
Supplementary Material: Optimizing
Solution-Samplers for Combinatorial Problems: The

Landscape of Policy-Gradient Methods

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep Neural Networks and Reinforcement Learning methods have empirically1

shown great promise in tackling challenging combinatorial problems. In those2

methods a deep neural network is used as a solution generator which is then trained3

by gradient-based methods (e.g., policy gradient) to successively obtain better4

solution distributions. In this work we introduce a novel theoretical framework for5

analyzing the effectiveness of such methods. We ask whether there exist generative6

models that (i) are expressive enough to generate approximately optimal solutions;7

(ii) have a tractable, i.e, polynomial in the size of the input, number of parameters;8

(iii) their optimization landscape is benign in the sense that it does not contain9

sub-optimal stationary points. Our main contribution is a positive answer to this10

question. Our result holds for a broad class of combinatorial problems including11

Max- and Min-Cut, Max-𝑘-CSP, Maximum-Weight-Bipartite-Matching, and the12

Traveling Salesman Problem. As a byproduct of our analysis we introduce a novel13

regularization process over vanilla gradient descent and provide theoretical and14

experimental evidence that it helps address vanishing-gradient issues and escape15

bad stationary points.16

1 Introduction17

Gradient descent has proven remarkably effective for diverse optimization problems in neural net-18

works. From the early days of neural networks, this has motivated their use for combinatorial19

optimization [HT85, Smi99, VFJ15, BPL+16]. More recently, an approach by [BPL+16], where a20

neural network is used to generate (sample) solutions for the combinatorial problem. The parameters21

of the neural network thus parameterize the space of distributions. This allows one to perform gradient22

steps in this distribution space. In several interesting settings, including the Traveling Salesman Prob-23

lem, they have shown that this approach works remarkably well. Given the widespread application but24

also the notorious difficulty of combinatorial optimization [GLS12, PS98, S+03, Sch05, CLS+95],25

approaches that provide a more general solution framework are appealing.26

This is the point of departure of this paper. We investigate whether gradient descent can succeed in a27

general setting that encompasses the problems studied in [BPL+16]. This requires a parameterization28

of distributions over solutions with a “nice” optimization landscape (intuitively, that gradient descent29

does not get stuck in local minima or points of vanishing gradient) and that has a polynomial30

number of parameters. Satisfying both requirements simultaneously is non-trivial. As we show31

precisely below, a simple lifting to the exponential-size probability simplex on all solutions guarantees32

convexity; and, on the other hand, compressed parameterizations with “bad” optimization landscapes33

are also easy to come by (we give a natural example for Max-Cut in Remark 1). Hence, we seek to34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



understand the parametric complexity of gradient-based methods, i.e., how many parameters suffice35

for a benign optimization landscape in the sense that it does not contain “bad” stationary points.36

We thus theoretically investigate whether there exist solution generators with a tractable number37

of parameters that are also efficiently optimizable, i.e., gradient descent requires a small number38

of steps to reach a near-optimal solution. We provide a positive answer under general assumptions39

and specialize our results for several classes of hard and easy combinatorial optimization problems,40

including Max-Cut and Min-Cut, Max-𝑘-CSP, Maximum-Weighted-Bipartite-Matching and Traveling41

Salesman. We remark that a key difference between (computationally) easy and hard problems is not42

the ability to find a compressed and efficiently optimizable generative model but rather the ability to43

efficiently draw samples from the parameterized distributions.44

1.1 Our Framework45

We introduce a theoretical framework for analyzing the effectiveness of gradient-based methods on46

the optimization of solution generators in combinatorial optimization, inspired by [BPL+16].47

Let ℐ be a collection of instances of a combinatorial problem with common solution space 𝑆 and48

𝐿(·; 𝐼) : 𝑆 → R be the cost function associated with an instance 𝐼 ∈ ℐ, i.e., 𝐿(𝑠; 𝐼) is the cost of49

solution 𝑠 given the instance 𝐼 . For example, for the Max-Cut problem the collection of instances ℐ50

corresponds to all graphs with 𝑛 nodes, the solution space 𝑆 consists of all subsets of nodes, and the51

loss 𝐿(𝑠; 𝐼) is equal to (minus) the weight of the cut (𝑠, [𝑛] ∖ 𝑠) corresponding to the subset of nodes52

𝑠 ∈ 𝑆 (our goal is to minimize 𝐿).53

Definition 1 (Solution Cost Oracle). For a given instance 𝐼 we assume that we have access to an54

oracle 𝒪(·; 𝐼) to the cost of any given solution 𝑠 ∈ 𝑆, i.e., 𝒪(𝑠; 𝐼) = 𝐿(𝑠; 𝐼).55

The above oracle is standard in combinatorial optimization and query-efficient algorithms are provided56

for various problems [RSW17, GPRW19, LSZ21, AEG+22, PRW22]. We remark that the goal of57

this work is not to design algorithms that solve combinatorial problems using access to the solution58

cost oracle (as the aforementioned works do). This paper focuses on landscape design: the algorithm59

is fixed, namely (stochastic) gradient descent; the question is how to design a generative model that60

has a small number of parameters and the induced optimization landscape allows gradient-based61

methods to converge to the optimal solution without getting trapped at local minima or vanishing62

gradient points.63

Letℛ be some prior distribution over the instance space ℐ and𝒲 be the space of parameters of the64

model. We now define the class of solution generators. The solution generator 𝑝(𝑤) with parameter65

