
Active-Passive SimStereo - Supplementary material

Laurent Jospin1∗ Allen Antony1 Lian Xu1 Hamid Laga2 Farid Boussaid1

Mohammed Bennamoun1

1University of Western Australia 2Murdoch University
{laurent.jospin,lian.xu,farid.boussaid,mohammed.bennamoun}@uwa.edu.au

H.Laga@murdoch.edu.au

1 Organisation of this document

This document provides additional information about the Active-Passive SimStereo dataset. Sec-
tion 2 confirms and motivates the choice of the license for the dataset. The author statement in
case of violation of rights is presented in Section 3. Section 4 lists the file formats used in the
dataset, their purpose and how to use them. Section 5 evaluate traditional non-learning methods on
our dataset. Section 6 evaluate methods fine-tuned on the Active-Passive SimStereo dataset on real
images. Section 7 checks whether our dataset is large enough for its intended purposes. Section 8
presents the problematic of color management. Section 9 present the simulation toolkit we used to
generate the dataset. Finally, Section 10 presents the plan for the long-term storage of the dataset.

2 License

The Active-Passive SimStereo dataset is published under a CC-BY 4.0 creative commons license
(https://creativecommons.org/licenses/by/4.0/). This license is fit for research assets as
it grants to the end-user the right to use, modify, and share the data provided that proper citation to
the original work is provided [7].

The Active-Passive SimStereo dataset was generated using CC0 (public domain) assets from the
Blendswap [2] website and commercial assets from the Blender Market [1] website. We also used
some public models from the Standford 3D repository [16] (the Stanford Bunny and Dragon, mostly
as easter eggs).

3 Author statement in case of violation of rights

The authors of the dataset bear all responsibility in case of a violation of right when the dataset was
created.

4 Files and file formats

The dataset contains the active and passive image pairs (provided as .jpg and .exr images), as well
as the ground truth disparities for each image (provided as .npy, .pfm and .exr files).

Jpg images: The jpg image format is a very popular, lossy image format, storing a colored image
with 8 bits per channels. We use this format to provide the color managed images in
display refered format (see Section 8). Jpg images can be loaded by any image application
or library.

Exr images: The exr image format [13] is a high dynamic range image format popular in the visual
effect industry. It uses a 16 bit or 32 bit floating-point value per channel. An exr image can

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Bench-
marks.

https://creativecommons.org/licenses/by/4.0/

contain multiple layers, each of which is made of one or multiple channels. This means
that a single file can contain both the left and right view for active and passive images,
as well as the disparity in floating-point format. Working with exr images can be slightly
more tedious than with traditional jpg or png images. Blender [8], as well as other image
processing or visual effects software such as Photoshop, Krita, Nuke, and Natron, can be
used to open and inspect exr images. While some image libraries can open exr images,
some do not support the layer system. When programming in C++, we recommend using
the official OpenExr library [6]. When using Python, we wrote our own tool to work with
exr images, which is available on GitHub under an open-source license [3].

Npy files: The npy file format is a format used by the numpy library to save and load multidimen-
sional arrays. It is one of the most convenient file format to pass floating point image data
to python. For convenience, we do provide the disparity map in the npy format.

Pfm files. The pfm file format is an old format to transfer floating points images. Writing a parser
for pfm files is straightforward. Also, many scientific image processing libraries can open
pfm files. We provide the disparity map in the pfm format, for convenience when using
lower level programming languages like C or C++.

5 Testing traditional non-learning methods on the Active-Passive SimStereo
dataset

Traditional non-learning methods are known to generalize very well on active stereo [14]. Compar-
ing their relative performances against deep learning methods is important to check whether or not
deep learning methods can outperform traditional methods.

Evaluated methods include traditional local matching [18] and semi-global matching[10]. We have
used a 9× 9 correlation window and a ZNCC cost function. For the semi-global matching method,
we used 8 directions for the cost aggregation, with the parameters P1 and P2 set to 0.001 and 0.01.

Table 1: Evaluation results of traditional non learning methods on passive and then active stereo
images.

