When Emotional Stimuli meet Prompt Designing: An Auto-Prompt Graphical Paradigm

Anonymous ACL submission

Abstract

With the development of Large Language Models (LLM), numerous prompts have been proposed, each with a rich set of features and their own merits. This paper summarizes the prompt words for large language models (LLMs), categorizing them into stimulating and framework types, and proposes an Auto-Prompt Graphical Paradigm(APGP) that combines both stimulating and framework prompts to enhance the problem-solving capabilities of LLMs across multiple domains, then exemplifies it with a framework that adheres to this paradigm. The framework involves automated prompt generation and consideration of emotion-stimulus factors, guiding LLMs in problem abstraction, diversified solutions generation, comprehensive optimization, and self-verification after providing answers, ensuring solution accuracy. Compared to traditional stimuli and framework prompts, this framework integrates the advantages of both by adopting automated approaches inspired by APE work, overcoming the limitations of manually designed prompts. Test results on the ruozhiba and BBH datasets demonstrate that this framework can effectively improve the efficiency and accuracy of LLMs in problem-solving, paving the way for new applications of LLMs.

004

006

007

011

012

017

019

027

		Graphical	Robust	Stimulating	Automation
	Framework Prompt	(000)	000)	<u>000</u> ¢	
	Stimulating Prompt			0000	
	Automatic Prompt Engineer	 ;	@ ;	<u> </u> ,	0000
	Auto-Prompt Graphical Paradigm	0000	<u></u>	0000)	0000)

Figure 1: Performance comparison between traditional prompt and the Auto-Prompt Graphical Paradigm

1 Introduction

Since the advent of large language models, they have helped humanity solve numerous problems, liberating many from mundane tasks. Consequently, efforts have been made to leverage these models to tackle challenges that are difficult for humans, yielding a series of achievements. Large language models not only demonstrate an understanding of human language but also, by virtue of this understanding, offer insights into the world's knowledge underlying language. As a result, they have been applied to address problems beyond text and across multiple modalities. 029

030

031

033

034

035

036

037

039

041

042

045

046

047

048

050

051

054

057

059

060

061

062

063

064

065

067

068

In the quest to unleash the potential of large language models, CoT (Wei et al., 2022) introduced the concept of progressive reasoning, which advocates for the gradual engagement of these models in cognitive processes. This idea has been inherited and evolved by subsequent works such as PS-CoT (Wang et al., 2023), ToT (Yao et al., 2023), and GoT (Besta et al., 2023), expanding the cognitive architecture of large language models and rendering it highly flexible. Specifically, PS-CoT (Wang et al., 2023) extends a single CoT into multiple paths, while the backtracking mechanism proposed by ToT (Yao et al., 2023) endows large language models with fault tolerance during problem-solving. Additionally, GoT (Besta et al., 2023) introduces a diverse range of selectable operations for large language models in the problemsolving process. These problem-solving frameworks are all implemented through prompts, categorized as Framework Prompt. However, these approaches necessitate manual prompt design for each operation. To address the challenge of prompt design, the APE (Zhou et al., 2023) work proposes an automated prompt design method which entrusts the design of prompts to the LLMs. Unfortunately, this method fails to guide large language models to utilize flexible structures like those in GoT.

Figure 2: An example for using APGP to solve a problem, which in Chinese is "How to prevent falling asleep when counting the number of sheep for the herder? ". The gradually deepening blue boxes in the picture are the answers from the AI, and the green boxes are the guiding prompt words from the auto-prompt graphical paradigm. Each pair of blue and green boxes represents an interaction with the AI, with the execution order being to execute the one on the left first and then the one on the right.

Beyond the problem-solving frameworks of large language models, numerous studies have indicated that these models exhibit some human-like characteristics. "Let's think step by step" encourages large language models to consider problems more meticulously (Kojima et al., 2022), whereas "Take a deep breath and work on this problem stepby-step" can enhance the performance of large language models even better (Yang et al., 2024). Large language models demonstrate positive responses to prompts encouraging encouragement, emphasis, threats, and other types (Li et al., 2023). This suggests that large language models trained on human corpora exhibit better responses to instructions containing human emotions, further highlighting their sensitivity as multi-modal tools for language and underlying world knowledge. Moreover, emotional stimuli play significant roles in decision-making, competitive sports performance (Lazarus et al., 2000), academic domains (Pekrun et al., 2002), and other areas, broadening the application of large language models. These essential prompts are implemented through prompts, categorized as Stimulating Prompt.

