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A LLM USAGE

Large Language Models (LLMs) were used solely to support the writing and polishing of this
manuscript. Specifically, we employed an LLM to refine language, improve readability, and en-
hance clarity in selected sections. The assistance included sentence rephrasing, grammar checking,
and improving textual flow.

Importantly, the LLM was not involved in the ideation, research methodology, experimental design,
or data analysis. All research concepts, methods, and results were conceived, executed, and validated
entirely by the authors. The LLM’s contribution was limited to improving the linguistic quality of
the manuscript, with no influence on its scientific content.

The authors take full responsibility for the entire content of the paper, including any text revised
with LLM assistance. We confirm that the use of LLMs complied with ethical guidelines and did
not result in plagiarism or scientific misconduct.

B PSEUDOCODE

As a complement to Alg. 1, we detail the PartitionSelection() procedure in Alg. 2.

Algorithm 1: DIRECT with lower bound estimation
Input: The objective function L, the search space Θ, the number of iterations T , the maximum

depth H
Output: The optimal factor θ̃

1 Let P = {Θ}, and t← 0
2 while t < T and P ̸= ∅ do
3 Initialise X = {}
4 for each potential optimal partition Θi in P do
5 if σi > σH then
6 for dimension j with long edge of Θi do
7 Append(X , θi ± 3−h−1ej)

8 Y = L(X )
9 if min Y < L(θ̃) then

10 θ̃ = argminX Y
11 L∗

min = LowerBoundEstimation()
12 for each potential optimal partition Θi in P do
13 Trisect Θi based on query results in Y
14 P = PartitionSelection()
15 t = t+ 1

Algorithm 2: PartitionSelection() in DIRECT
Input: Lmin the obtained best query results, H the maximum depth
Output: P a set of PO subspaces

1 Set P = {}
2 for each space size σ > σH do
3 Select subspace Θp that satisfies Eqs. (4) to (6)
4 Append(P,Θp)

5 return P

Complexity The computational complexity of a single run of LSR for 2m + 1 samples in an
n-dimensional space is typically O(n2m) (Huang et al., 2023). In DIRECT-LSR, the number of
samples used for LSR within each partition is bounded by the dimensionality, i.e., m ≤ n. Besides,
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Table 3: Datasets details for the four ophthalmic tasks.

Task Train Size Test Size

Image quality check (EYEQ) 12545 16251
Diabetic retinopathy grading (EYEPACS) 35125 53574
Age-related macular regeneration (AREDS) 8420 8613
Glaucoma (GLC) 4822 4822

Figure 6: An example of interface presented to ophthalmic experts

LSR is performed on all PO partitions at each iteration. Given the number of selected PO partitions
grows linearly with the maximum level H , the overall computational complexity of the LSR is
O(Hn3) at each iteration.

C DISEASE BACKGROUND

The progression of diabetic retinopathy (DR) is related to vasculature abnormalities, including mi-
croaneurysms, hard exudates, new vessels, fibrous proliferations, and macular edema (Stitt et al.,
2016). The five-stage grading system (non-DR, mild DR, moderate DR, severe DR, or proliferative
DR) (Wilkinson et al., 2003) is widely adopted for the DR severity assessment.

Age-related macular degeneration (AMD) is a disease that affects the macular region of the retina,
causing progressive loss of central vision (Mitchell et al., 2018). Early-stage AMD includes findings
such as drusen and abnormalities of the retinal pigment epithelium, advanced AMD is defined by
the presence of signs indicating either neovascular or atrophic AMD (Ferris III et al., 2013). We
identify AMD severity into non-advanced and advanced AMD according to 9-steps AMD Sever-
ity Scale (Davis et al., 2005) (non-advanced AMD: scale 1-8, advanced AMD: scale 9 and with
Neovascular/Central Geographic Atrophy Findings) similar to (Bridge et al., 2021).

Glaucoma is a progressive optic neuropathy characterised by the degeneration of retinal ganglion
cells, manifesting the structural damage as neuroretinal rim loss, excavation, and enlargement of the
optic cup in fundus images (Weinreb et al., 2014). The evaluation of glaucoma involves assessing
both structural damage (cup-to-disc ratio) and functional damage (visual field loss)(Foster et al.,
2002). To preserve clinically relevant features, our geometric perturbations on the GLC dataset are
limited to rotation and translation, avoiding deformation of the cup-to-disc ratio.