Passive stereo images Active stereo images

Method RMSET ↓ MAET ↓ BAD0.5 ↓ BAD1 ↓ BAD2 ↓ BAD4 ↓ RMSET ↓ MAET ↓ BAD0.5 ↓ BAD1 ↓ BAD2 ↓ BAD4 ↓
Local matching [18] 28.10px 11.79px 49% 43% 37% 32% 24.25px 7.03px 20% 17% 16% 14%
Semis-global matching [10] 23.03px 8.95px 45% 37% 31% 26% 22.48px 6.47px 20% 17% 15% 14%

The results, reported in Table 1, show that traditional methods are unable to outperform a number
of the deep learning methods that have been analyzed in the main paper (even before finetuning).
For the RMSE and MAE metric, all deep learning methods outperform the traditional ones, but
this can be misleading as traditional methods can have very high errors for a few single mismatched
pixels. In contrast, deep learning methods tend to smooth out their solutions. For the BADN metrics,
traditional methods are able to outperform a limited set of older deep learning methods (that have
not been finetuned).

This shows that even though it is true that traditional methods perform well on active stereo, it does
not mean that deep learning models are not useful for active stereo.

6 Testing the methods finetuned with the Active-Passive SimStereo dataset
on real data

While our dataset is more aimed at evaluating the generalization abilities of deep learning models
across passive and active stereo, it could also be used by the community to train active stereo models.
One could thus evaluate whether our dataset can be used to improve the performances of deep
learning models on real active stereo images.

To this end, we used the Shapes dataset [12], a dataset of active stereo images of geometric shapes
cut in polystyrene. The CAD models of the shapes were then re-aligned with the images to generate
high quality ground truth disparities; see Figure 1.

2

(a) (b)

Figure 1: Left (a) and right (b) frames of an Image pair from the Shapes dataset with the outlined
CAD models aligned onto the real scene.

Finetuned methods were evaluated on the Shapes dataset, both with their original weights and with
the weights obtained after finetuning. We also finetuned and evaluated ActiveStereoNet [22], which
was originally trained on active stereo images, but in a self-supervised manner. Since ActiveStere-
oNet [22] and StereoNet [15] are related, we used the same loss as StereoNet to finetune ActiveStere-
oNet in a supervised manner. All other methods were trained, as described in the main paper, by
using the same loss and hyperparameters as originally used by the method authors.

Table 2: Evaluation of Fine-tuned methods on the Shapes dataset.

Shapes active stereo images

Method RMSET ↓ MAET ↓ BAD0.5 ↓ BAD1 ↓ BAD2 ↓ BAD4 ↓
ACVNet [21] (original) 1.86px 0.91px 43% 20% 9% 4%
ACVNet [21] (active stereo fine-tuned) 1.58px 0.63px 34% 9% 3% 2%
Cascade-Stereo [9] (original) 2.55px 1.47px 62% 38% 18% 8%
Cascade-Stereo [9] (active stereo fine-tuned) 1.61px 0.69px 38% 13% 5% 2%
StereoNet [15] (original) 4.72px 2.07px 64% 40% 19% 8%
StereoNet [15] (active stereo fine-tuned) 4.37px 1.94px 70% 48% 20% 6%
ActiveStereoNet [22] (original self-supervised) 8.47px 2.84px 62% 39% 20% 9%
ActiveStereoNet [22] (active stereo fine-tuned) 2.04px 1.07px 58% 30% 11% 4%

The results, reported in Table 2, show clearly that finetuning on our synthetic dataset allowed the
different models to improve their performances on real active stereo images, obtained with a Re-
alSense camera. Even ActiveStereoNet [22], which was originally trained for active stereo but in a
self supervised manner, see an improvement when trained in a supervised manner on our dataset.
StereoNet [15] is the only exception, with the RMSET , MAET and BAD4 metrics improving but the
BAD0.5, BAD1 and BAD2 metrics getting worse. This is due to the fact, as highlithed in the main
paper, that the refinement module of StereoNet struggles with active stereo. This, in turn implies
that the finetuning made the network focus more on large scale errors.