The problem-solving framework prompts guide large language models, yet their generalizability is constrained by task-specific characteristics. Stimulating prompts that leverage the human-like emotional characteristics of large language models often do not need to be altered based on tasks. However, they cannot provide sufficiently comprehensive frameworks for large models to solve problems effectively. The combination of the universality of stimulating prompts and the task-specific features of framework prompts can more effectively exploit the latent capabilities of large language models.

097

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

Combining the characteristics of Stimulating prompts and Framework prompts, we integrate the two while addressing the limitations of framework prompts. Referring to the APE approach (Zhou et al., 2023), we propose a universal **auto-prompt graphical paradigm**(**APGP**) that considers human emotional stimuli and incorporates an automatic prompt-filling function which can automatically fill in the prompts required by the Framework Prompt. This paradigm aims to enhance the ability of large language models to solve problems across multiple domains. Subsequently, we provided a auto-prompt graphical framework to prove this paradigm.

Our main contributions are as follows:

 We integrated traditional prompts into two categories: Stimulating Prompt and Framework
 Prompt, then devised a new type of framework prompts with emotional stimuli, combin 122 123 124 125

- 126
- 127 128
- 129
- 130
- 131 132
- 133 134
- 135

136

137 138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

160

161

162

163

164

165

166

168

169

170

2.1 Prompt-based LLM Reasoning

2

approach.

Related Work

types.

In the realm of advancing large language models (LLMs), pioneering frameworks like Chain-of-Thought Prompting (CoT), Plan-and-Solve Prompting (PS), "Tree of Thoughts" (ToT), and Graph of Thoughts (GoT) (Wei et al., 2022; Wang et al., 2023; Yao et al., 2023; Besta et al., 2023) have revolutionized problem-solving capabilities. Chainof-Thought Prompting (CoT) (Wei et al., 2022) enhances the problem-solving abilities of large language models (LLMs) by guiding them to simulate human-like step-by-step reasoning processes in their input prompts, resulting in more accurate and coherent outputs even without task-specific training. Plan-and-Solve Prompting (PS) (Wang et al., 2023) improves large language models' (LLMs) performance on multi-step reasoning tasks, outperforming Zero-shot-CoT and rivaling manuallyguided CoT methods, highlighting LLMs' potential for reasoning without manual examples. The "Tree of Thoughts" (ToT) (Yao et al., 2023) framework empowers large language models to make thoughtful decisions by exploring multiple reasoning paths and self-assessing decisions within a tree-like structure of coherent textual units. Graph of Thoughts (GoT) (Besta et al., 2023) models the reasoning process of large language models (LLMs) as an arbitrary graph structure, significantly improving LLMs' performance on complex tasks. It enhances task quality and reduces costs, demonstrating advantages in various real-world applications and advancing LLMs' reasoning capabilities towards human-like thinking patterns.

ing the advantages of both traditional prompt

• We designed an auto-prompt graphical

paradigm(APGP) using the new type of

prompt, which signifies a brand-new paradigm

for prompt utilization. Then we offered a

• We tested the framework on datasets such as

ruozhiba (Bai et al., 2024) and BBH (Suz-

gun et al., 2022), yielding favorable results.

Furthermore, we conducted ablation experi-

ments to demonstrate the effectiveness of our

framework to confirm this paradigm.

2.2 Emotion-Enhanced LLM Reasoning

171 In recent studies, researchers have explored var-172 ious techniques to improve the capabilities of large language models (LLMs). For instance, (Li et al., 2023) examines how large language models (LLMs) understand and respond to emotional stimuli, demonstrating their capability to comprehend emotional intelligence and improve performance with emotion prompts, paving the way for enhanced interaction between LLMs and human emotional intelligence. "Step-Back Prompting" (Zheng et al., 2023) enhances large language models' (LLMs) reasoning capabilities in complex tasks by guiding them through abstract thinking processes, resulting in notable performance improvements across diverse challenging tasks such as STEM, knowledge question answering, and multi-hop reasoning. Chain-of-Verification (CoVe) method aims to mitigate the occurrence of "hallucination" in generated text by large language models, where seemingly plausible but factually incorrect information is produced. The "Rephrase and Respond" (RaR) (Deng et al., 2023) method aims to enhance large language models' (LLMs) comprehension and responses to questions by allowing them to autonomously rephrase and expand posed questions, resulting in improved accuracy.