D IMPLEMENTATION DETAILS

Hardware Both training and evaluation are performed on a workstation equipped with an RTX
3090 graphic card, an Intel Core i9-12900K processor, and 64 GB of memory.

Numerical Examples In Fig. 2, we visualise the DIRECT-LSR on a test function: f(z) =
1
2 (sin(13z) sin(27z) + 1), where z ∈ [0, 1]. The algorithm is executed for 50 iterations with a max-
imum partition depth of H = 6. In Fig. 3a, we conduct both DIRECT and DIRECT-LSR for 200
iterations on a 3-D Schwefel function. It can be written as f(z) = 418.9829d−

∑d
i=1 zi sin(

√
∥zi∥),

where we set d = 3 in this 3-D case and z ∈ [−500, 500].
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Algorithm 3: Standard data preprocessing
Input: Image x
Output: Transformed image x′

1 x = resize(x, (224, 224));
2 x = random horizontal flip(x);
3 x′ = normalise(x,mean = [0.485, 0.456, 0.406],
4 std = [0.229, 0.224, 0.225]);

Algorithm 4: Semantic Augmentation
Input: Image x
Output: Transformed image x′

1 x = resize(x, (224, 224));
2 x = random horizontal flip(x);
3 x = random affine(x, degrees = (−π

5 ,
π
5 ), translate = (0.2, 0.2), scale = (0.8, 1.2));

4 x = color jitter(x, brightness = 0.2);
5 if random() < 0.8 then
6 x = random motion blur(x, kernel size = (3, 9),
7 angle = (−180, 180), direction = (−1, 1));
8 x′ = normalise(x,mean = [0.485, 0.456, 0.406],
9 std = [0.229, 0.224, 0.225]);

10 return x′;

Sampled Test Sets Subsampling is commonly used for managing computational cost in robustness
studies (Wang et al., 2023b). In Fig. 4, we uniformly sample 50 examples from each dataset to
illustrate the performance degradation caused by semantic perturbations at varying strengths. For a
more comprehensive analysis Table 2 reports results on 500 uniformly sampled examples from each
dataset to assess the semantic robustness of the trained models. The dataset statistics are summarised
in Table 3.

Perturbation Effect Validation To enable expert validation, we reconstruct the perturbed CFP
images using the optimal semantic perturbations found by DIRECT-LSR in Figure 4. As illustrated
in Figure 6, we provide an interface to support ophthalmic experts in reviewing and assessing the
clinical plausibility of the generated perturbations. Assuming the ground truth labels are correct,
we display the original label to the experts while omitting explicit information about perturbation
strength. Instead, we use indices from 0 to 3 to denote increasing levels of perturbation severity.

Data Augmentation We implemented a simple data augmentation strategy using randomised im-
age transformations from the torchvision toolbox. The standard data preprocessing and aug-
mentation pipelines are detailed in Alg. 3 and Alg. 4, respectively.

Let F be the model parametrised by w, enhancing the model’s semantic robustness via data aug-
mentation can be formulated as the following minimisation problem:

minw∈W Ex∈XEθ∈Θ Lce(θ;F, x, y), (16)

where Lce denotes the cross-entropy loss, W is parameter space, and X is training dataset.
In Eq. (16), Θ represents the perturbation space, which includes all perturbation factors summarised
in Table 1. These perturbations are randomly applied to training samples during preprocessing, be-
fore input into the DNN models. A pseudocode implementation of the proposed augmentation is
provided in the Appendix. The augmentation process in Alg. 4 aligns with the training objective
defined in Eq. (16), by applying geometric transformation via random_affine, brightness ad-
justments via color_jitter, and motion blur using a custom function with a randomised kernel
size.

Performance on Original Datasets In this subsection, we report the performance of the models
on the original, unperturbed datasets. As shown in Table 4, all model architectures achieve high
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Table 4: The model performance on clean CFP datasets.