𝑤 ∈ 𝒲 takes as input an instance 𝐼 and generates a random solution 𝑠 in 𝑆. To distinguish between66

the output, the input, and the parameter of the solution generator, we use the notation 𝑝(·; 𝐼;𝑤) to67

denote the distribution over solutions and 𝑝(𝑠; 𝐼;𝑤) to denote the probability of an individual solution68

𝑠 ∈ 𝑆. We denote by 𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲} the above parametric class of solution generators. For69

some parameter 𝑤, the loss corresponding to the solutions sampled by 𝑝(·; 𝐼;𝑤) is equal to70

ℒ(𝑤) = E
𝐼∼ℛ

[ℒ𝐼(𝑤)] , ℒ𝐼(𝑤) = E
𝑠∼𝑝(·;𝐼;𝑤)

[𝐿(𝑠; 𝐼)] . (1)

Our goal is to optimize the parameter 𝑤 ∈ 𝒲 in order to find a sampler 𝑝(·; 𝐼;𝑤) whose loss ℒ(𝑤)71

is close to the expected optimal value opt:72

opt = E
𝐼∼ℛ

[︂
min
𝑠∈𝑆

𝐿(𝑠; 𝐼)

]︂
. (2)

The policy gradient method [Kak01] expresses the gradient of ℒ as follows73

∇𝑤ℒ(𝑤) = E
𝐼∼ℛ

E
𝑠∼𝑝(·;𝐼;𝑤)

[𝐿(𝑠; 𝐼)∇𝑤 log 𝑝(𝑠; 𝐼;𝑤)] ,

and updates the parameter 𝑤 using the gradient descent update. Observe that a (stochastic) policy74

gradient update can be implemented using only access to a solution cost oracle of Definition 1.75

Solution Generators. In [BPL+16] the authors used neural networks as parametric solution gen-76

erators for the TSP problem. They provided empirical evidence that optimizing the parameters of77

the neural network using the policy gradient method results to samplers that generate very good78

2



solutions for (Euclidean) TSP instances. Parameterizing the solution generators using neural networks79

essentially compresses the description of distributions over solutions (the full parameterization would80

require assigning a parameter to every solution-instance pair (𝑠, 𝐼)). Since for most combinatorial81

problems the size of the solution space is exponentially large (compared to the description of the82

instance), it is crucial that for such methods to succeed the parameterization must be compressed in83

the sense that the description of the parameter space𝒲 is polynomial in the size of the description84

of the instance family ℐ. Apart from having a tractable number of parameters, it is important that85

the optimization objective corresponding to the parametric class 𝒫 can provably be optimized using86

some first-order method in polynomial (in the size of the input) iterations.87

We collect these desiderata in the following definition. We denote by [ℐ] the description size of ℐ , i.e.,88

the number of bits required to identify any element of ℐ . For instance, if ℐ is the space of unweighted89

graphs with at most 𝑛 nodes, [ℐ] = 𝑂(𝑛2).90

Definition 2 (Complete, Compressed and Efficiently Optimizable Solution Generator). Fix a prior91

ℛ over ℐ, a family of solution generators 𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲}, a loss function ℒ as in Equation92

(1) and some 𝜖 > 0.93

1. We say that 𝒫 is complete if there exists some 𝑤 ∈ 𝒲 such that ℒ(𝑤) ≤ opt + 𝜀, where94

opt is defined in (2).95

2. We say that 𝒫 is compressed if the description size of the parameter space𝒲 is polynomial96

in [ℐ] and in log(1/𝜀).97

3. We say that 𝒫 is efficiently optimizable if there exists a first-order method applied on the98

objective ℒ such that after 𝑇 = poly([𝒲], 1/𝜀) many updates on the parameter vectors,99

finds an (at most) 𝜖-sub-optimal vector ̂︀𝑤, i.e., ℒ( ̂︀𝑤) ≤ ℒ(𝑤) + 𝜖 .100

Remark 1. We remark that constructing parametric families that are complete and compressed,101

complete and efficiently optimizable, or compressed and efficiently optimizable (i.e., satisfying any102

pair of assumptions of Question 1 but not all 3) is usually a much easier task. Consider, for example,103

the Max-Cut problem on a fixed (unweighted) graph with 𝑛 nodes. Note that ℐ has description size104

𝑂(𝑛2). Solutions of the Max-Cut for a graph with 𝑛 nodes are represented by vertices on the binary105

hypercube {±1}𝑛 (coordinate 𝑖 dictates the side of the cut that we put node 𝑖). One may consider106

the full parameterization of all distributions over the hypercube. It is not hard to see that this is a107

complete and efficiently optimizable family (the optimization landscape corresponds to optimizing108

a linear objective). However, it is not compressed, since it requires 2𝑛 parameters. On the other109

extreme, considering a product distribution over coordinates, i.e., we set the value of node 𝑖 to be +1110

with probability 𝑝𝑖 and−1 with 1−𝑝𝑖 gives a complete and compressed family. However, as we show111

in Appendix B, the landscape of this compressed parameterization suffers from highly sub-optimal112

local minima and therefore, it is not efficiently optimizable.113

Therefore, in this work we investigate whether it is possible to have all 3 desiderata of Definition 2 at114

the same time.115

Question 1. Are there complete, compressed, and efficiently optimizable solution generators (i.e.,116

satisfying Definition 2) for challenging combinatorial tasks?117

1.2 Our Results118

Our Contributions. Before we present our results formally, we summarize the contributions of119

this work.120

• Our main contribution is a positive answer (Theorem 1) to Question 1 under general121

assumptions that capture many combinatorial tasks. We identify a set of conditions (see122