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

2.3 Graph-Dependency LLM Reasoning

The Automatic Prompt Engineer (APE) (Zhou et al., 2023) method enhances large language models (LLMs) by automatically generating and selecting prompts. It outperforms previous LLM baselines on various tasks and approaches humangenerated prompts' performance. Extensive experiments demonstrate that prompts generated by APE outperform previous LLM baselines on 24 out of 24 instruction induction tasks and 17 out of 21 curated BIG-Bench tasks, reaching or approaching the performance of prompts generated by human annotators.

3 Methodology

3.1 Overview

As illustrated in fig. 3, our framework is a promptfree approach, which not implying the absence of prompts, but rather eliminating the need for manually designed prompts to address problems.

The prompts in the framework consist of two parts: The first part guides the LLM in analyzing the problem, establishing the framework's structure, directing the LLM to propose different research approaches for different problems, and assessing the LLM's responses to determine the next

Figure 3: A Schematic Representation of the Stimuli Graphical Process within a Problem-Solving Framework.

course of action. The second part of the prompts can be provided by the LLM under sufficient emotional encouragement and guidance.

222

234

236

239

240

241

242

243

245

247

248

251

We will refer to the first part of the prompt as the immutable component, and refer to the prompt given by the LLM in the second part as the variable component. In the construction of the immutable components, termed as "fixed prompts", careful consideration was given to the diverse responses of the LLMs to different emotional stimuli. Notably, LLMs exhibit significantly positive responses to prompts related to encouragement and praise. Consequently, in the fixed prompts, a friendly and encouraging tone was adopted wherever feasible. Moreover, considering the LLMs' inclination towards exclamation marks and capitalized words, special attention was paid to the design of prompts requiring emphasis, employing relevant techniques to enhance their effectiveness.

As shown in algorithm 1, our method consists of the following steps:

 After receiving the problem, the first step is to prompt the LLM to provide a clear definition of the problem. This method, inspired by the "Take a Step Back" and "Rephrase and Respond" approaches, allows the large model to have a clearer understanding of the problem. By analyzing the problem at an abstract level and providing advanced guidance, the LLM can then proceed to solve the problem.

_							
1	Algorithm 1: Stimuli Graphical Processor						
	Input: Description of the problem P_{desc}						
	Output: The answer to the question Ans						
	// Abstract the problem						
1	$\mathbf{P}_{def} \leftarrow \text{Definite}(\mathbf{P}_{desc})$						
	<pre>// Generate three solutions</pre>						
2	$\mathbf{S}_1, \mathbf{S}_2, \mathbf{S}_3 \leftarrow \text{Generator}(\mathbf{P}_{def})$						
	<pre>// Aggregrate the best solution</pre>						
3	$\mathbf{S}_{Best} \leftarrow \operatorname{Aggregator}(\mathbf{P}_{def}, \mathbf{S}_1, \mathbf{S}_2, \mathbf{S}_3)$						
	<pre>// Get answer by the solution</pre>						
4	$\mathbf{Ans} \leftarrow \operatorname{Get}_{\operatorname{Answer}}(\mathbf{P}_{def}, \mathbf{S}_{Best})$						
	// Validate the answer						
5	$Success_Flag, \mathbf{S}_{Final} \leftarrow Validate(\mathbf{P}_{def}, \mathbf{Ans})$						
6	if Success_Flag then						
7	return Ans						
8	else						
9	$Ans_{Final} \leftarrow Get_Answer(P_{def}, S_{Final})$						
	return Ans_{Final}						
10	end						

2. Once the formal definition of the problem is obtained, the LLM is tasked with generating three potential solutions. Here, we employ the conventional generation operation of chain-ofthought, generating multiple solutions to ensure the fault tolerance of the LLM. If one of the generated multiple solutions is obviously poor, or the shortcomings of one solution can be made up for by other solutions, then they can learn from each other. 252