7 Impact of the dataset size on evaluating generalization ability

We are interested in checking if our Active-Passive SimStereo dataset is “sufficiently large”. In
practice, we say that a dataset is sufficiently large for the purpose of evaluating the generalization
ability of deep learning stereo models if the uncertainty associated with the size of the dataset is
negligible compared to the measure of interest. This can be measured by using bootstrapping [17],
a method where a subset of a sample is selected at random to estimate the variability of a statistical
estimator. This approach allows to get a confidence interval on our conclusions.

First, we want to check if the uncertainty due to the size of the dataset is negligible compared to
the relative variations of performances between active and passive stereo. To this end, we randomly
sample a subset T50% of the test set T and recompute the metrics of interest. Here, we work with
the MAE and BAD2 metrics, but the code provided with this supplementary material can compute
the values for any of the metrics we measured. We denote by M50% the metric M computed on

3

Table 3: Expected MAE and BAD2 variations between active and passive images, and within
passive or active images

MAE BAD2

Method R(Mpas,Mact) E[R(M,M50%)] passive E[R(M,M50%)] active R(Mpas,Mact) E[R(M,M50%)] passive E[R(M,M50%)] active

AANet 50% 8% 5% 59% 5% 6%
ACVNet 67% 16% 12% 56% 8% 9%
AnyNet 36% 7% 6% 30% 2% 2%
CREStereo 54% 8% 9% 73% 10% 10%
CascadeStereo 58% 11% 8% 41% 6% 7%
Deep-Pruner (best) 70% 13% 10% 70% 6% 9%
Deep-Pruner (fast) 59% 10% 9% 59% 5% 8%
GANet 61% 7% 6% 67% 5% 7%
GwcNet 65% 7% 7% 65% 4% 7%
HighResStereo 56% 12% 8% 58% 6% 9%
Lac-GwcNet 68% 11% 14% 69% 5% 10%
MobileStereoNet2D 53% 6% 8% 61% 4% 7%
MobileStereoNet3D 63% 7% 7% 66% 3% 7%
PSMNet 45% 7% 3% 39% 3% 4%
RAFT-Stereo 58% 11% 8% 57% 6% 8%
RealTimeStereo 39% 6% 6% 36% 3% 3%
SMD-Nets 65% 7% 10% 63% 4% 7%
SRHNet 62% 10% 8% 68% 4% 7%
StereoNet 56% 6% 5% 54% 3% 5%
ActiveStereoNet 75% 6% 5% 61% 4% 4%

T50% instead of T . Similarly, BAD250% refers to BAD2 measured on T50%. We then compute the
absolute relative variation between each metric M and M50% defined as:

R(M,M50%) =
|M −M50%|
|M |

. (1)

As M50% is a random variable, we need an estimator for R(M,M50%). To this end, we sam-
ple N different random T50% and use these to estimate the expected value E[R(M,M50%)] of
R(M,M50%). For our experiments, we choose N = 50. E[R(M,M50%)] gives an estimate of
the uncertainty of the value of M50% for a dataset that is half the size of our test set. Using the cen-
tral limit theorem, the uncertainty for the full test set of the value of M can be estimated by scaling
down E[R(M,M50%)] by a factor of 1/

√
2. We finally compare E[R(M,M50%)] to R(Mpas,Mact),

the absolute relative variation between the passive and active version of M . The results are reported
in Table 3.

The amplitude of R(Mpas,Mact) is much larger than the amplitude of E[R(M,M50%)] when M is
either MAE or BAD2. As such, our dataset can be seen as sufficiently large to enable the evaluation
of the generalization ability, from passive to active stereo, of deep learning models.

To determine whether the absolute values of the performance metrics are reliable, we analysed the
standard deviation

√
V ar[Mn%] of the estimator Mn%, where n is a variable parameter. We want to

check whether or not
√
V ar[Mn%] gets negligible compared to the metric M and if it tends towards

0 as n grows. We thus computed the value of
√

V ar[Mn%] for M being both MAE and BAD2 and
n equal to 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 99%. The results, reported in
Figure 2, show clearly that the variance of the estimator stabilizes already towards 0 when n = 50%
well below the variance of the n = 1% estimate. This shows that the dataset is large enough to get
stable estimates of the performances of the different methods on the metrics used for evaluation.

