
Under review as a conference paper at ICLR 2024

Appendices

A DEFINITIONS
Definition 1.1: Domain vocabulary & labeling function

A vocabulary is a set of environment or domain specific (boolean) propositional symbols, P ,
with R 2 [0, 1] for each state s 2 S . A labeling function is a function FL(t) : S⇥A⇥S 0 ! 2P ,
that maps state observations to truth assignments over the vocabulary P for the time-step t.

Definition 1.2: MDP with a reward machine (MDP-RM)

A Markov decision process with a reward machine is a tuple =
hS,A, p, �,P,FL, U, u0, G, �u, �ri where S,A, p, and � are defined as in an MDP, P
is a set of domain specific propositional symbols, FL is a labelling function (Def. 1.1), and
U, u0, G, �u and �r are defined as in a reward machine, where U is a set of FSA states, u0 is
the initial state, G is a set of terminal or goal states, and �u, �r are state and reward transition
functions.

B REWARD MACHINE: EXPANDED BACKGROUND AND MOTIVATION

Reward machines were introduced by Icarte et al. Icarte et al. (2018) as a type of finite state
machine (FSM) that supports the specification of reward functions while exposing reward function
structure. As a form of FSM, reward machines have the expressive power of a regular language and
as such, support loops, sequences and conditionals. Additionally, it supports expression of temporally
extended linear-temporal-logic (LTL) and non-Markovian reward specification, where the underlying
reward received by an agent from the environment is not Markovian with respect to the state.

When an environment dynamics is specified using a reward machine (RM), as an agent acts in the
environment, moving from state to state, it also moves from state to state within a reward machine (as
determined by high-level events detected within the environment).

After every transition, the reward machine outputs the reward function the agent should use at that
time. For example, we might construct a reward machine for ‘delivering mail to an office’ using
two states. In the first state, the agent does not receive any rewards, but it moves to the second
state whenever it gets the mail. In the second state, the agent gets rewards after delivering the mail.
Intuitively, defining rewards this way improves scale efficiency as the agent knows that the problem
consists of two stages and might use this information to speed up learning.

Using the above discussion, we can define a standard RM using mathematical formalism as the
following definition 2.1.

Definition 2.1: A standard Reward Machine (RM)

Given a set of propositional symbols P , a set of (environment) states S, and a set of actions
A, a reward machine is a tuple: RPSA = hU, u0, F, �u, �ri where U is a finite set of states
u0 2 U is an initial state, F is a finite set of terminal states (where U \ F = ;), �u is the
state-transition function s.t. �u : U ⇥ 2P ! U [F , and �r is the state-reward function, s.t.
�r : U ! [S ⇥A⇥ S ! R].

B.1 MOTIVATION FOR USING RM IN IRL+POMDP SETTING

Agents in modern, real-world RL datasets (e.g. robotics, embodied-ai Shridhar et al. (2020)) often,
if not always, are required to perform tasks that are long-horizon with compositional and/or logical
underlying reward structure. The main motivation of SMIRL is to show that imbuing the agent with
apriori (approximate) structure of the latent reward associated with a task allows solving complex
tasks that are hard to learn from only demonstrative expert trajectory data. This motivation makes the
IRL+POMDP problem setting ideal for purposes in this paper.

13

Under review as a conference paper at ICLR 2024

The effectiveness of automata-based memory has long been recognized in the POMDP literature Cas-
sandra et al. (1994), where the objective is to find policies given a complete specification of the
environment. The overarching idea in approaches under this umbrella is to encode policies using
Finite State Controllers (FSCs), which are FSMs with states associated with one primitive action,
and the transitions are defined in terms of low-level observations from the environment. During
environment interaction, the agent always selects the action associated with the current state in
the FSC. Using such automata-based memory was leveraged to work in the RL setting in work by
Meuleau et al. Meuleau et al. (2013b) by exploiting policy gradient to learn policies encoded as FSCs.