253

254

255

256

257

258

260

261

262

263

264

265

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

283

- 3. After obtaining three potential solutions, the LLM combines them to generate the best solution, leveraging the strengths of each solution. Unlike traditional framework prompt methods that use scoring or voting to select the best solution, we recognize that thoughts can often reference and complement each other, collectively forming the optimal solution. This introduces a new thought aggregation approach.
- 4. With the final solution obtained, the large model then utilizes it to address the problem and provide an answer.
- 5. After obtaining the answer, the model is required to validate it, carefully considering whether the answer is correct. Generally speaking, as the number of parameters of LLM increases, its performance will become better and better, but for some lesser known torso and tail distribution (Sun et al., 2023) facts, LLM does not have a correct understanding of them, but will construct some text that appears reasonable but is actually wrong, which is the hallucination phenomenon of

- 290 291

- 302 303

310

- 311
- 312 313
- 314

315 316

317 318

321

322 323

327

325

329

333

LLM. This validation process, inspired by the CoVe approach in stimulus-based prompting, reduces the likelihood of hallucinations by the LLM.

6. Upon observing the validation results, if the LLM successfully solves the problem, the answer is outputted. If the validation results indicate failure, the LLM is prompted to generate new solutions based on the erroneous solution and then readdress the problem accordingly. This approach borrows from the "TP" (Yu et al., 2023) technique, leveraging past experiences to aid in resolving current issues. If the validation process itself fails, the answer obtained in step four is returned directly.

3.2 Definition

When tackling complex problems with LLMs, multiple steps are often required (Wei et al., 2022). However, errors occurring at any stage of this process can easily accumulate throughout the multiple steps (Yu et al., 2023), potentially leading to catastrophic consequences. To mitigate this, we employ the "take a step back" (Zheng et al., 2023) technique, which involves first rephrasing the problem and simplifying it through a basic abstraction. This abstraction allows the LLM to grasp the essence of the problem, disregarding its details to avoid potential issues caused by intricacies.

3.3 Get solutions and Aggregate

In works like Plan-and-Solve (Wang et al., 2023), CoT (Wei et al., 2022) at.al., we observed that prompting LLMs to propose problem-solving plans before implementing them can stimulate their problem-solving abilities.

When prompting LLMs to devise solutions, we require them to propose three different approaches. This multiplicity of options provides LLMs with more choices when solving problems.

After obtaining three distinct proposals, our framework mandates LLMs to merge these approaches. Traditional aggregate is divided into two types: vote and score, among which vote is for the LLM to vote and select the thought with the most votes; while score is to score multiple thoughts, and select the thought with the highest score after sorting the scores. The vote method used by the traditional aggregate method may encounter the situation of a tie, and dealing with the situation of

a tie requires extra tokens; the score method used by the traditional aggregate requires the LLM to be more sensitive to numbers, and the processing of numbers has always been the weakness of the LLM. Unlike conventional methods such as GoT (Besta et al., 2023), which directly filter results through voting or scoring operations-limited by LLMs' numerical abilities-our framework's merging operation entails LLMs synthesizing the advantages and disadvantages of the three proposals to form a comprehensive solution. This approach resembles biological hybridization (Dobzhansky, 1937), leveraging the diversity and distinct focuses of different methods. It's a brand-new type of aggregation operation.

334

335

336

337

338

339

340

341

343

344

345

346

347

348

349

350

351

352

353

354

355

357

358

359

360

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

381

382

3.4 Get solutions and Validate

After obtaining the answer, our framework does not rush to output it. Instead, we utilize the LLM's capability to evaluate the answer, verifying if it successfully resolves the problem. In social sciences, due to differing subjective experiences, the perception of the same event may be biased. Similar to ensuring mutual understanding through repetition in human conversation, we adopt this idea by having the LLM validate the previously obtained answer. This effectively creates two independent LLMs, akin to aligning perceptions between speakers and listeners. A positive validation indicates that the answer transcends individual perspectives, garnering broader acceptance.

Upon successful validation, we directly output the answer. Otherwise, we extract the experience from the incorrect answer and generate a better solution, using it to derive a new response. Here, we draw inspiration from TP methodology, employing past experiences in LLM tasks to aid in current problem-solving. In abstract terms, this also realizes the functionality of backtracking during traversal processes in graph structures: On the graph structure, it returns to the node of getting the answer.