Another point to consider is whether or not the results remains coherent when the test set is re-
sampled. If the errors of all models are positively correlated, then selecting a test set that is designed
to be more or less challenging should impact all methods in a similar fashion. It turns out that
the metrics for each image, and consequently the differences between these metrics, are highly
correlated (see e.g., Table 4, which reports the Pearson correlation coefficients of the difference
between the passive and active MAE scores). A notable exception is CREStereo, which, while still
clearly positively correlated with all methods, is significantly less correlated with each method than
the other methods are correlated among themselves. This is probably due to the high performance
of CREStereo on fine details, that other methods struggle to reconstruct. Still, Table 4 shows that
resampling the test set would affect the performances of all methods in a similar fashion.

4

4px

3px

2px

1px

0px

Proportion of the test set subsampled

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

e
es

ti
m

at
or

1% 20% 40% 60% 80% 99%

(a) MAE

Proportion of the test set subsampled

0.0%

2.5%

5.0%S
ta

nd
ar

d
de

vi
at

io
n

of
 th

e
es

ti
m

at
or

1% 20% 40% 60% 80% 99%

7.5%

10.0%

12.5%

15.0%

17.5%

20.0%

(b) BAD2

Figure 2: Standard deviation of the MAE and BAD2 metrics as a function of the proportion of
images subsampled at random in the test set (obtained with the active version of the test set).

5

Table 4: Pearson correlation coefficients of the differences between passive and active MAE scores
on all images in T for all methods

Method

A
A

N
et

A
C

V
N

et

A
ct

iv
eS

te
re

oN
et

A
ny

N
et

C
R

E
St

er
eo

C
as

ca
de

St
er

eo

D
ee

pP
ru

ne
r

B
es

t

D
ee

pP
ru

ne
r

Fa
st

G
A

N
et

G
w

cN
et

H
ig

hR
es

St
er

eo

L
ac

-G
w

cN
et

M
ob

ile
St

er
eo

N
et

2D

M
ob

ile
St

er
eo

N
et

3D

PS
M

N
et

R
A

FT
-S

te
re

o

R
ea

lT
im

eS
te

re
o

SM
D

-N
et

s

SR
H

N
et

St
er

eo
N

et

Method

AANet 100% 70% 82% 74% 42% 74% 95% 82% 86% 92% 96% 96% 96% 78% 97% 93% 66% 81% 92% 83%
ACVNet 70% 100% 74% 84% 42% 92% 78% 91% 90% 80% 72% 76% 75% 83% 73% 66% 63% 82% 73% 67%
ActiveStereoNet 82% 74% 100% 77% 50% 75% 81% 80% 82% 83% 80% 83% 87% 76% 82% 72% 77% 86% 80% 76%
AnyNet 74% 84% 77% 100% 38% 91% 77% 91% 90% 82% 74% 79% 81% 87% 77% 60% 75% 85% 76% 75%
CREStereo 42% 42% 50% 38% 100% 36% 44% 38% 39% 52% 47% 47% 44% 33% 44% 40% 58% 40% 47% 49%
CascadeStereo 74% 92% 75% 91% 36% 100% 80% 92% 91% 81% 74% 81% 80% 82% 75% 66% 64% 85% 76% 77%
DeepPruner Best 95% 78% 81% 77% 44% 80% 100% 87% 89% 95% 97% 99% 96% 80% 94% 91% 64% 85% 92% 85%
DeepPruner Fast 82% 91% 80% 91% 38% 92% 87% 100% 95% 87% 84% 87% 87% 94% 84% 76% 66% 90% 78% 75%
GANet 86% 90% 82% 90% 39% 91% 89% 95% 100% 91% 86% 89% 91% 89% 89% 81% 62% 88% 85% 78%
GwcNet 92% 80% 83% 82% 52% 81% 95% 87% 91% 100% 94% 96% 95% 82% 94% 84% 70% 88% 91% 84%
HighResStereo 96% 72% 80% 74% 47% 74% 97% 84% 86% 94% 100% 97% 95% 78% 96% 93% 64% 82% 90% 82%
Lac-GwcNet 96% 76% 83% 79% 47% 81% 99% 87% 89% 96% 97% 100% 97% 82% 95% 89% 67% 86% 93% 87%
MobileStereoNet2D 96% 75% 87% 81% 44% 80% 96% 87% 91% 95% 95% 97% 100% 83% 96% 89% 67% 90% 90% 85%
MobileStereoNet3D 78% 83% 76% 87% 33% 82% 80% 94% 89% 82% 78% 82% 83% 100% 81% 72% 64% 88% 74% 69%
PSMNet 97% 73% 82% 77% 44% 75% 94% 84% 89% 94% 96% 95% 96% 81% 100% 92% 66% 82% 91% 79%
RAFT-Stereo 93% 66% 72% 60% 40% 66% 91% 76% 81% 84% 93% 89% 89% 72% 92% 100% 50% 73% 82% 73%
RealTimeStereo 66% 63% 77% 75% 58% 64% 64% 66% 62% 70% 64% 67% 67% 64% 66% 50% 100% 71% 69% 62%
SMD-Nets 81% 82% 86% 85% 40% 85% 85% 90% 88% 88% 82% 86% 90% 88% 82% 73% 71% 100% 81% 80%
SRHNet 92% 73% 80% 76% 47% 76% 92% 78% 85% 91% 90% 93% 90% 74% 91% 82% 69% 81% 100% 83%
StereoNet 83% 67% 76% 75% 49% 77% 85% 75% 78% 84% 82% 87% 85% 69% 79% 73% 62% 80% 83% 100%