Assumption 1) that allow us to design a family of solution generators that are complete,123

compressed and efficiently optimizable.124

• The conditions are motivated by obstacles that are important for any approach of this nature.125

This includes solutions that escape to infinity, and also parts of the landscape with vanishing126

gradient. See the discussion in Section 3 and Figure 1.127

• We specialize our framework to several important combinatorial problems, some of which128

are NP-hard, and others tractable: Max-Cut, Min-Cut, Max-𝑘-CSP, Maximum-Weight-129

Bipartite-Matching, and the Traveling Salesman Problem.130

3



• Finally, we investigate experimentally the effect of the entropy regularizer and the fast/slow131

mixture scheme that we introduced (see Section 3) and provide evidence that it leads to132

better solution generators.133

We begin with the formal presentation of our assumptions on the feature mappings of the instances134

and solutions and on the structure of cost function of the combinatorial problem.135

Assumption 1 (Structured Feature Mappings). Let 𝑆 be the solution space and ℐ be the instance136

space. There exist feature mappings 𝜓𝑆 : 𝑆 → 𝑋 , for the solutions, and, 𝜓ℐ : ℐ → 𝑍, for the137

instances, where 𝑋,𝑍 are Euclidean vector spaces of dimension 𝑛𝑋 and 𝑛𝑍 , such that138

1. (Bounded Feature Spaces) The feature and instance mappings are bounded, i.e., there exist139

𝐷𝑆 , 𝐷ℐ > 0 such that ‖𝜓𝑆(𝑠)‖2 ≤ 𝐷𝑆 , for all 𝑠 ∈ 𝑆 and ‖𝜓ℐ(𝐼)‖2 ≤ 𝐷ℐ , for all 𝐼 ∈ ℐ.140

2. (Bilinear Cost Oracle) The cost of a solution 𝑠 under instance 𝐼 can be expressed as a141

bilinear function of the corresponding feature vector 𝜓𝑆(𝑠) and instance vector 𝜓ℐ(𝐼), i.e.,142

the solution oracle can be expressed as 𝒪(𝑠, 𝐼) = 𝜓ℐ(𝐼)
⊤𝑀𝜓𝑆(𝑠) for any 𝑠 ∈ 𝑆, 𝐼 ∈ ℐ,143

for some matrix 𝑀 with ‖𝑀‖F ≤ 𝐶.144

3. (Variance Preserving Features) There exists 𝛼 > 0 such that Var𝑠∼𝑈(𝑆)[𝑣 ·𝜓𝑆(𝑠)] ≥ 𝛼‖𝑣‖22145

for any 𝑣 ∈ 𝑋 , where 𝑈(𝑆) is the uniform distribution over the solution space 𝑆.146

4. (Bounded Dimensions/Diameters) The feature dimensions 𝑛𝑋 , 𝑛𝑍 , and the diameter bounds147

𝐷𝑆 , 𝐷ℐ , 𝐶 are bounded above by a polynomial of the description size of the instance space148

ℐ. The variance lower bound 𝛼 is bounded below by 1/poly([ℐ]).149

Remark 2 (Boundedness and Bilinear Cost Assumptions). We remark that Items 1, 4 are simply150

boundedness assumptions for the corresponding feauture mappings and usually follow easily assum-151

ing that we consider reasonable feature mappings. At a high-level, the assumption that the solution152

is a bilinear function of the solution and instance features (Item 2) prescribes that “good” feature153

mappings should enable a simple (i.e., bilinear) expression for the cost function. In the sequel we see154

that this is satisfied by natural feature mappings for important classes of combinatorial problems.155

Remark 3 (Variance Preservation Assumption). In Item 3 (variance preservation) we require that the156

solution feature mapping has variance along every direction, i.e., the feature vectors corresponding to157

the solutions must be “spread-out” when the underlying solution generator is the uniform distribution.158

As we show, this assumption is crucial so that the gradients of the resulting optimization objective are159

not-vanishing, allowing for its efficient optimization.160

We mention that various important combinatorial problems satisfy Assumption 1. For instance,161

Assumption 1 is satisfied by Max-Cut, Min-Cut, Max-𝑘-CSP, Maximum-Weight-Bipartite-Matching162

and Traveling Salesman. We refer the reader to the upcoming Section 2 for an explicit description of163

the structured feature mappings for these problems. Having discussed Assumption 1, we are ready to164

state our main abstract result which resolves Question 1.165

Theorem 1. Consider a combinatorial problem with instance space ℐ that satisfies Assumption 1.166

For any priorℛ over ℐ and 𝜖 > 0, there exists a family of solution generators 𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲}167

with parameter space𝒲 that is complete, compressed and, efficiently optimizable.168

A sketch behind the design of the family 𝒫 can be found in Section 3 and Section 4.169

Remark 4 (Computational Barriers in Sampling). We note that the families of generative models170