4 **Experiments**

Through this framework, we applied the GPT-3.5turbo model to the Ruozhiba (Bai et al., 2024) and BIG-Bench Hard (Suzgun et al., 2022) datasets. The framework's usage involves iterative interactions with the LLM, where each interaction consists of feeding text input to the LLM and parsing the LLM's response.

4.1 Datasets

384

393

400

401

402

403

404

405

406 407

411

413

414

417

419

420

421

422

423

424

425

426

427

428

429

430

431

Ruozhiba. The Ruozhiba dataset is a distinctive Chinese natural language processing dataset originating from the "Ruozhiba" community on Baidu Tieba, a Chinese online forum where members exchange ideas that are both peculiar and tinged with logic, filled with a wealth of brain teasers and metaphorical phrases. It consists of 500 post titles with the most likes, from which instructional prompts are selected, filtering out declarative or unanswerable content as well as harmful information. For these prompts, replies generated by humans or GPT-4 are collected, and GPT-4's responses are manually reviewed to ensure accuracy, resulting in 240 sets of high-quality (question, response) pairs. These data contain elements such as puns, polysemy, causal inversion, and homophones, designed with logical traps that pose challenges to both humans and AI. Due to its uniqueness and complexity, the Ruozhiba dataset demonstrates tremendous potential in enhancing AI models' logical reasoning and understanding of complex Chinese language structures. Experiments have shown that LLMs fine-tuned on the Ruozhiba dataset exhibit exceptionally superior performance.

BIG-Bench-Hard. The BIG-Bench Hard (BBH) 408 subset is derived from the original BIG-Bench eval-409 uation suite, focusing on tasks that pose challenges 410 to existing language models. BBH consists of 23 tasks, and during the creation of the BBH dataset, 412 researchers followed specific filtering criteria, including the number of task examples, task types, and performance of previous models. This dataset 415 aims to advance the performance of language mod-416 els on complex reasoning tasks and provides a valuable benchmark for future research efforts. 418

4.2 Evaluation Metrics

Traditional approaches often employ string methods to determine if the output of an LLM is correct. Considering the method of extracting answers from LLM outputs using string methods and comparing them with correct answers may lead to the following issues:

- High format requirements: This method requires precise formatting of LLM outputs, which may not always be consistent or predictable.
- Potential extraction of incorrect answers: LLMs may occasionally provide explanations

for why incorrect answers are wrong, and ex-432 tracting answers using string methods could 433 inadvertently capture these explanations in-434 stead of the correct answers. 435

 Lack of definite correct answers: Many questions in natural language processing tasks do not have a single correct answer, making it challenging to determine the correctness of LLM outputs solely based on string matching.

Given these potential issues, relying solely on string extraction methods for answer evaluation may not be ideal, and alternative approaches, such as leveraging the judgment capabilities of the LLM itself, may be more suitable for accurate answer assessment.

4.3 Results

Status	Count	Ratio
Fail	91	37.92%
Sucess	149	62.08%

Table	1:	Result	of	Ruozhiba
-------	----	--------	----	----------

Ruozhiba. As shown in table 1, Our framework 448 achieved an accuracy of 62.08% on the Ruozhiba 449 dataset. In fact, the Ruozhiba dataset poses a sig-450 nificant challenge to any natural language process-451 ing system due to its unique linguistic phenomena. 452 The dataset is replete with Chinese-specific puns, 453 ambiguities, and homophones, which are very com-454 mon in the Chinese context but constitute a notable 455 barrier for models like GPT-3.5-turbo, which are 456 primarily trained on English corpora. Despite this, 457 GPT-3.5-turbo has demonstrated commendable per-458 formance when dealing with the Ruozhiba dataset. 459 This achievement not only proves the framework 460 taps into LLM's powerful language understand-461 ing and generation capabilities but also shows its 462 adaptability when faced with complex language 463 structures. However, this accomplishment does not 464 mean that GPT-3.5-turbo has fully mastered all the 465 nuances of the Chinese language, and there are still 466 limitations in its understanding and generation of 467 Chinese content. Future research can continue ex-468 ploring how to enhance the model's sensitivity and 469 accuracy towards the Chinese context, as well as 470 how to better utilize Chinese datasets for training 471 and optimizing the model. 472

436

437

438

439

440

441

442

443

444

Figure 4: Result of BIG-Bench-Hard. This result includes 23 sub-tasks in BBH, a total of 27 sub-datasets, covering multiple aspects, with the job of determining whether the output answers are correct being accomplished by LLM.