Model
EYEQ EYEPACS AREDS GLC

Acc. F1 Acc. F1 Acc. F1 Acc. F1

RetFound 0.882 0.86 0.783 0.411 0.921 0.889 0.828 0.818
+Aug. 0.882 0.861 0.783 0.41 0.916 0.882 0.822 0.813

ResNet50 0.885 0.864 0.769 0.453 0.932 0.904 0.865 0.856
+Aug. 0.875 0.855 0.77 0.452 0.933 0.905 0.883 0.876

RegNet 0.829 0.796 0.732 0.335 0.876 0.828 0.757 0.746
+Aug. 0.82 0.79 0.741 0.335 0.898 0.857 0.7684 0.757

DenseNet 0.891 0.872 0.774 0.474 0.933 0.908 0.867 0.861
+Aug. 0.878 0.858 0.814 0.475 0.934 0.906 0.881 0.875

EfficientNet 0.88 0.863 0.764 0.48 0.937 0.912 0.871 0.864
+Aug. 0.877 0.855 0.83 0.492 0.94 0.915 0.887 0.881

CoAtNet 0.863 0.843 0.759 0.42 0.922 0.888 0.814 0.807
+Aug. 0.861 0.836 0.766 0.391 0.925 0.894 0.81 0.802

Table 5: Comparison of DIRECT-LSR and related methods on ImageNet under geometric perturba-
tions.

Model Acc.
DIRECT-L∞ SimpleDIRECT DIRECT-LSR

ASR V. Acc. Time(s) ASR V. Acc. Time(s) ASR V. Acc. Time(s)

ResNet50 78.40% 39.54% 40.20% 5.0±0.5 40.05% 41.80% 4.0±1.4 41.33% 21.00% 5.3±0.1
WideResNet50 81.60% 38.24% 40.20% 6.0±0.6 39.95% 38.20% 5.5±1.2 41.95% 17.20% 7.4±0.6
Vit16×16 81.40% 47.91% 36.00% 4.9±0.8 49.63% 33.60% 3.9±0.9 35.31% 19.40% 6.5±0.1
Large Beit16×16 85.60% 22.90% 59.80% 9.2±1.2 23.60% 58.20% 8.1±2.0 24.12% 46.20% 13.4±0.2
SwinTransformer 80.20% 55.11% 13.00% 5.8±0.5 57.61% 14.00% 5.4±0.9 59.20% 11.80% 7.8±0.1

accuracy and F1 scores on the EYEQ, AREDS, and GLC datasets. In contrast, their performance
on the EYEPACS dataset is noticeably lower, which may be attributed to the dataset’s inherent class
imbalance and greater visual heterogeneity. Moreover, the augmentation method in Alg. 4 helps
maintain or even improve model performance on clean data.

E ADDITIONAL EXPERIMENTS

E.1 MORE COMPARISON WITH DIRECT-BASED METHODS

We compare the performance of DIRECT-LSR to other DIRECT methods under the same setting
in Wang et al. (2023b), which evaluated the robustness of ImageNet classifiers against geometric
transformation attacks. Different to our setting in Eq. (3), Wang et al. (2023b) define geometric
perturbation using isotropy scaling, which can be written as[

xj
yj

]
=

[
θs · cos θr −θs · sin θr θhort

θs · sin θr θs · cos θr θvrtt

]
[x′i, y

′
i, 1]

⊤. (17)

Here, they set the rotation to θr = 20◦, the horizontal and vertical translations to θhor = θvrt = 22.4
pixels, and the scaling factor to θs = 0.1.

Among existing DIRECT-based methods, we consider two key baselines: the classic DIRECT-L∞
algorithm, which employs the L∞ norm to measure the size of partitions (Wang et al., 2023b),
and SimpleDIRECT, which was introduced to improve scalability in high-dimensional applica-
tions (Wang et al., 2025)1. In contrast, our proposed DIRECT-LSR operates under the L2 norm to
ensure stronger theoretical convergence guarantees. For fair comparison, all methods are executed
with a maximum partition depth of H = 6 and a total query budget of 3000, and we targeted five
models, including: ResNet50, WideResNet50, Vit16×16, Large Beit16×16, and Swin Transformer.

1Wang, Fu, et al. ”A Black-Box Evaluation Framework for Semantic Robustness in Bird’s Eye View De-
tection.” AAAI. 2025.
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(a) Standard training setup
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(b) Semantic augmentation training setup

Figure 7: Averaged prediction transition matrices on the EYEPACS (DR grading) dataset comparing
(a) Standard and (b) Augmented training strategies. The matrices show how models’ predictions
change under illumination, motion blur, and geometric perturbations. The labels 0 to 4 correspond
to no, mild, moderate, severe, and proliferative DR, respectively. All values are row normalised.