(a.k.a., solution generators) that we provide have polynomial parameter complexity and are opti-171

mizable in a small number of steps using gradient-based methods. Hence, in a small number of172

iterations, gradient-based methods converge to distributions whose mass is concentrated on nearly173

optimal solutions. This holds, as we show, even for challenging (NP-hard) combinatorial problems.174

Our results do not, however, prove P = NP, as it may be computationally hard to sample from our175

generative models. We remark that while such approaches are in theory hard, such models seem to176

perform remarkably well experimentally where sampling is based on Langevin dynamics techniques177

[SE20, SSDK+20]. Though as our theory predicts, and simulations support, landscape problems178

seem to be a direct impediment even to obtain good approximate solutions.179

Remark 5 (Neural Networks as Solution Samplers). A natural question would be whether our results180

can be extended to the case where neural networks are (efficient) solution samplers, as in [BPL+16].181

Unfortunately, a benign landscape result for neural network solution generators most likely cannot182

4



exist. It is well-known that end-to-end theoretical guarantees for training neural networks are out of183

reach since the corresponding optimization tasks are provably computationally intractable, see, e.g.,184

[CGKM22] and the references therein.185

1.3 Related Work186

Tackling combinatorial optimization problems constitutes one of the most fundamental tasks of187

theoretical computer science [GLS12, PS98, S+03, Sch05, CLS+95] and various approaches have188

been studied for these problems such as local search methods, branch-and-bound algorithms and189

meta-heuristics such as genetic algorithms and simulated annealing. Starting from the seminal190

work of [HT85], researchers apply neural networks [Smi99, VFJ15, BPL+16] to solve combina-191

torial optimization tasks. In particular, researchers have explored the power of machine learning,192

reinforcement learning and deep learning methods for solving combinatorial optimization prob-193

lems [BPL+16, YW20, LZ09, DCL+18, BLP21, MSIB21, NOST18, SHM+16, MKS+13, SSS+17,194

ER18, KVHW18, ZCH+20, CCK+21, MGH+19, GCF+19, KLMS19].195

The training phase of the neural network approaches can be distinguished in two directions. The196

first direction deals with supervised training [SLB+18, JLB19, GCF+19]; however, supervised197

training exhibits generalization issues [YGS20]. The second direction deals with unsupervised train-198

ing [MSIB21, BPL+16, KDZ+17, YP19, CT19, YBV19, KCK+20, KCY+21, DAT20, NJS+20,199

TRWG21, AMW18, KL20, SBK22]. Our paper builds on the framework of the influential experi-200

mental work of [BPL+16] to tackle combinatorial optimization problems such as TSP using neural201

networks and RL. [KP+21] uses an entropy maximization scheme in order to generate diversified202

candidate solutions. This experimental heuristic is quite close to our theoretical idea for entropy203

regularization. In our work, entropy regularization allows us to design quasar-convex landscapes204

and the fast/slow mixing scheme to obtain diversification of solutions. Among other related applied205

works, [KCK+20, KPP22] study the use of Transformer architectures combined with the Reinforce206

algorithm employing symmetries (i.e., the existence of multiple optimal solutions of a CO problem)207

improving the generalization capability of Deep RL NCO and [MLC+21] studies Transformer ar-208

chitectures and aims to learn improvement heuristics for routing problems using RL. Finally, this209

work lies in the area of providing theoretical evidence and insight for the practical success of deep210

learning and neural networks (see [AS18, MSS19, AS20, CNP20, ABAB+21, MYSSS21, BEG+22,211

GKKZ22, ABA22, AAM22, CCL+22, ABAM23] for a small sample of this line of research).212

2 Combinatorial Applications213

We now consider concrete combinatorial problems and show that there exist appropriate and natural214

feature mappings for the solutions and instances that satisfy Assumption 1; so Theorem 1 is applicable215

for any such combinatorial task. For a more detailed treatment, we refer to Appendix G.216

Min-Cut and Max-Cut. Min-Cut (resp. Max-Cut) are central graph combinatorial problems where217

the task is to split the nodes of the graph in two subsets so that the number of edges from one subset218

to the other (edges of the cut) is minimized (resp. maximized). Given a graph 𝐺 with 𝑛 nodes219

represented by its Laplacian matrix 𝐿𝐺 = 𝐷 − 𝐴, where 𝐷 is the diagonal degree matrix and 𝐴220

is the adjacency matrix of the graph, the goal in the Min-Cut (resp. Max-Cut) problem is to find a221

solution vector 𝑠 ∈ {±1}𝑛 so that 𝑠⊤𝐿𝐺𝑠/4 is minimized (resp. maximized).222

We first show that there exist natural feature mappings so that the cost of every solution 𝑠 under223

any instance/graph 𝐺 is a bilinear function of the feature vectors, see Item 2 of Assumption 1.224

We consider the correlation-based feature mapping 𝜓𝑆(𝑠) = (𝑠𝑠⊤)♭ ∈ R𝑛2

, where by (·)♭ we225

denote the vectorization/flattening operation and the Laplacian for the instance (graph), 𝜓ℐ(𝐺) =226

(𝐿𝐺)
♭ ∈ R𝑛2

. Then simply setting the matrix 𝑀 to be the identity 𝐼 ∈ R𝑛2×𝑛2

the cost of any227

solution 𝑠 can be expressed as the bilinear function 𝜓ℐ(𝐺)
⊤𝑀𝜓𝑆(𝑠) = (𝐿♭𝐺)