RMs can be considered as a generalization of FSC as they allow for transitions using conditions over
high-level events and associate complete policies (instead of just one primitive action) to each state.
This allows RMs to leverage existing deep RL methods to learn policies from low-level inputs, such
as images, which is not achievable by other automata-based approaches like Meuleau et al. (2013b).
That said, learning FSMs using other ontologies (e.g. Xu et al. (2020); Zhang et al. (2019)) do exist
in concurrent literature. Discussion and delineation with such works are further discussed in the
‘Related Work’ section (S. C).

C RELATED WORK

Augmenting memory using of Recurrent Neural Networks (RNNs) in combination with policy
gradient Jaderberg et al. (2016); Mnih et al. (2016); Schulman et al. (2017) is a common approach in
state-of-the-art (SOTA) approaches in the RL+POMDP domain. Other approaches use external neural-
based memories Oh et al. (2016); Khan et al. (2017); Hung et al. (2019). Model-Based Bayesian RL
and extension approaches Doshi-Velez et al. (2013); Ghavamzadeh et al. (2015); Poupart & Vlassis
(2008) under partial observability provide a small binary memory to the agent and a special set of
actions to modify it. The motivation and idea behind our work here are largely orthogonal to these
aforementioned approaches.

The work that is closest to ours is by Icarte et al. Toro Icarte et al. (2019) – where the authors learn
RMs for partially observable RL tasks from trajectories. However, efficacy of the approach is shown
in 2D discrete domains, with the authors noting the challenge of showcasing them in 3D continuous
domain due to the intractability of state space explosion. While Toro Icarte et al. (2019) motivates
our choice to use RM as the chosen structural motif architecture (as opposed to other available
FSA ontologies), but to the best our knowledge, learning the motif on continuous 3D domains with
complex logic (see SMIRL Algorithm) is not undertaken in prior works. While this difference can be
argued as meagre for 2D toy like domains, but is significant for continuous domains, because ‘Tabu
search’ for state space is computationally infeasible in such complex domains. Thus, this insight is
more applicable in solving IRL in real-world robotic or embodied-ai domains commensurate with the
motivation of our work.

Another related sub-domain of works include literature on learning logic and automata from demon-
strations. These works by problem definition is slightly different to the IRL problem domain we
tackle here. The works in this area (e.g. by Vazquez et al. Vazquez-Chanlatte et al. (2018; 2021))
infers Boolean non-Markovian rewards, or logical properties of available traces (aka. demonstrations).
This is achieved by learning probabilistic densities of demonstrations over an existing, apriori

knowledge pool of candidate specifications. In essence, it is a specifications matching problem, or
searching for the most probable specification in a pool of candidate specifications. Our work is
orthogonal to these in the aspect that we do not have or define the task labels or any apriori structure
of the specification.

D OFFICE GRIDWORLD DOMAIN

D.1 DETAILED ILLUSTRATION OF STRUCTURAL MOTIF LEARNING (SMIRL)
Here we examine and illustrate the SMIRL learning algorithm 1 using Task 3: ‘Fetch and deliver
coffee and mail‘. The Fig. 8 juxtaposes the perfect reward structure with a FSA structural motif
learned using the SMIRL 1 algorithm. Although the learned structure is not optimal (with 6 FSA
states as opposed to optimal 4), but if converges to the desired target state.

14

Under review as a conference paper at ICLR 2024

(a) State diagram of a perfect

FSA

u0

u1 u2

('A', -0.13)

(' ', -0.30)

('D', 0.56)

('c', 0.80)

('D', -0.20)

(' ', 1.00)

u3
('c', -0.11)

(' ', -0.31)

u4

('m', 0.57)

u5
u6

(' ', 0.00)

('m', -0.10)

(' ', -0.30)
('c', -0.01)

