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A IMPLEMENTATION OF MINE
To reduce the computational cost of MINE, we propose a simplified
version called sMINE. The main idea is to simplify the structure
by fixing the transformer encoder of MINE and reusing the one in
the watermarking encoder. In the training loop to calculate mutual
information, other parts of the neural network are optimized except
for the transformer encoder.

This method significantly accelerates the training process and
reduces GPUmemory consumption (see Sec. F for details). However,
the efficiency gain mildly hurts model’s performance. The evalua-
tion results under distortion constraint 𝐷1 = 1 are shown in Fig. 7.
Although the difference in capacity and transparency is small, a
relatively large decline occurs in robust capacity. It may be because
of an inexact estimation of mutual information using the simplified
structure. Hence the result again verifies the importance of mutual
information payoff in improving model’s robustness performance.

B COMPARISONWITH EXISTING
STRATEGIES

To highlight our features, we compare our method against other
representative text watermarking strategies under the principle
of the information-hiding framework. Comparison baselines in-
clude rule-based methods CALS [26] and IF [27], as well as the
paraphrasing method AWT [1].

As shown in Tab. 4, ‘ours’ refers to the proposed canonical frame-
work with all key components in the system, including attacker 𝐴,
encoder 𝑓 , decoder 𝜙 , 𝐷𝑆,𝑋 , 𝐷𝑋,𝑌 constraints, and side information
𝐾 . The proposed framework is the only one that is fully in accord
with the principle, with others missing one or more key compo-
nents. Both AWT [1] and CALS [26] have not considered potential
attacks in their design, resulting in weaker robustness and vulner-
ability towards removal attacks. IF [27] considers basic removal
attacks, such as insertion, substitution and deletion of words. By
contrast, our watermarking system involves an omniscient attacker
who plays its attack strategy against known defense in the training
loop. By pitting against such an attacker, our watermarking strategy
becomes more resistant to removal attacks.

Considering the unique characteristics of natural language, we
decompose 𝑓 into two parts, one dealing with the position of the
embedding and the other selecting candidate words. Although the
two parts are jointly handled by transformers in AWT and ours,
they are explicitly separated in rule-based methods. CALS uses the
synchronicity and substitutability tests to locate target words and
then generate corresponding watermarks, whereas IF determines
watermark positions either by finding keywords or computing NLI
entailment scores. Both of them leverage pre-trained infill models
like BERT to embed the watermarks by prediction of candidate
words.

With regard to the design of distortion constraints, as all meth-
ods are aware of the semantics preservation in texts, they all impose
𝐷𝑆,𝑋 constraint. Particularly for CALS and IF, the constraint is im-
plicitly expressed by the candidate selection rules as the infill model
mainly considers the semantically similar substitutes. Both AWT
and ours adopt the reconstruction loss between the original and
watermarked texts as well as the discriminator loss. But our dis-
criminator is stronger at differentiation for an additional condition

𝑀 . In addition, we can explicitly control the distortion constraint
by 𝐷1. More importantly, our knowledge distillation loss effectively
boosts the likelihood of synonyms, encouraging more diversified
and natural reconstructed patterns. For 𝐷𝑋,𝑌 , since no attacker is
involved in AWT and CALS, the two methods do not impose the
constraint. IF uses the edit distance between the corrupted and the
original texts for this constraint, whereas ours adopt the recon-
struction loss between 𝑆 and 𝑌 , which mediately fulfills the 𝐷𝑋,𝑌
constraint.

Most existing methods ignore the side information 𝐾 in their
design, but as pointed out by Moulin and O’Sullivan [19], 𝐾 plays
an important role in the watermarking system. The side informa-
tion provides a source of randomness that is known to the decoder
and enables the use of randomized encoding strategies which could
lead to improved transmission performance. Besides, the side infor-
mation may offer more about the original text to the decoder. If the
system does not use side information, the attacker (knowing the
encoding strategy used) would be able to decode the watermark
and might then be able to remove it from the watermarked text.
We consider several types of side information in our system: the
original text, a half of the original text, the token-wise difference
between 𝑆 and 𝑋 , as well as the locations of watermarks.