⊤(𝑠𝑠⊤)♭ = 𝑠⊤𝐿𝐺𝑠.228

We observe that for (unweighted) graphs with 𝑛 nodes the description size of the family of all229

instances ℐ is roughly 𝑂(𝑛2), and therefore the dimensions of the feature mappings 𝜓𝑆 , 𝜓ℐ are230

clearly polynomial in the description size of ℐ. Moreover, considering unweighted graphs, it holds231

that ‖𝜓ℐ(𝐺)‖2, ‖𝜓𝑆(𝑠)‖2, ‖𝑀‖F ≤ poly(𝑛). Therefore, the constants 𝐷𝑆 , 𝐷ℐ , 𝐶 are polynomial in232

the description size of the instance family.233

5



Figure 1: In the left plot, we show the landscape of the “vanilla” objective of Eq.(1) for the feature domain
𝑋 = {(1, 0), (2, 2), (0, 2)} and linear cost oracle 𝑐 · 𝑥 for 𝑐 = (−3,−3). We see that the “vanilla” objective
is minimized at the direction of −𝑐, i.e., along the direction 𝜏(1, 1) for 𝜏 → +∞. We observe the two issues
described in Section 3, i.e., that the true minimizer is a point at infinity, and that gradients vanish so gradient
descent may get trapped in sub-optimal solutions, (e.g., in the upper-right corner if initialized in the top corner).
In the middle plot, we show the landscape of the entropy-regularized objective of Eq.(3) that makes the minimizer
finite and brings it closer to the origin. Observe that even if a gradient iteration is initialized in the top corner it
will eventually converge to the minimizer; however the rate of convergence may be very slow. The right plot
corresponds to the loss objective where we combine a mixture of exponential families as solution generator, as in
Eq.(5), and the entropy regularization approach. We observe that we are able to obtain a benign (quasar-convex)
landscape via the entropy regularization while the mixture-generator guarantees non-vanishing gradients.

It remains to show that our solution feature mapping satisfies the variance preservation assumption,234

i.e., Item 3 in Assumption 1. A uniformly random solution vector 𝑠 ∈ {±1}𝑛 is sampled by setting235

each 𝑠𝑖 = 1 with probability 1/2 independently. In that case, we have E[𝑣 · 𝑥] = 0 and therefore236

Var(𝑣 · 𝑥) = E[(𝑣 · 𝑥)2] =
∑︀
𝑖 ̸=𝑗 𝑣𝑖𝑣𝑗 E[𝑥𝑖𝑥𝑗 ] =

∑︀
𝑖 𝑣

2
𝑖 = ‖𝑣‖22, since, by the independence of237

𝑥𝑖, 𝑥𝑗 , the cross-terms of the sum vanish. We observe that the same hold true for the Max-Cut problem238

and therefore, structured feature mappings exist for Max-Cut as well (where 𝐿(𝑠;𝐺) = −𝑠⊤𝐿𝐺𝑠).239

We shortly mention that there also exist structured feature mappings for Max-𝑘-CSP. We refer to240

Theorem 4 for further details.241

Remark 6 (Partial Instance Information/Instance Context). We remark that Assumption 1 allows for242

the “instance” 𝐼 to only contain partial information about the actual cost function. For example,243

consider the setting where each sampled instance is an unweighted graph 𝐺 but the cost oracle takes244

the form 𝒪(𝐺, 𝑠) = (𝐿𝐺)
♭𝑀(𝑠𝑠⊤)♭ for a matrix 𝑀𝑖𝑗 = 𝑎𝑖 when 𝑖 = 𝑗 and 𝑀𝑖𝑗 = 0 otherwise.245

This cost function models having a unknown weight function, i.e., the weight of edge 𝑖 of 𝐺 is 𝑎𝑖 if246

edge 𝑖 exists in the observed instance 𝐺, on the edges of the observed unweighted graph 𝐺, that the247

algorithm has to learn in order to be able to find the minimum or maximum cut. For simplicity, in248

what follows, we will continue referring to 𝐼 as the instance even though it may only contain partial249

information about the cost function of the underlying combinatorial problem.250

Maximum-Weight-Bipartite-Matching and TSP. The Maximum-Weight-Bipartite-Matching251

(MWBP) problem is another graph problem that, given a bipartite graph 𝐺 with 𝑛 nodes and252

𝑚 edges, asks for the maximum-weight matching. The feature vector corresponding to a matching253

can be represented as a binary matrix 𝑅 ∈ {0, 1}𝑛×𝑛 with
∑︀
𝑗 𝑅𝑖𝑗 = 1 for all 𝑖 and