('o', 0.57)

start

(b) State diagram of learned FSA

Figure 8: Qualitative Evaluation in the Office GridWorld. Left: Fig. 8a shows the perfect reward
(FSA) structure for Task 3: Fetch & Deliver ‘Coffee’ and ‘Mail’ requiring the delivery of both
coffee (‘c’) and mail (‘m’) to the office (‘o’) starting with position ‘A’ on the map and initial FSA
state u0. Right: Fig. 8b shows the learned FSA structural motif and weights. The state transition
arrow labels (e.g. u1 ! u2: (‘c’, 0.80))indicate the true propositional symbols [Def. 1.1] –
from an agent action a resulting in state transition from s to s

0, and the underlying FSA to state
u
0 = �u(u,FL(s, a, s0) – and the correponding reward r(s, a, s0, where r = �r(u). We can see some

artifacts of the SMIRL algorithm 1 here with nodes u2 and u4. The first transition from u0 to u1

comes from the fact that the expert trajectories go through D while fetching coffee c.

Lemma 1: MDP, MDP-RM expected reward equivalency

Given an MDP-RM = hS,A, p, �,P,FL, U, u0, G, �u, �ri let M = hS0
, A

0
, r

0
, p

0
, �

0i
be the MDP defined such that S0 = S ⇥ U,A

0 = A, �
0 = �, p

0 (hs0, u0i | hs, ui, a) =⇢
p (s0 | s, a) if u0 = �u (u,FL (s0))
0 otherwise , and r

0 (hs, ui, a, hs0, u0i) = �r (u, u0) (s, a, s0).

Then any policy for M achieves the same expected reward in , and vice versa.

D.2 IMPLEMENTATION DETAILS

Generating expert trajectories The process flow for generating expert trajectories in the gridworld
domain entails first to train an expert policy, ⇡e using a perfect FSA reward structure (Fig. 8a), then
using the expert policy to generate De

The final form of the expert demonstrations is represented by series of state-action transitions, i.e.,
(s1, a1, s2, a2, ..., sT). The actions are represented by single integers from 0 to 3. For the low-level
state representations, we include both high-level features of the environment (one-hot encoding of
one of the high-level positions, e.g., {A, B,...,D, c, m,..} etc.) and the low-level positions
(one-hot encoding of the 108 grids of the Office GridWorld environment).

The following points detail various conditions adhered to while De generation:

1. There are K max steps (episode horizon) possible in an episode.

2. An episode can end in (t « K) steps if a ‘done’ or ‘game over’ condition is hit (like stepping
on obstacles).

3. Once an optimal trajectory is traversed for 1 round trip (e.g. Task 4 – ‘Patrol ABCD’:
u0 ! u1 ! u2 ! u3), the agent receives a reward of 1.

4. After that, the agent takes k random steps.

15

Under review as a conference paper at ICLR 2024

5. If not terminated in k steps, get_optimal_action() is invoked (from whichever
random position the agent is in, creating another successful reward trip completion.

6. The above step is repeated until max K steps are reached

E REACHER DOMAIN DETAILS

In this section we present pertinent details about the experiments conducted on the continuous
MuJoCo Reacher domain (Sec. 4.3).

E.1 REACHERDELIVERY-V0: MODIFIED REACHER DOMAIN

We modify the classic OpenAI Gym’s Brockman et al. (2016) MuJoCo Todorov et al. (2012) Reacher
environment to our purposes here. The original Reacher environment is a two-jointed robot arm, and
the goal is to move the robot’s end effector (called fingertip) close to a target that is spawned at a
random position. The action space consists of an action (a, b) that represents the torques applied at
the hinge joints. The observation space consists of the sine, cosine angles of the two arms, coordinates
of the target, angular velocities of the arms and a 3D distance vector between the target and the
reacher’s fingertip. The reward consists of two parts: i. reward_distance (Rd): a measure of how far
the fingertip of the reacher (the unattached end) is from the target, with a more negative value assigned
with increasing distance; ii. reward_control (Rc): a negative reward for penalising actions that are
too large. It is measured as the negative squared Euclidean norm of the action, i.e. as �

P
action

2.
The total reward returned is: reward = reward_distance+ reward_control (R = Rd +Rc).

ReacherDelivery The following code snippet shows how the MuJoCo asset file was modified to
add four target locations as colored balls.