8 The question of color management

An important point which is often overlooked in computer vision datasets is the question of color
management. Color management, in computer science, generally refers to transformations across
color representation models (e.g., RGB, HSV, HSL, and XYZ). It can also refer to the collection of
processes aiming at preserving the appearance of images across different devices (e.g., linear RGB
vs. perceptual RGB) [19].

Modern pipelines for computer-generated imagery, including the one used for our simulations, are
constructed around a scene-referred color space; see Fig. 3a. In other words, the numerical value
that encodes a color is directly proportional to the light intensity in the scene. However, the image
formats used for exchange and storage generally use a display-referred color space; see Fig. 3b).
In other words, the numerical value encoding a color is proportional to the command that will be
sent to the display device, either a screen or a projector. As the dynamic range available on such
display devices is far lower than in the acquired scenes, images need to undergo a process called
tone mapping, which applies a non-linear transformation to map the scene-referred color space to
the display-referred color space [19].

We chose to keep a scene-referred color space for our dataset as it preserves more information.
The display-referred images are also available with the published dataset. For the evaluation, we
recommend choosing the color space that matches the intended application of the method. A method
aimed at processing the raw signal from a camera has to be evaluated on the scene-referred images

(a) (b)

Figure 3: The same image in (a) scene referred colors (shown as if display referred) and (b) in
display referred colors.

6

Figure 4: The interface of our simulation setup in Blender.

while methods taking usual image files as input need to be tested on display-referred images. When
benchmarking existing methods on our dataset, we evaluated both color spaces and kept the best
performing one for each of the methods we tested.

We rely on OpenColorIO [20] to perform the different color transformations between scene and
display-refereed colors. OpenColorIO is an open source library available online [5]. The library
requires configuration files encoding the different color transformations. We used the configuration
files provided with the open source software Blender [8] (on version 2.93, but the files provided with
the newer Blender 3.0 and 3.1 are very similar and are thus usable as well). Our post-processing
code is also publicly available along with the dataset.

9 Creating your own simulated images

We provided our base simulation Blender file on IEEE dataport to let interested readers create their
own simulated active-passive stereo images. This section introduces the pipeline in the file. Here,
we assume a certain level of familiarity with the Blender software.

The assets need to be imported into the main 3D workspace (Fig. 4a) where the scene can be com-
posed. Next to the 3D workspace, you can find the text editor with an internal README file opened
(Fig. 4b), presenting the main pipeline.

There are a few parameters that need to be checked before rendering in the properties editor (Fig. 4c).
Make sure you:

1. are rendering with the Cycles rendering engine,
2. have multi-view rendering enabled and set the rendering folder and filename template to

sensible values,
3. render to Multilayer EXR images, and tick to have a single file with multiple views instead

of one file per view.