The last row of Tab. 4 points out the fundamental issue in the cur-
rent design. Security by obscurity means that the method requires
to obscure the detail of the security approach to defend attacks,
which is widely discouraged in the community. AWT assumes the
attacker cannot access the exact models of the encoder and decoder.
Hence in facing white-box attacks (Sec.V-D in Abdelnabi and Fritz
[1]), the watermark prediction accuracy drops to 50% which is close
to random guess. It is even riskier to make the embedding rules
public in CALS and IF, as the adversary could easily determine
the embedding positions to launch the removal attack. IF explicitly
requires a private infill model fine-tuned on potential attacks for
robustness. But hiding the infill model, which is a part of 𝑓 , obvi-
ously violates the principle. In contrast, our watermarking system
is designed against an attacker who is fully aware of the water-
marking strategies, models, and all data distributions except for the
side information and unwatermarked texts. Our algorithm and the
trained watermarking models are publicly accessible.

In conclusion, the proposed framework incorporates all key com-
ponents of the information-hiding framework and avoids the design
of security by obscurity, thereby demonstrating itself as a principled
approach.

C CAPABILITY OF REMOVAL ATTACKS
We consider the following adversaries trying to remove watermarks
from the watermarked text: denoising auto encoder [DAE; 24],
MINE attacker, and adaptive attacker. All attackers are trained on
WikiText-2 training set, and are evaluated on WikiText-2 test set.
DAE attack has been used by AWT [1] to evaluate robustness, while
MINE attack and adaptive attack are introduced by us to specifically
target at the watermarking strategy.

We adopt a transformer structure as the backbone of the attacker
model, inheriting the DAE setting in AWT, except that we use the
pre-trained BERT tokenizer. The detailed implementation of each
attack differs by the knowledge and loss functions of the attacker:

2024-04-13 16:14. Page 10 of 1–14.
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Figure 7: Performance comparison of a simplified version of MINE and MINE. (Setup: K = None, 𝐷1 = 1)

AWT CALS IF OURS
𝐴 None None insert/sub./del. transformer structure

𝑓 , 𝜙
position transformer structure sync.+sub. test NLI/keyword transformer structurecandidate infill model infill model
𝐷𝑆,𝑋 𝐿rec (𝑆, 𝑋 ), 𝐿disc (𝑆, 𝑋 ) no need no need 𝐿rec (𝑆, 𝑋 ),max(0,−𝐿disc (𝑋, 𝑆 |𝑀) − 𝐷1)
𝐷𝑋,𝑌 None None edit distance 𝐿rec (𝑌, 𝑆)
𝐾 None None None optional

Security by obscurity " " " %

Table 4: Different watermarking methods examined in the information-hiding framework.

• DAE model is trained to denoise noisy input sequences which
are created by random embedding dropout and word replacement
in the original inputs. The loss function is a reconstruction loss
between 𝑌 and the original 𝑆 .
• MINE attack’s payoff is exactly the negative of the watermarking
party’s payoff in Eq. (4) with the distortion constraint Eq. (10). To
further enhance the attacker’s strength, we introduce the nega-
tive of 𝐿bit in Eq. (7) into the attacker’s loss to interrupt message
reconstruction.
• Adaptive attacker simply adopts the reconstruction loss between
𝑌 and 𝑆 as the training loss (Eq. (13)). Its distortion constraint is
implicitly implied by the loss function.

To compare the strength of the three attack methods, we apply
them against two watermarking schemes, i.e., AWT and ours, with
the results presented in Tab. 5. TheMeteor drop and SBERT increase
are transparency loss caused by the removal attack, indicating the
‘cost’ of the attacker, and the bit accuracy (corrupted) refers to the
bit accuracy of the watermark extracted from corrupted text under
the removal attack. From the perspective of the attacker, the lower
these three metrics are, the stronger the attack is. We can see that
the adaptive attacker has an exceeding performance compared to
other attacks by most metrics. Although MINE attack is the optimal
strategy of the attacker in theory, it shares a similar performance
to DAE, under which the bit accuracy of the corrupted text is high
as above 0.8. This is mostly due to the complexity in controlling the
optimization of multiple terms. Adaptive attack is the most effective
as it integrates the attacker’s payoff and distortion constraints into
one reconstruction loss, which is straightforward to optimize in
practice. Other attacks such as insertion, deletion, substitution, etc.,
are omitted here for a high cost in transparency.