Excerpt from reacher_delivery.xml file showing added red ball as a target location
<!-- RED -->

<body name="red" pos="0 0 0.01">

<joint armature="0" axis="1 0 0" damping="0" limited="true" name="

red_x" pos="0 0 0" range="-.27 .27" ref="0" stiffness="0" type

="slide"/>

<joint armature="0" axis="0 1 0" damping="0" limited="true" name="

red_y" pos="0 0 0" range="-.27 .27" ref="0" stiffness="0" type

="slide"/>

<geom conaffinity="0" contype="0" name="red" pos="0 0 0" rgba="0.9

0. 0. 0.3" size=".02" type="sphere"/>

</body>

We extended the MuJoCo Reacher class with an environment MDP wrapper and added target goals.
Following an agent step in the environment, the state proposition labels are updated using the labelling
function. The following code snippet exemplifies this, where a target color location proposition is
labeled ‘true’ if the fingertip is within a threshold distance from it.

The labelling function FL for ReacherDelivery domain
true_props = []

if dist_red < 0.02:

true_props.append(’r’)

if dist_green < 0.02:

true_props.append(’g’)

if dist_blue < 0.02:

true_props.append(’b’)

if dist_yellow < 0.02:

true_props.append(’y’)

if cancel:

true_props.append(’c’)

E.2 TASKS REWARD FSA STRUCTURES

Figure 9 shows the (perfect) reward structure for the four tasks along with the task name and the
natural language description of the task. The tasks are presented in order of increasing complexity.

16

Under review as a conference paper at ICLR 2024

(a) OR: Touch the red or green ball, then
the blue ball

(b) Sequential: Touch the red, green, blue and yellow
ball in order

(c) IF: Touch blue, unless cancel; then touch the red
ball

(d) Composite: Touch red or green, then blue, unless
cancel, then go to yellow

Figure 9: The four increasingly difficult tasks (OR, Sequential, IF, Composite) with the
corresponding task descriptions and FSA states

E.3 IMPLEMENTATION DETAILS

This section outlines the various implementation details for the ReacherDelivery domain experiments
(Sec. 4.3).

Training Details: We use SAC as the underlying RL algorithm throughout. The policy network is
a tanh squashed Gaussian with mean and standard deviation parameterized by a (64, 64) ReLU MLP
with two output heads. The Q-network is a (64,64) ReLU MLP. For optimization we use Adam with
learning rate of 0.003 for both the Q-network and policy network. The replay buffer size was 10000
and we used batch size of 256.

For the baselines f-IRL and MaxEntIRL, we used the f-IRL Ni et al. (2020) authors’ official imple-
mentation2. f-IRL and MaxEntIRL require an estimation of the agent state density. We use kernel
density estimation to fit the agent’s density, using Epanechnikov kernel with a bandwidth of 0.2 for
pointmass, and a bandwidth of 0.02 for Reacher. At each epoch, we sample 1000 trajectories (30000
states) from the trained SAC to fit the kernel density model.

Generating Expert Trajectories: For expert trajectories generation, we first train expert policies
imbued with perfect reward structure using SAC for each of the tasks. Fig. 10 shows the training
curve and violin plot expert return density curves of training.

SAC uses the same policy and critic networks with the learning rate set to 0.003. We train using a
batch size of 100, a replay buffer of size 1 million, and set the temperature parameter ↵ to be 0.2.
The policy is trained for 1 million timesteps on ReacherDelivery. All algorithms are tested on 16
trajectories collected from the expert stochastic policy.

Evaluation We compare the trained policies by the baselines (f-IRL< MaxEntIRL) and SMIRL by
computing their returns according to the ground truth return on the ReacherDelivery environment.