Those parameters are pre-selected for you, but future versions of Blender might replace some of the
default options. You might also want to tweak your rendering setting. The generated active pattern
can interfere with the denoising systems in Cycles, so make sure to turn them off.

Rendering with a Ray-tracing engine can be quite slow. Table 5 reports average rendering times
measured on our hardware configuration (NVIDIA GeForce RTX 2080 Ti GPU and Intel i9-10900X
CPU) for a subset of frames. Rendering times may vary depending on the complexity of the scene
at hand. The latest version of the Cycles rendering engine, Cycles X, support either optix or cuda

7

Table 5: Typical rendering time for 640× 480 simulated images on an NVIDIA GeForce RTX 2080
Ti GPU and Intel i9-10900X CPU

Cycles X (optix) Cycles X (cuda) Cycles X (cpu)

Passive frame 0m50s +/- 09s 2m48s +/- 0m26s 9m37s +/- 0m49s
Active frame 1m19s +/- 19s 5m25s +/- 0m51s 16m17s +/- 1m17s
Total (2x passive + 2x active) 4m18s +/- 56s 16m26s +/- 2m34s 51m48s +/- 4m12s

as back-end on the GPU. We recommend you use GPU rendering. If your GPU supports it, we
recommend you use optix.

When you import your assets to create your scene, make sure to place them in the Scene collection
in the outliner (Fig. 4d) as other collections might be turned on or off in certain rendering layers. If
you want to edit your light for passive stereo, make sure to jump to the “Simulated NIR” view layer
(Fig. 4e). If you want to go back to the visible light layer, return to the “RGB” view layer.

If you want to move or animate the camera, move the “Camera” empty object and not the three
children “Camera L”, “Camera C” and “Camera R”. This will keep the relative positions of the
different cameras consistent.

Once you are happy with your composition, you can render a single image or an image sequence
with a moving cameras. You then just need to post-process them with the “post process exr.py”
Python script provided aside the simulation file.

We will also release additional data packs in the future, as we simulate more images for additional
applications. At the time of writing, a first data pack with 7500 additional images from 5 scenes has
been released.

10 Long-term storage

We are using IEEE dataport [4] for the long-term storage of the dataset. To alleviate the issue of
the required subscription to access the data, the Active-Passive SimStereo dataset [11] has been
published in open access. The only requirement to download the files is to get an IEEE account,
which is free.

This should ensure that the Active-Passive SimStereo dataset and the associated tools will stay avail-
able in the foreseeable future.

References
[1] Blender market. https://blendermarket.com/, . Accessed: 2022-05-31.

[2] Blendswap. https://www.blendswap.com/, . Accessed: 2022-05-31.

[3] Exr tools. https://github.com/french-paragon/exr-tools. Accessed: 2022-05-31.

[4] IEEE dataport. https://ieee-dataport.org. Accessed: 2022-05-31.

[5] Opencolorio. https://opencolorio.org/. Accessed: 2022-05-31.

[6] Openexr. https://www.openexr.com/. Accessed: 2022-05-31.

[7] Michael W Carroll. Creative commons and the new intermediaries. Mich. St. L. Rev., page 45,
2006.

[8] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foun-
dation, Stichting Blender Foundation, Amsterdam, 2018. URL http://www.blender.org.

[9] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan. Cascade
cost volume for high-resolution multi-view stereo and stereo matching. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

8

https://blendermarket.com/
https://www.blendswap.com/
https://github.com/french-paragon/exr-tools
https://ieee-dataport.org
https://opencolorio.org/
https://www.openexr.com/
http://www.blender.org

[10] H. Hirschmuller. Accurate and efficient stereo processing by semi-global matching and mutual
information. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, pages 807–814 vol. 2, 2005.

[11] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, and Mohammed Bennamoun. Active-
passive simstereo, 2022. URL https://dx.doi.org/10.21227/gf1e-t452.

[12] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, and Mohammed Bennamoun. Bayesian
learning for disparity map refinement for semi-dense active stereo vision. unpublished, N.D.

[13] Florian Kainz, Rod Bogart, and Piotr Stanczyk. Technical introduction to openexr. Industrial
light and magic, 21, 2009.

[14] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and Achintya Bhowmik. Intel
realsense stereoscopic depth cameras. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, July 2017.