Since the adaptive attack exhibits the strongest strength in all
the removal attacks, we use it as the in-loop attacker channel, as
illustrated in the final paragraph of Sec. 4.2. Also, we adopt the
adaptive attack to evaluate the robust capacity of watermarking
schemes in the upcoming sections by default.

Table 5: Comparison of the three removal attacks. Arrows
indicate the desirable directions. (Ours setup: BPT= 0.05,𝐷1 =
0, K=None)

Attacks Bit Acc (corrupted) ↓ Meteor Drop ↓ SBERT Increase ↓
AWT Ours AWT Ours AWT Ours

DAE 0.865 0.962 0.052 0.049 1.058 1.190
MINEAtk 0.876 0.975 0.033 0.056 0.606 1.224
AdaptAtk 0.615 0.714 0.026 0.056 0.512 1.227

D ABLATION STUDY
D.1 Tradeoffs in Capacity, Transparency and

Robustness
Intuitively, by adjusting the value of constraint 𝐷1 in Eq. (9), we
would be able to manipulate model’s transparency performance. In
this section, we experimentally show how different values of 𝐷1
affect the tradeoffs among capacity, transparency and robustness.

We draw values of 𝐷1 from {0, 1, 2} and illustrate the results
in Fig. 8. Clearly, larger values of 𝐷1 result in worse transparency
performance and an improved capacity. This is intuitive that the
encoder is allowed to make more aggressive changes to the original
text given a larger distortion constraint, and these changes help
the decoder accurately decode the watermarks. Hence the result

2024-04-13 16:14. Page 11 of 1–14.
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Figure 8: The capacity, transparency and robustness of our watermarking system under different distortion constraints (𝐷𝑆,𝑋 ).
A larger 𝐷1 indicates a looser transparency constraint. (Setup: K=None)
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Figure 9: Distribution of top-frequent watermark patterns
with different distortion constraints. (Setup: BPT= 0.05,
K=None)

indicates that a better capacity can be achieved at the compromise
of transparency.

Meanwhile, the interplay between transparency and robustness
is more complicated. In Sec. 5.2, two rule-based baselines show a
tradeoff between robustness and transparency, while for our frame-
work, the same conclusion does not hold. As 𝐷1 becomes larger,
it turns out that the adaptive attacker is more capable of water-
mark removal, reducing the message bit accuracy to below 0.7 with
insignificant transparency losses. As aforementioned, a larger 𝐷1
warrants more aggressive changes and we analyze such changes
are also subject to more precise detection by the attacker.

As we examine the occurrences of different watermarking pat-
terns, we find that certain types of patterns may appear more fre-
quently at a larger 𝐷1. Counts of patterns with number of occur-
rence more than 100 are summarized in Fig. 9. Here each bin repre-
sents the number of patterns with occurrence respectively falling
into the region [100, 200), [200, 300) and so forth. For 𝐷1 = 2, the
most and the second most common patterns appeared over 1100
and 700 times, respectively. With the decrease of 𝐷1, the distribu-
tion of patterns becomes flatter. In particular, no patterns occur
more than 700 times at 𝐷1 = 0. As a result, a larger 𝐷1 makes it
easier for the adaptive attacker to learn the mapping from 𝑋 to 𝑆 .
Nevertheless, it does not necessarily indicate a positive correlation
between transparency and robustness, since the diversity of water-
mark patterns may play a part. Compared to AWT, texts generated
by our framework contain more diversified watermark patterns

(see Appendix H for details), which can escape the detection of the
attacker but suffers transparency compromises.

In conclusion, experimental results verify that 𝐷1 effectively
controls model’s transparency performance, and serves as a tunable
knob in the tradeoff between capacity and transparency. However,
the relation between robustness and transparency is much more
complicated, and requires closer examination in deployment.