Computational Complexity In general, ceteris paribus, SMIRL is more sample efficient (i.e.
converges to a solution faster) than baseline IRL approaches. Complexity can arise from two factors:
i. the domain complexity, say 2D discrete vs. continuous, and ii. The size and complexity of the
reward machine (or, FSA) structural motif. We see implications of both in the paper. First, the sample
complexity increases with increasing domain complexity (office gridworld vs. Reacher) and this is
intuitive. From our experiments, for the second kind of complexity, i.e. with more intricate underlying
RM structure, the bottle-neck seems to emanate from the ability to learn the structure. We see that
for the hardest (composite) task, the structure was not learned, and increasing sample complexity
wouldn’t have helped (it would saturate to a suboptimal level). If the structure is learnable, then

2
https://github.com/twni2016/f-IRL

17

https://github.com/twni2016/f-IRL

Under review as a conference paper at ICLR 2024

(a) Task: Sequential (nF: 5)

(b) Task: IF (nF: 5)

(c) Task: OR (nF: 3)

(d) Task: Composite (nF: 7)

Figure 10: The training curves for expert policy training. The experts were imbued with perfect state
based reward structure, where the number of states are given within brackets as ‘nF’ value. Left: The
blue curve shows reward and the red curve shows average entropy. Right: The violin plot of expert
return density. 18

Under review as a conference paper at ICLR 2024

sample complexity scales with the complexity of the task structure (e.g. ’sequential’ vs. ’OR’ in Fig.
6).

F BASELINE OBJECTIVE FUNCTIONS

f-IRL We train the three variants of f-IRL: forward KL (fkl), reverse KL (rkl) and Jansen-Shannon
(js) that represents the f-divergence metric used by the f-IRL algorithm.

f-divergence Ali & Silvey (1966) is a family of distribution divergence metric, which generalizes
forward/reverse KL divergence. Formally, let P and Q be two probability distributions over a space
⌦, then for a convex and Lipschitz continuous function f such that f(1) = 0, the f-divergence of P
from Q is defined as:

Df (PkQ) :=

Z

⌦
f

✓
dP

dQ

◆
dQ (10)

f-IRL uses state marginal matching by minimizing the f-divergence objective:

Lf (✓) = Df (⇢E(s)k⇢✓(s)) (11)

This objective is realized by computing the exact (analytical) gradient of the preceding f-divergence
objective w.r.t. the reward parameters ✓.

Theorem 6.1: f-divergence analytic gradient (from Ni et al. (2020))

The analytic gradient of the f -divergence Lf (✓) between state marginals of the expert (⇢E)
and the soft-optimal agent w.r.t. the reward parameters ✓ is given by:

r✓Lf (✓) =
1

↵T
cov⌧⇠⇢✓(⌧)

TX

t=1

hf

✓
⇢E (st)

⇢✓ (st)

◆
,

TX

t=1

r✓r✓ (st)

!

where hf (u) , f(u)�f
0(u)u, ⇢E(s) is the expert state marginal and ⇢✓(s) is the state marginal

of the soft-optimal agent under the reward function r✓, and the covariance is taken under the
agent’s trajectory distribution ⇢✓(⌧).2

19

	Introduction
	Preliminaries and Background
	Structural Motif-Conditioned IRL (SMIRL)
	Experiments
	Baselines
	Office Gridworld
	Reacher Domain

	Limitations & Future Work
	Broader Impact and Conclusion
	Appendices
	Definitions
	Reward Machine: Expanded Background and Motivation
	Motivation for Using RM in IRL+POMDP Setting

	Related Work
	Office Gridworld Domain
	Detailed Illustration of Structural Motif Learning (SMIRL)
	Implementation Details

	Reacher Domain Details
	ReacherDelivery-v0: Modified Reacher Domain
	Tasks Reward FSA Structures
	Implementation Details

	Baseline objective functions