∑︀
𝑖𝑅𝑖𝑗 = 1254

for all 𝑗, i.e., 𝑅 is a permutation matrix. Therefore, for a candidate matching 𝑠, we set 𝜓𝑆(𝑠) to be255

the matrix 𝑅 defined above. Moreover, the feature vector of the graph is the (negative flattened)256

adjacency matrix 𝐸♭. The cost oracle is then 𝐿(𝑅;𝐸) =
∑︀
𝑖𝑗 𝐸𝑖𝑗𝑀𝑖𝑗𝑅𝑖𝑗 perhaps for an unknown257

weight matrix 𝑀𝑖𝑗 (see Remark 6). For the Traveling Salesman Problem (TSP) the feature vector is258

again a matrix 𝑅 with the additional constraint that 𝑅 has to represent a single cycle (a tour over all259

cities). The cost function for TSP is again 𝐿(𝑅;𝐸) =
∑︀
𝑖𝑗 𝐸𝑖𝑗𝑀𝑖𝑗𝑅𝑖𝑗 . One can check that those260

representations of the instance and solution satisfy the assumptions of Items 1 and 4. Showing that261

the variance of those representations has a polynomial lower bound is more subtle and we refer the262

reader to the Supplementary Material.263

We shortly mention that the solution generators for Min-Cut and Maximum-Weight-Bipartite-264

Matching are also efficiently samplable.265

6



3 Optimization Landscape266

Exponential Families as Solution Generators. A natural candidate to construct our family of267

solution generators is to consider the distribution that assigns to each solution 𝑠 ∈ 𝑆 and instance 𝐼 ∈268

ℐ mass proportional to its score exp(−𝜏𝐿(𝑠; 𝐼)) = exp(−𝜏𝜓ℐ(𝐼)
⊤𝑀𝜓𝑆(𝑠)) = exp(−𝜏𝑧⊤𝑀𝑥)269

for some “temperature” parameter 𝜏 , where 𝜓ℐ and 𝜓𝑆 are the feature mappings promised to exist270

due to Assumption 1, 𝑧 = 𝜓ℐ(𝐼), and, 𝑥 = 𝜓𝑆(𝑠). Note that as long as 𝜏 → +∞, this distribution271

tends to concentrate on solutions that achieve small loss.272

Remark 7. To construct the above solution sampler one could artificially query specific solutions to273

the cost oracle of Definition 1 and try to learn the cost matrix 𝑀 . However, we remark that our goal274

(see Definition 2) is to show that we can train a parametric family via gradient-based methods so that275

it generates (approximately) optimal solutions and not to simply learn the cost matrix 𝑀 via some276

other method and then use it to generate good solutions.277

Obstacle I: Minimizers at Infinity. One could naturally consider the parametric family278

𝜑(𝑥; 𝑧;𝑊 ) ∝ exp(𝑧⊤𝑊𝑥) (note that with 𝑊 = −𝜏𝑀 , we recover the distribution of the previous279

paragraph) and try to perform gradient-based methods on the loss (recall that 𝐿(𝑥; 𝑧) = 𝑧⊤𝑀𝑥)1280

ℒ(𝑊 ) = E
𝑧∼ℛ

E
𝑥∼𝜑(·;𝑧;𝑊 )

[𝑧⊤𝑀𝑥] . (1)

The question is whether gradient updates on the parameter 𝑊 eventually converge to a matrix 𝑊281

whose associated distribution 𝜑(𝑊 ) generates near-optimal solutions (note that the matrix −𝜏𝑀282

with 𝜏 → +∞ is such a solution). After computing the gradient of ℒ, we observe that283

∇𝑊ℒ(𝑊 ) ·𝑀 = Var𝑧∼ℛ,𝑥∼𝜑(·;𝑧;𝑊 )[𝑧
⊤𝑀𝑥] ≥ 0 ,

where the inner product between two matrices 𝐴 · 𝐵 is the trace Tr(𝐴⊤𝐵) =
∑︀
𝑖,𝑗 𝐴𝑖𝑗𝐵𝑖𝑗 . This284

means that the gradient field of ℒ always has a contribution to the direction of 𝑀 . Nevertheless the285

actual minimizer is at infinity, i.e., it corresponds to the point 𝑊 = −𝜏𝑀 when 𝜏 → +∞. While286

the correlation with the optimal point is positive (which is encouraging), having such contribution287

to this direction is not a sufficient condition for actually reaching 𝑊 . The objective has vanishing288

gradients at infinity and gradient descent may get trapped in sub-optimal stationary points, see the289

left plot in Figure 1.290

Solution I: Quasar Convexity via Entropy Regularization. Our plan is to try and make the291

objective landscape more benign by adding an entropy-regularizer. Instead of trying to make the292

objective convex (which may be too much to ask in the first place) we are able obtain a much better293

landscape with a finite global minimizer and a gradient field that guides gradient descent to the294

minimizer. Those properties are described by the so-called class of “quasar-convex” functions. Quasar295

convexity (or weak quasi-convexity [HMR16]) is a well-studied notion in optimization [HMR16,296

HSS20, LV16, ZMB+17, HLSS15] and can be considered as a high-dimensional generalization of297

unimodality.298

Definition 3 (Quasar Convexity [HMR16, HSS20]). Let 𝛾 ∈ (0, 1] and let 𝑥 be a minimizer of the299

differentiable function 𝑓 : R𝑛 → R. The function 𝑓 is 𝛾-quasar-convex with respect to 𝑥 on a300

domain 𝐷 ⊆ R𝑛 if for all 𝑥 ∈ 𝐷, ∇𝑓(𝑥) · (𝑥− 𝑥) ≥ 𝛾(𝑓(𝑥)− 𝑓(𝑥)).301

In the above definition, notice that the main property that we need to establish is that the gradient302

field of our objective correlates positively with the direction 𝑊 −𝑊 , where 𝑊 is its minimizer. We303

denote by 𝐻 :𝒲 → R the negative entropy of 𝜑(𝑊 ), i.e.,304

𝐻(𝑊 ) = E
𝑧∼ℛ

E
𝑥∼𝜑(·;𝑧;𝑊 )

[log 𝜑(𝑥; 𝑧;𝑊 )] , (2)

and consider the regularized objective305

ℒ𝜆(𝑊 ) = ℒ(𝑊 ) + 𝜆𝐻(𝑊 ) , (3)

1We note that we overload the notation and assume that our distributions generate directly the featurizations
𝑧 (resp. 𝑥) of 𝐼 (resp. 𝑠).