D.2 Effect of Knowledge Distillation
The module of knowledge distillation plays a pivotal role in enhanc-
ing the naturalness of the watermarked text. We observe that the
reconstruction loss of Eq. (2) alone is insufficient to ensure natu-
ralness, as it solely controls the distortion from the original text.
It means any kind of change made to a single token would lead to
the same penalty, regardless of the text semantics. Our knowledge
distillation module serves as a complement selecting the most suit-
able candidate as substitute which brings the minimal change to
the text semantics.

To show its effectiveness, we compare the texts generated by
our system with and without knowledge distillation. We set 𝐷1 = 1
to permit changes to the original text. The most frequent water-
marking patterns, i.e., how each token is modified to another, are
given in Fig. 10. Notably, in the setting where knowledge distil-
lation is absent, punctuation including ‘,’ and ‘"’ are frequently
replaced with words like ‘was’ and ‘with.’ Such patterns are un-
natural in the sense that they break the grammar rules leading to
alteration of text semantics. In the case where knowledge distilla-
tion is present, the most common watermarking patterns include
‘the’→‘a’, ‘the’→‘that’, and switch of prepositions. While these
patterns look more natural, they follow a flatter distribution than
the case without. Without knowledge distillation, a single pattern
could be repeated many times, e.g., the single quotation mark to
‘was’ occurs over 1000 times, which is both unnatural and fragile
to break. Hence knowledge distillation not only naturalizes the wa-
termarked text, but also smoothens the pattern distributions. More
examples of watermarking patterns can be found in Appendix H.

E SETUP FOR OWNERSHIP VERIFICATION
Steps of watermark embedding of the text owner:

Step 1. Split the text into sequences of length𝑀 .
2024-04-13 16:14. Page 12 of 1–14.
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Step 2. Embed messages of length 𝐿 into each sequence us-
ing the encoding API. In our experiments, 𝐿 = 4, 𝑀 ∈
{20, 30, 40, 50, 60, 70, 80}.

Step 3. Concatenate all watermarked sequences back into a long
text and release it to the public.

Steps of ownership verification:
Step 4. Split the text into sequences of length𝑀 .
Step 5. Extract messages of length 𝐿 from each sequence using

the decoding API. If the owner is associated with some side
information, the information is fed into the API as well.

Step 6. Perform hypothesis test to verify the ownership.
The hypothesis test is a binomial upper-tail test based on null

and alternative hypotheses. The null hypothesis 𝐻0 assumes the
text is not watermarked by the owner, while the alternative 𝐻1
assumes the text is watermarked by the owner. Assuming 𝐻0 is
true, by random guess, number of bits match between extracted
messages and ground-truth follows a binomial distribution with
probability 𝑝 = 0.5. Assume in the extracted message, there are
𝑘 bits matching with the ground-truth. Following the common
practice of upper-tail tests, we calculate the 𝑝-value, namely the
probability of obtaining a statistic that is no less than 𝑘 . In the case
where 𝑛 sequences are aggregated and there are 𝑛𝐿 bits of messages
in total, we define 𝑝-value as

𝑃 (𝑥 ≥ 𝑘 |𝐻0 is True) =
𝑛𝐿∑︁
𝑖=𝑘

(
𝑛𝐿

𝑖

)
0.5𝑛𝐿 . (14)

F TRAINING COST
In this section, we state the computational overhead of experiments,
with specific focus on the time and GPU memory consumption for
each task. All experiments were conducted on a machine equipped
with several NVIDIA GeForce RTX 3090 graphics cards but only
one GPU was demanded for each experiment. The CPU is Intel(R)
Xeon(R) Gold 6240C CPU @ 2.60GHz and the memory is 256GB.

The time cost for each training epoch, as well as the GPUmemory
consumption is shown in Table 6. ‘GPU memory’ is the maximum
GPU memory consumption during training. With respect to side

information, we list the case with the highest time cost. We observe
that the training of MINE contributes most to the training time
except which ours has a similar running time performance to AWT.

Table 6: Training time and GPU memory consumption.