As reported in Table 5, we compare the attack success rate (ASR), verified accuracy, and the runtime.
As shown, the large BEiT16×16 model demonstrates the strongest robustness overall, consistent
with findings in Wang et al. (2023b). DIRECT-LSR achieves the highest attack success rate (ASR)
across all five classifiers, while maintaining a reasonable runtime overhead. The additional runtime
is attributed to the least squares regression process with a computational complexity of O(Hn3).
Although both DIRECT and SimpleDIRECT report higher verified accuracy, their lower bounds are
based on recorded slopes (Eq. (9)), which lack formal guarantees and may overestimate robustness.

E.2 POST ANALYSIS

In Fig. 7, 8, and 9, we show the averaged prediction transition caused by different semantic pertur-
bations across all models on EYEPACS, AREDS, and GLC datasets.

On the EYEPACS dataset, semantic perturbations often cause the standard models’ predictions to
shift toward adjacent severity levels. Although data augmentation substantially improves robustness,
the augmented models still struggle to correctly identify mild DR, suggesting a potential trade-off
between robustness and fine-grained discrimination. We plan to investigate the underlying reasons
for this behaviour in future work.

On the AREDS and GLC datasets, the models are trained to make binary predictions. We can see
from Fig. 8 and 9 that the standard trained models are easily misled into classifying advanced AMD
as non-advanced and positive GLC as negative, which are Type II errors that are particularly con-
cerning in clinical practice. When trained with data augmentation, the models’ robustness has been
notably improved, and the Type II error rate has reduced by more than 60%. This improvement is
also consistent with the overall performance gains from the data augmentation on these two datasets
reported in Table 4.

E.3 MIXED SEMANTIC PERTURBATION

In this experiment, we evaluate the models’ robustness under mixed semantic perturbations, com-
bining geometric transformations (γ = 0.2), illumination distortions (γ = 0.1), and motion blur
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(b) Semantic augmentation training setup

Figure 8: Averaged prediction transition matrices on the AREDS (AMD diagnosis) dataset compar-
ing (a) Standard and (b) Augmented training strategies. The matrices show how models’ predictions
change under illumination, motion blur, and geometric perturbations. The labels 0 and 1 correspond
to non-advanced and advanced AMD, respectively. All values are row normalised.
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Figure 9: Averaged prediction transition matrices on the GLC (glaucoma diagnosis) dataset compar-
ing (a) Standard and (b) Augmented training strategies. The matrices show how models’ predictions
change under illumination, motion blur, and geometric perturbations. The labels 0 and 1 correspond
to negative and positive outcomes, respectively. All values are row normalised.

(γ = 5). As shown in Table 6, taking ResNet50 and RetFound for example, even the enhanced mod-
els remain highly vulnerable to the combined semantic perturbations, with none achieving validated
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Table 6: Model accuracy and verified accuracy under mixed semantic perturbations

Model
EYEQ EYEPACS AREDS GLC

Acc. V. Acc. Acc. V. Acc. Acc. V. Acc. Acc. V. Acc.

RetFound 0.152 0.0 0.246 0.0 0.234 0.0 0.04 0.0
+Aug. 0.186 0.0 0.502 0.0 0.558 0.0 0.288 0.0

ResNet50 0.146 0.0 0.0 0.0 0.242 0.0 0.212 0.0
+Aug. 0.188 0.0 0.158 0.0 0.686 0.0 0.324 0.0

Table 7: Semantic robustness benchmark on CFP tasks. All models share the same training setup;
models marked “+ Aug.” additionally apply random semantic perturbation as data augmentation.
Best results are in bold.

Model Metric
EYEQ EYEPACS AREDS GLC

Clean Geo. Illu. MB Clean Geo. Illu. MB Clean Geo. Illu. MB Clean Geo. Illu. MB

Retfound
Acc. 0.896 0.148 0.488 0.18 0.808 0.438 0.71 0.622 0.948 0.184 0.842 0.844 0.894 0.42 0.616 0.63

L̂min > 0 / 0.108 0.48 0.002 / 0.042 0.71 0.004 / 0.114 0.842 0.064 / 0.18 0.616 0.004

RetFound Acc. 0.872 0.596 0.696 0.788 0.802 0.56 0.742 0.748 0.94 0.662 0.872 0.874 0.886 0.488 0.68 0.792
+ Aug. L̂min > 0 / 0.386 0.696 0.064 / 0.3 0.742 0.102 / 0.292 0.872 0.017 / 0.28 0.68 0.072