BIG-Bench-Hard. The BBH dataset incorporates knowledge from various domains such as world knowledge, natural language understanding, logical reasoning, and mathematics. As illustrated in fig. 4, the training results of our framework on the BBH dataset demonstrate outstanding performance in tasks related to world knowledge, natural language understanding, and logical reasoning. However, there is still room for improvement in handling mathematical problems and overly complex world knowledge.

4.4 Ablation Study

473

474

475

476

477

478

479

480

481

482

483

484

Our framework is composed of two integral com-485 ponents: an immutable component that guides 486 the contemplation of the Large Language Models 487 (LLMs) and a mutable component that is gener-488 ated by the LLMs themselves. The primary fo-489 cus of our experimental investigation is on the im-490 mutable component to substantiate the efficacy of 491 492 the framework. This immutable component encompasses both Stimulating Prompt and Framework 493 Prompt. Given that the construction of Framework 494 prompts also integrates the principles of Stimulat-495 ing Prompts, these Framework Prompts are indis-496

pensable and cannot be omitted.

Consequently, we conducted an experiment on the BBH dataset under identical settings, but with a crucial modification: we removed the Stimulating Prompts from the framework. These prompts, characterized by their uppercase formatting, actively encourage and steer the LLMs' thought processes. By eliminating these elements, we aimed to isolate and assess the impact of the Framework Prompts on the overall performance of the LLMs. 497

498

499

500

501

502

504

505

506

507

508

509

510

511

512

From fig. 5, we can infer that, under identical conditions, the comprehensive effectiveness of using our framework surpasses that of not using it. This is sufficient evidence to validate the effectiveness of our framework.

5 Conclusion

This study categorizes traditional prompts into513two types: Stimulating Prompts and Framework514Prompts. It then introduces a novel prompt that515combines the advantages of both, automating its516design with LLMs to form the Auto-Prompt Graph-517ical Paradigm(APAG). An general Auto-Prompt518Graphical Framework(APAF) is proposed as an in-519

Figure 5: Comparison of results using Stimulating Prompts and without Stimulating Prompts on the BBH dataset.

stance of this paradigm, significantly enhancing the performance of Large Language Models (LLMs) in handling multi-domain issues. The framework fully leverages the strengths of both types of prompts, automating the prompt design process, guiding LLMs in conducting in-depth problem analysis, and optimizing solutions to ensure accuracy. Test results on the Ruozhiba and BBH datasets validate the framework's effectiveness, demonstrating LLMs' immense potential in complex problem-solving. Additionally, ablation studies confirm the efficacy of this paradigm. This success not only encapsulates the current state of prompt development but also introduces a new paradigm, illustrated with an example framework. Future work can further refine this paradigm, propose better frameworks, and greatly advance the application of LLMs.

6 Limitations

Based on the classification of prompts in this paper,
we integrate the advantages of two types of prompts
and achieve auto-prompt graphical paradigm design. Consequently, we propose a graph-based
problem-solving framework that maximizes the
positive response of LLMs to emotional stimuli.
Additionally, we introduce a method capable of
determining the correctness of LLM outputs on
any dataset. Through experiments and ablation
studies, we demonstrate the superior performance
and effectiveness of the framework. However, our
framework still has some shortcomings:

The method of using LLM to judge the correctness of answers relies on the performance of the LLM, which may lead to misjudgments. However, proposing a task-specific evaluation method for each task does not align with our original intention of introducing a universal framework. In this context, we can opt to delegate the specific evaluation criteria to the LLM as well. This endeavor could further enhance the completeness of our framework, and we leave it to future work.