Models Time GPU memory
AWT 140s 16.60GB

AWT (fine-tuning) 230s 21.92GB
Ours 940s 22.72GB

Ours w.o. MINE 357s 19.47GB
Ours + sMINE 540s 21.23GB

Ours + sMine + K=Loc 704s 22.24GB

G TRANSFERABILITY TO UNSEEN DATASETS
In this section, we show the transferability of our watermarking
system to unseen datasets. Specifically, we evaluate the performance
of our trained watermarking system on IMDB [15] dataset. The
IMDB dataset contains 50,000 movie reviews (25,000 in training and
25,000 in testing set), with sentiment labels as positive or negative,
though the label is not used in our experiments. We use a part of the
IMDB testing set as the input text, and evaluate the capacity and
transparency of our watermarking system. The results are shown in
Fig. 11, with comparison to those onWikiText-2 dataset. We can see
that our watermarking system remains good message bit accuracy
on the IMDB dataset, while the transparency is slightly shy of
that on WikiText-2 dataset. Overall, our watermarking system is
transferable to unseen datasets.
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Figure 11: Transferability of our watermarking system to
IMDB dataset. (Setup: K = None, 𝐷1 = 0)

H EXAMPLE DEMONSTRATIONS
We provide several examples of our watermarking system in Tab. 7
and Tab. 8. The first column is the input text, the second column is
the watermarked text, the third and fourth columns are respectively
the SBERT distance andMeteor score, which measure the difference
between the original and watermarked texts.

Tab. 7 shows good examples of watermarked text. The water-
marked text is semantically similar to the original text. Tab. 8 shows
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Table 7: Good examples of the watermarked text. Changed tokens are underlined.

Input Output SBERT Meteor

first to note the breadth of Du Fu’s achievement, writing
in [UNK] that his predecessor, " united in his work traits
which previous men had displayed only singly ". He mas-
tered all the forms of Chinese poetry : Chou says that
in every form he " either made outstanding advances
or contributed outstanding examples ". Furthermore, his
poems use a wide range of registers, from the direct and
[UNK]

first to note the breadth of Du Fu’s achievement, writing
in [UNK] that his predecessor, " united in his work traits
which earlier men had displayed only singly ". He mas-
tered all his forms of Chinese poetry : Chou says that
in every form he " either made outstanding advances
or contributed outstanding examples ". Furthermore, his
poems use a wide range of registers, from his direct and
[UNK]

0.77 0.96

##s comments that, " it is amazing that Tu Fu is able to
use so immensely stylized a form in so natural a manner
". [SEP] [SEP] = = Influence = = [SEP] [SEP] According to
the [UNK] Britannica, Du Fu’s writings are considered by
many literary critics to be among the greatest of all time,
and it states " his dense, compressed language makes use
of

##s comments that, " it is amazing that Tu Fu is able
to use so immensely stylized a form with so natural a
manner ". [SEP] [SEP] = = Influence = = [SEP] [SEP] Ac-
cording to the [UNK] Britannica, Du Fu with a writings
are considered by many literary critics to be with the
greatest of all time, with it states " his dense, compressed
language makes use with

1.36 0.94

Table 8: Bad examples of the watermarked text. Changed tokens are underlined.

Input Output SBERT Meteor

to the [UNK] and self - consciously literary. This variety
is [UNK] even within individual works : Owen identi-
fies the, " rapid stylistic and thematic shifts " in poems
which enable the poet to represent different [UNK] of a
situation, while Chou uses the term " juxtaposition " as
the major analytical tool in her work. Du Fu is noted for
having written more on [UNK] and painting than

to the [UNK] and self - consciously literary. This variety
is [UNK] even within individual works : Owen identifies
the, " rapid stylistic and thematic shifts " to poems which
enable the poet to depict different [UNK] of to situation,
while Chou uses the term " kuxtaposition " as the major
analytical tool of her work. Du Fu is noted for having
written more on [UNK] and painting to

3.32 0.93

a bad example of watermarked text. In both two tables, there are pat-
terns like ‘previous’→‘earlier,’ ‘represent’→‘depict,’ which would
be close to the transparency performance of synonym substitutions
under human evaluation. However, in Tab. 8, the watermarked text

contains some grammatical errors like “different [UNK] of to sit-
uation.” It is a common problem in learning-based watermarking
methods. Although an adversarial discriminator and knowledge
distillation have been applied to alleviate this problem, it is still
hard to completely eliminate these issues.

2024-04-13 16:14. Page 14 of 1–14.