ResNet50
Acc. 0.912 0.116 0.51 0.156 0.77 0.0 0.39 0.398 0.952 0.258 0.898 0.88 0.928 0.218 0.866 0.82

L̂min > 0 / 0.054 0.508 0.034 / 0.0 0.386 0.0 / 0.0 0.898 0.006 / 0.004 0.86 0.006

ResNet50 Acc. 0.898 0.428 0.744 0.83 0.838 0.356 0.646 0.758 0.936 0.658 0.906 0.908 0.956 0.476 0.902 0.89
+Aug. L̂min > 0 / 0.208 0.744 0.112 / 0.092 0.644 0.028 / 0.184 0.902 0.16 / 0.028 0.9 0.024

Regnet
Acc. 0.83 0.014 0.486 0.122 0.744 0.0 0.388 0.156 0.898 0.0 0.596 0.182 0.816 0.008 0.412 0.196

L̂min > 0 / 0.0 0.486 0.0 / 0.0 0.384 0.0 / 0.0 0.592 0.0 / 0.0 0.408 0

Regnet Acc. 0.852 0.024 0.554 0.354 0.756 0.04 0.494 0.388 0.912 0.032 0.718 0.538 0.804 0.034 0.482 0.3
+ Aug. L̂min > 0 / 0.0 0.548 0.0 / 0.0 0.488 0.0 / 0.0 0.718 0.0 / 0.0 0.474 0

EfficientNet
Acc. 0.896 0.136 0.724 0.164 0.786 0.0 0.24 0.416 0.938 0.238 0.896 0.806 0.936 0.264 0.868 0.676

L̂min > 0 / 0.024 0.724 0.014 / 0.0 0.238 0.0 / 0.0 0.896 0.002 / 0.002 0.868 0.002

EfficientNet Acc. 0.882 0.518 0.534 0.77 0.852 0.43 0.596 0.768 0.942 0.698 0.92 0.926 0.946 0.554 0.894 0.88
+ Aug. L̂min > 0 / 0.228 0.534 0.084 / 0.134 0.584 0.034 / 0.13 0.92 0.226 / 0.176 0.894 0.052

DenseNet
Acc. 0.9 0.136 0.73 0.16 0.784 0.01 0.632 0.572 0.948 0.406 0.896 0.876 0.94 0.188 0.86 0.788

L̂min > 0 / 0.054 0.73 0.046 / 0.0 0.632 0.0 / 0.086 0.896 0.07 / 0.0 0.86 0.002

DenseNet Acc. 0.898 0.422 0.702 0.86 0.828 0.31 0.718 0.758 0.944 0.674 0.908 0.914 0.964 0.45 0.9 0.886
+ Aug. L̂min > 0 / 0.242 0.702 0.128 / 0.066 0.716 0.036 / 0.414 0.908 0.456 / 0.114 0.9 0.082

CoAtNet
Acc. 0.882 0.05 0.67 0.206 0.769 0.118 0.574 0.518 0.93 0.176 0.774 0.612 0.876 0.218 0.648 0.482

L̂min > 0 / 0.0 0.668 0.0 / 0.0 0.568 0.0 / 0.0 0.774 0.0 / 0.006 0.648 0

CoAtNet Acc. 0.87 0.278 0.726 0.692 0.794 0.152 0.654 0.572 0.94 0.302 0.846 0.79 0.894 0.282 0.614 0.568
+ Aug. L̂min > 0 / 0.004 0.722 0.0 / 0.002 0.648 0.0 / 0.002 0.842 0.0 / 0.026 0.606 0

robustness on any of the perturbed examples. This result exposes the limitations of data augmenta-
tion in defending against complex, multi-faceted semantic perturbations. It highlights the need for
more effective defence mechanisms and for robustness evaluation frameworks that better align with
human perception and clinical relevance.

E.4 FULL BENCHMARK

In Table 7, we report the full benchmark that includes ResNet50 (He et al., 2016), RegNet (Ra-
dosavovic et al., 2020), EfficientNet (Tan & Le, 2019), and DenseNet (Huang et al., 2017), and a
pure Transformer model (RetFound (Zhou et al., 2023)). , and a hybrid convolution-Transformer
model (CoAtNet (Dai et al., 2021)). RegNet and CoAtNet are not listed in Table 2 because they do
not achieve the best performance under any of the evaluated settings.
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