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

- 2. We propose the current paradigm by drawing from existing Framework Prompts and Stimulating Prompts, along with our empirical insights. Through extensive experiments comparing with various potential frameworks, we have derived a relatively universal framework as an example. However, our experiments cannot cover every possible graph structure, which is practically impossible given the infinite nature of graph structures. Therefore, there are even more superior graph-based frameworks waiting for us to discover.
- 3. In order to cover every scenario that LLM needs to handle, we have designed the framework to be as comprehensive as possible. Even when dealing with simple problems, the entire graph needs to be traversed thoroughly. While this approach ensures a thorough and exhaustive analysis of complex problems, it inevitably increases the cost of problem-solving for simpler tasks. To address this issue, we can propose a metric to evaluate the complexity of a problem, thereby determining whether to use our framework. This metric can be provided by the LLM. We can design a framework that contains both simple and complex sub-frameworks. Depending on the problem, the LLM can decide whether to use the complex framework or the simple one based on its judgment of the problem's complexity.

Overall, there is still much room for optimization in our framework. This paradigm pioneers the automatic design of prompts that combine the advantages of two types of prompts in a graphical structure, offering a novel approach and providing a starting point for future work.

520

521

522

523

References

597

602

607

610

611

613

614

615

616

617

618

619

625

631

632

633

634

635

643

647

651

- Yuelin Bai, Xinrun Du, Yiming Liang, Yonggang Jin, Ziqiang Liu, Junting Zhou, Tianyu Zheng, Xincheng Zhang, Nuo Ma, Zekun Wang, Ruibin Yuan, Haihong Wu, Hongquan Lin, Wenhao Huang, Jiajun Zhang, Wenhu Chen, Chenghua Lin, Jie Fu, Min Yang, Shiwen Ni, and Ge Zhang. 2024. Coig-cqia: Quality is all you need for chinese instruction fine-tuning. *ArXiv*, abs/2403.18058.
- Maciej Besta, Nils Blach, Ale Kubek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. 2023. Graph of thoughts: Solving elaborate problems with large language models. In AAAI Conference on Artificial Intelligence.
 - Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. 2023. Rephrase and respond: Let large language models ask better questions for themselves. *ArXiv*, abs/2311.04205.
 - Theodosius Grigorievich Dobzhansky. 1937. Genetics and the origin of species. In *Columbia university press*.
 - Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language models are zero-shot reasoners. *ArXiv*, abs/2205.11916.
 - Lazarus, Richard, and S. 2000. How emotions influence performance in competitive sports. *Sport Psychologist*.
 - Cheng Li, Jindong Wang, Kaijie Zhu, Yixuan Zhang, Wenxin Hou, Jianxun Lian, and Xingxu Xie. 2023.
 Large language models understand and can be enhanced by emotional stimuli. In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence*.
 - Reinhard Pekrun, Thomas Goetz, Wolfram Titz, and Raymond P Perry. 2002. Academic emotions in students' self-regulated learning and achievement: A program of qualitative and quantitative research. *Educational Psychologist*, 37:91 – 105.
 - Kai Sun, Y. Xu, Hanwen Zha, Yue Liu, and Xinhsuai Dong. 2023. Head-to-tail: How knowledgeable are large language models (llm)? a.k.a. will llms replace knowledge graphs? *ArXiv*, abs/2308.10168.
- Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V. Le, Ed Huai hsin Chi, Denny Zhou, and Jason Wei. 2022. Challenging big-bench tasks and whether chain-of-thought can solve them. In Annual Meeting of the Association for Computational Linguistics.
- Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Planand-solve prompting: Improving zero-shot chain-of-

thought reasoning by large language models. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 2609–2634, Toronto, Canada. Association for Computational Linguistics. 652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022.
- Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. 2024. Large language models as optimizers. In *The Twelfth International Conference on Learning Representations*.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R Narasimhan. 2023. Tree of thoughts: Deliberate problem solving with large language models. In *Thirty-seventh Conference on Neural Information Processing Systems*.
- Junchi Yu, Ran He, and Rex Ying. 2023. Thought propagation: An analogical approach to complex reasoning with large language models. *ArXiv*, abs/2310.03965.
- Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed Huai hsin Chi, Quoc V. Le, and Denny Zhou. 2023. Take a step back: Evoking reasoning via abstraction in large language models. *ArXiv*, abs/2310.06117.
- Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. 2023. Large language models are human-level prompt engineers. In *The Eleventh International Conference on Learning Representations*.