[15] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh Kowdle, Julien Valentin, and
Shahram Izadi. Stereonet: Guided hierarchical refinement for real-time edge-aware depth
prediction. In Proceedings of the European Conference on Computer Vision (ECCV), Munich,
Germany, pages 8–14, 2018.

[16] Marc Levoy, J Gerth, B Curless, and K Pull. The stanford 3d scanning repository. URL
http://www-graphics. stanford. edu/data/3dscanrep, 5(10), 2005.

[17] Ian Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers of
dropout. In NIPS workshop on bayesian deep learning, volume 192, 2016.

[18] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International journal of computer vision, 47(1):7–42, 2002.

[19] Jeremy Selan. Cinematic color: From your monitor to the big screen. In ACM SIGGRAPH
2012 Courses. Association for Computing Machinery, 2012. ISBN 9781450316781.

[20] Doug Walker, Carol Payne, Patrick Hodoul, and Michael Dolan. Color management with
opencolorio v2. In ACM SIGGRAPH 2021 Courses, SIGGRAPH ’21, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450383615.

[21] Gangwei Xu, Junda Cheng, Peng Guo, and Xin Yang. Attention concatenation volume for
accurate and efficient stereo matching. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12981–12990, 2022.

[22] Yinda Zhang, Sameh Khamis, Christoph Rhemann, Julien Valentin, Adarsh Kowdle, Vladimir
Tankovich, Michael Schoenberg, Shahram Izadi, Thomas Funkhouser, and Sean Fanello. Ac-
tivestereonet: End-to-end self-supervised learning for active stereo systems. In Proceedings of
the European Conference on Computer Vision (ECCV), September 2018.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In section 3 we discuss the
main difference of both real and simulated stereo datasets, explain why we choose
to go with a simulated dataset, explain why we choose to work with physical based
rendering to mitigate those issues. In the same section we also discuss why we choose
to limit the resolution of our dataset and why our dataset has the size of a benchmark
dataset instead of a training dataset.

9

https://dx.doi.org/10.21227/gf1e-t452

(c) Did you discuss any potential negative societal impacts of your work? [No] The main
applications of active stereo vision we are aware of are outlined in our introduction.
While those applications can have a negative societal impact, our work proposes a
benchmark to evaluate the methods aiming at that goal. Discussing the negative im-
pacts of those applications thus feels to be out of the scope of this work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] We bench-
marked only methods for which the code is publicly available. We do not control the
repository of the models we benchmarked but in the supplementary material we gave
links to each github repository, including the specific commit we used for benchmark-
ing.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We do provide a test/train split for our dataset.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We do report estimates of the variability of predictions
with our benchmark by using bootstrapping, results are discussed in section 5 of the
supplementary material.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A] Our benchmark do not account
for timing, so this is not relevant.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [No] Most of our assets

are bought for commercial use or published under CC0, so citations are not required.
We did provide a citation for the Stanford 3D models, for which it was required, in the
supplementary material.

(b) Did you mention the license of the assets? [Yes] Yes, in section 2 of the supplementary
material.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Our dataset is publicly available at https://dx.doi.org/10.21227/gf1e-t452.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [Yes] It is assumed to be obvious from the license of the assets,
which are discussed in the supplementary material: for the commercial assets this is
part of the selling contract. For CC0 assets the authors choose to publish their assets
under CC0.

(e) Did you discuss whether the data you are using/curating contains personally identi-
fiable information or offensive content? [No] We do not discuss those points in the
paper or supplementary material, but we made sure that our simulated scenes do not
look offensive (e.g., no obscene or culturally sensitive content). For example we ad-
hered to the guidelines given in the Stanford 3D repository for artifacts of religious or
cultural significance [16].

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

10

https://dx.doi.org/10.21227/gf1e-t452

	Organisation of this document
	License
	Author statement in case of violation of rights
	Files and file formats
	Testing traditional non-learning methods on the Active-Passive SimStereo dataset
	Testing the methods finetuned with the Active-Passive SimStereo dataset on real data
	Impact of the dataset size on evaluating generalization ability
	The question of color management
	Creating your own simulated images
	Long-term storage

