0.369051970412854 1 · 100 0.37
73 0.00.00.027874590126960 1 · 10−1 0.028
108 0.000.000.004713454334457 1 · 10−2 0.0047
143 0.0000.0000.000894394670003 1 · 10−3 0.00089
178 0.0000.0000.000173439884020 1 · 10−3 0.00017
213 0.00000.00000.000033762594077 1 · 10−4 3.4 · 10−5

248 0.000000.000000.000006576774483 1 · 10−5 6.6 · 10−6

283 0.000000.000000.000001281269557 1 · 10−5 1.3 · 10−6

318 0.0000000.0000000.000000249618530 1 · 10−6 2.5 · 10−7

353 0.00000000.00000000.000000048631167 1 · 10−7 4.9 · 10−8

388 0.000000000.000000000.000000009474428 1 · 10−8 9.5 · 10−9

423 0.000000000.000000000.000000001845832 1 · 10−8 1.9 · 10−9

458 0.0000000000.0000000000.000000000359614 1 · 10−9 3.7 · 10−10

493 0.00000000000.00000000000.000000000070065 1 · 10−10 7.4 · 10−11

528 0.00000000000.00000000000.000000000013655 1 · 10−10 1.5 · 10−11

563 0.000000000000.000000000000.000000000002665 1 · 10−11 3.6 · 10−12

598 0.0000000000000.0000000000000.000000000000524 1 · 10−12 1.4 · 10−12

Table 6: Non-smooth unconstrained convex optimization problem output.

14



Published as a conference paper at ICOMP 2024

# ∥xk∥ ε3 ε4
1 3.50909086234578142 1 · 101 1.27
2 3.25249619214075886 1 · 101 1.016
3 3.05669444787201110 1 · 101 0.82
38 2.22.22.25555433276413277 1 · 10−1 0.019
73 2.232.232.23741141399673527 1 · 10−2 0.0013
108 2.2362.2362.23631507477184337 1 · 10−3 0.00025
143 2.2362.2362.23611497218344222 1 · 10−3 4.7 · 10−5

178 2.23602.23602.23607721889738496 1 · 10−4 9.2 · 10−6

213 2.236062.236062.23606975667863855 1 · 10−5 1.8 · 10−6

248 2.236062.236062.23606832810608537 1 · 10−5 3.5 · 10−7

283 2.236062.236062.23606804502447861 1 · 10−5 6.8 · 10−8

318 2.23606792.23606792.23606799080709652 1 · 10−7 1.3 · 10−8

353 2.23606792.23606792.23606798006272692 1 · 10−7 2.6 · 10−9

388 2.236067972.236067972.23606797800487733 1 · 10−8 5.1 · 10−10

423 2.2360679772.2360679772.23606797759706814 1 · 10−9 9.7 · 10−11

458 2.2360679772.2360679772.23606797751896115 1 · 10−9 1.9 · 10−11

493 2.2360679772.2360679772.23606797750348249 1 · 10−9 3.7 · 10−12

528 2.2360679772.2360679772.23606797750051789 1 · 10−9 7.4 · 10−13

563 2.2360679774992.2360679774992.23606797749993039 1 · 10−12 1.4 · 10−13

598 2.2360679774992.2360679774992.23606797749981787 1 · 10−12 2.9 · 10−14

633 2.236067977499792.236067977499792.23606797749979557 1 · 10−14 4.9 · 10−15

650 2.2360679774997922.2360679774997922.23606797749979268 1 · 10−15 2.7 · 10−15

655 2.2360679774997922.2360679774997922.23606797749979215 1 · 10−15 3.3 · 10−17

Table 7: Non-smooth unconstrained convex optimization problem output.
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# f(xk) ε1 ε2
1 55575692.05137578458 1 · 105 10278.17
2 5656566816.38933322136 1 · 104 1402.51
3 565565565802.33314266431 1 · 103 388.45
17 565413.8565413.8565413.88509552008 1 · 10−1 0.0064
44 565413.8565413.8565413.88183280189 1 · 10−1 0.0032
74 565413.8565413.8565413.88013226316 1 · 10−1 0.0015
104 565413.87565413.87565413.87930412149 1 · 10−2 0.00064
134 565413.878565413.878565413.87895278421 1 · 10−3 0.00028
164 565413.878565413.878565413.87880059818 1 · 10−3 0.00013
194 565413.878565413.878565413.87873276216 1 · 10−3 6.4 · 10−5