7



for some 𝜆 > 0. We show (follows from Lemma 4) that the gradient-field of the regularized objective306

indeed “points” towards a finite minimizer (the matrix 𝑊 = −𝑀/𝜆):307

∇𝑊ℒ𝜆(𝑊 ) · (𝑊 +𝑀/𝜆) =

Var[𝑧⊤(𝑊 +𝑀/𝜆)𝑥] ≥ 0 , (4)

where the randomness is over 𝑧 ∼ ℛ, 𝑥 ∼ 𝜑(·; 𝑧;𝑊 ). Observe that now the minimizer of ℒ𝜆308

is the point −𝑀/𝜆, which for 𝜆 = poly(𝜖, 𝛼, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ) (these are the parameters of309

Assumption 1) is promised to yield a solution sampler that generates 𝜖-sub-optimal solutions (see310

also Proposition 2 and Appendix C). Having the property of Equation (4) suffices for showing that311

a gradient descent iteration (with an appropriately small step-size) will eventually converge to the312

minimizer.313

Obstacle II: Vanishing Gradients. While we have established that the gradient field of the314

regularized objective “points” towards the right direction, the regularized objective still suffers from315

vanishing gradients, see the middle plot in Figure 1. In other words, 𝛾 in the definition of quasar316

convexity (Definition 3) may be exponentially small, as it is proportional to the variance of the random317

variable 𝑧⊤(𝑊 +𝑀/𝜆)𝑥, see Equation (4). As we see in the middle plot of Figure 1, the main issue318

is the vanishing gradient when 𝑊 gets closer to the minimizer −𝑀/𝜆 (towards the front-corner).319

For simplicity, consider the variance along the direction of 𝑊 , i.e., Var[𝑧⊤𝑊𝑥] and recall that 𝑥 is320

generated by the density exp(𝑧⊤𝑊𝑥)/(
∑︀
𝑥∈𝑋 exp(𝑧⊤𝑊𝑥)). When ‖𝑊‖2 → +∞ we observe that321

the value 𝑧⊤𝑊𝑥 concentrates exponentially fast to max𝑥∈𝑋 𝑧
⊤𝑊𝑥 (think of the convergence of the322

soft-max to the max function). Therefore, the variance Var[𝑧⊤𝑊𝑥] may vanish exponentially fast323

making the convergence of gradient descent slow.324

Solution II: Non-Vanishing Gradients via Fast/Slow Mixture Generators. We propose a fix to325

the vanishing gradients issue by using a mixture of exponential families as a solution generator. We326

define the family of solution generators 𝒫 = {𝑝(𝑊 ) :𝑊 ∈ 𝒲} to be327

𝒫 = {(1− 𝛽⋆)𝜑(𝑊 ) + 𝛽⋆𝜑(𝜌⋆𝑊 ) :𝑊 ∈ 𝒲} , (5)

for a (fixed) mixing parameter 𝛽⋆ and a (fixed) temperature parameter 𝜌⋆. The main idea is to have the328

first component of the mixture to converge fast to the optimal solution (to −𝑀/𝜆) while the second329

“slow” component that has parameter 𝜌⋆𝑊 stays closer to the uniform distribution over solutions that330

guarantees non-trivial variance (and therefore non-vanishing gradients).331

More precisely, taking 𝜌⋆ to be sufficiently small, the distribution 𝜑(𝜌⋆𝑊 ) is almost uniform over332

the solution space 𝜓𝑆(𝑆). Therefore, in Equation (4), the almost uniform distribution component333

of the mixture will add to the variance and allow us to show a lower bound. This is where Item 3334

of Assumption 1 comes into play and gives us the desired non-trivial variance lower bound under335

the uniform distribution. We view this fast/slow mixture technique as an interesting insight of our336

work: we use the “fast” component (the one with parameter 𝑊 ) to actually reach the optimal solution337

−𝑀/𝜆 and and we use the “slow” component (the one with parameter 𝜌⋆𝑊 that essentially generates338

random solutions) to preserve a non-trivial variance lower bound during optimization.339

4 Complete, Compressed and Efficiently Optimizable Solution Generators340

In this section, we discuss the main results that imply Theorem 1: the family 𝒫 of Equation (5) is341

complete, compressed and efficiently optimizable (for some choice of 𝛽⋆, 𝜌⋆ and𝒲).342

Completeness. First, we show that the family of solution generators of Equation (5) is complete. For343

the proof, we refer to Proposition 2 in Appendix C. At a high-level, we to pick 𝛽⋆, 𝜌⋆ to be of order344

poly(𝜖, 𝛼, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ). This yields that the matrix𝑊 = −𝑀/𝜆 is such that ℒ(𝑊 ) ≤ opt+𝜖,345

where 𝑀 is the matrix of Item 2 in Assumption 1 and 𝜆 is poly(𝜖/[ℐ]). To give some intuition about346

this choice of matrix, let us see how ℒ(𝑊 ) behaves. By definition, we have that347