224 565413.878565413.878565413.87870137843 1 · 10−3 3.3 · 10−5

254 565413.8786565413.8786565413.87868619214 1 · 10−4 1.8 · 10−5

284 565413.8786565413.8786565413.87867846975 1 · 10−4 9.9 · 10−6

314 565413.8786565413.8786565413.87867434236 1 · 10−4 5.8 · 10−6

344 565413.8786565413.8786565413.87867203408 1 · 10−4 3.5 · 10−6

374 565413.8786565413.8786565413.87867069341 1 · 10−4 2.1 · 10−6

404 565413.87866565413.87866565413.87866989163 1 · 10−5 1.3 · 10−6

434 565413.87866565413.87866565413.87866940176 1 · 10−5 8.3 · 10−7

464 565413.87866565413.87866565413.87866909791 1 · 10−5 5.2 · 10−7

494 565413.878668565413.878668565413.87866890749 1 · 10−6 3.3 · 10−7

524 565413.878668565413.878668565413.87866878732 1 · 10−6 2.1 · 10−7

554 565413.878668565413.878668565413.87866871111 1 · 10−6 1.3 · 10−7

584 565413.878668565413.878668565413.87866866262 1 · 10−6 8.0 · 10−8

614 565413.878668565413.878668565413.87866863168 1 · 10−6 4.8 · 10−8

644 565413.878668565413.878668565413.87866861191 1 · 10−6 2.8 · 10−8

674 565413.8786685565413.8786685565413.87866859924 1 · 10−7 1.5 · 10−8

704 565413.8786685565413.8786685565413.87866859112 1 · 10−7 6.1 · 10−9

726 565413.87866858565413.87866858565413.87866858706 1 · 10−8 1.7 · 10−9

730 565413.878668586565413.878668586565413.87866858646 1 · 10−9 1.1 · 10−9

731 565413.878668586565413.878668586565413.87866858631 1 · 10−9 1.1 · 10−9

Table 8: Smooth constrained convex optimization problem output. Function.
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# ∥xk∥ ε3 ε4
1 20.119061037035 1 · 102 14.73
2 29.593519102641 1 · 102 5.25
3 3332.124366408076 1 · 101 2.71
17 34.834.834.821131179517 1 · 10−1 0.011
44 34.831834.831834.831835098335 1 · 10−4 5.8 · 10−6

74 34.831834.831834.831833484930 1 · 10−4 4.2 · 10−6

104 34.831834.831834.831832234587 1 · 10−4 2.9 · 10−6

134 34.831834.831834.831831284485 1 · 10−4 2.0 · 10−6

164 34.831834.831834.831830616449 1 · 10−4 1.3 · 10−6

194 34.831834.831834.831830165123 1 · 10−4 8.5 · 10−7

224 34.83182934.83182934.831829866973 1 · 10−6 5.5 · 10−7

254 34.83182934.83182934.831829672599 1 · 10−6 3.5 · 10−7

284 34.83182934.83182934.831829546887 1 · 10−6 2.3 · 10−7

314 34.83182934.83182934.831829465977 1 · 10−6 1.5 · 10−7

344 34.83182934.83182934.831829414054 1 · 10−6 9.3 · 10−8

374 34.831829334.831829334.831829380792 1 · 10−7 6.0 · 10−8

404 34.831829334.831829334.831829359502 1 · 10−7 3.8 · 10−8

434 34.831829334.831829334.831829345882 1 · 10−7 2.5 · 10−8

464 34.831829334.831829334.831829337168 1 · 10−7 1.6 · 10−8

494 34.831829334.831829334.831829331591 1 · 10−7 1.0 · 10−8

524 34.8318293234.8318293234.831829328019 1 · 10−8 6.5 · 10−9

554 34.8318293234.8318293234.831829325731 1 · 10−8 4.1 · 10−9

584 34.8318293234.8318293234.831829324262 1 · 10−8 2.6 · 10−9

614 34.8318293234.8318293234.831829323319 1 · 10−8 1.6 · 10−9

644 34.8318293234.8318293234.831829322711 1 · 10−8 9.5 · 10−10

674 34.8318293234.8318293234.831829322319 1 · 10−8 5.3 · 10−10

704 34.8318293234.8318293234.831829322066 1 · 10−8 2.5 · 10−10

726 34.831829321934.831829321934.831829321939 1 · 10−10 2.7 · 10−10

730 34.8318293219134.8318293219134.831829321919 1 · 10−11 2.9 · 10−11

731 34.8318293219134.8318293219134.831829321915 1 · 10−11 1.0 · 10−11

732 34.8318293219134.8318293219134.831829321910 1 · 10−11 2.2 · 10−12

Table 9: Smooth constrained convex optimization problem output. Points.
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