ℒ(𝑊 ) = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;𝑊 )

[︀
𝑧⊤𝑀𝑥

]︀
,

where the distribution 𝑝 belongs to the family of Equation (5), i.e., 𝑝(𝑊 ) = (1 − 𝛽⋆)𝜑(𝑊 ) +348

𝛽⋆𝜑(𝜌⋆𝑊 ). Since the mixing weight 𝛽⋆ is small, we have that 𝑝(𝑊 ) is approximately equal to349

8



𝜑(𝑊 ). This means that our solution generator draws samples from the distribution whose mass at 𝑥350

given instance 𝑧 is proportional to exp(−𝑧⊤𝑀𝑥/𝜆) and, since 𝜆 > 0 is very small, the distribution351

concentrates to solutions 𝑥 that tend to minimize the objective 𝑧⊤𝑀𝑥. This is the reason why352

𝑊 = −𝑀/𝜆 is close to opt in the sense that ℒ(𝑊 ) ≤ opt + 𝜖.353

Compression. As a second step, we show (in Proposition 3, see Appendix D) that 𝒫 is a compressed354

family of solution generators. This result follows immediately from the structure of Equation (5)355

(observe that 𝑊 has 𝑛𝑋 𝑛𝑍 parameters) and the boundedness of 𝑊 = −𝑀/𝜆.356

Efficiently Optimizable. The proof of this result essentially corresponds to the discussion provided357

in Section 3. Our main structural result shows that the landscape of the regularized objective with the358

fast/slow mixture solution-generator is quasar convex. More precisely, we consider the following359

objective:360

ℒ𝜆(𝑊 ) = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;𝑊 )

[𝑧⊤𝑀𝑥] + 𝜆𝑅(𝑊 ) , (1)

where 𝑝(𝑊 ) belongs in the family 𝒫 of Equation (5) and𝑅 is a weighted sum of two negative entropy361

regularizers (to be in accordance with the mixture structure of 𝒫), i.e., 𝑅(𝑊 ) = (1− 𝛽⋆)𝐻(𝑊 ) +362

𝛽⋆/𝜌⋆𝐻(𝜌⋆𝑊 ). Our main structural results follows (for the proof, see Appendix E.1).363

Proposition 1 (Quasar Convexity). Consider 𝜖 > 0 and a priorℛ over ℐ . Assume that Assumption 1364

holds. The function ℒ𝜆 of Equation (1) with domain 𝒲 is poly(𝜖, 𝛼, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ)-quasar365

convex with respect to −𝑀/𝜆 on the domain𝒲 .366

Since 𝜌⋆ is small (by Proposition 2),𝐻(𝜌⋆𝑊 ) is essentially constant and close in value to the negative367

entropy of the uniform distribution. Hence, the effect of 𝑅(𝑊 ) during optimization is essentially the368

same as that of 𝐻(𝑊 ) (since 𝛽⋆ is close to 0). We show that ℒ𝜆 is quasar convex with a non-trivial369

parameter 𝛾 (see Proposition 1). We can then apply (in a black-box manner) the convergence results370

from [HMR16] to optimize it using projected SGD. We show that SGD finds a weight matrix ̂︁𝑊 such371

that the solution generator 𝑝(̂︁𝑊 ) generates solutions achieving actual loss ℒ close to that of the near372

optimal matrix 𝑊 = −𝑀/𝜆, i.e., ℒ(̂︁𝑊 ) ≤ ℒ(𝑊 ) + 𝜖. For further details, see Appendix E.3.373

5 Experimental Evaluation374

In this section, we investigate experimentally the effect of our main theoretical contributions, the375

entropy regularizer (see Equation (2)) and the fast/slow mixture scheme (see Equation (5)). We try to376

find the Max-Cut of a fixed graph 𝐺, i.e., the support of the priorℛ is a single graph. Similarly to our377

theoretical results, our sampler is of the form 𝑒score(𝑠;𝑤), where 𝑠 ∈ {−1, 1}𝑛 (here 𝑛 is the number378

of nodes in the graph) is a candidate solution of the Max-Cut problem. For the score function we379

used a simple linear layer (left plot of Figure 2) and a 3-layer ReLU network (right plot of Figure 2).380

Focusing on instances where the number of nodes 𝑛 is small (say 𝑛 = 15), we can explicitly compute381

the density function and work with an exact sampler. We generate 100 random 𝐺(𝑛, 𝑝) graphs with382

𝑛 = 15 nodes and 𝑝 = 0.5 and train solution generators using both the ”vanilla” loss ℒ and the383

entropy-regularized loss ℒ𝜆 with the fast/slow mixture scheme. We perform 600 iterations and, for384

the entropy regularization, we progressively decrease the regularization weight, starting from 10, and385

dividing it by 2 every 60 iterations. Out of the 100 trials we found that our proposed objective was386

always able to find the optimal cut while the model trained with the vanilla loss was able to find it for387

approximately 65% of the graphs (for 65 out of 100 using the linear network and for 66 using the388

ReLU network).389

Hence, our experiments demonstrate that while the unregularized objective is often “stuck” at sub-390

optimal solutions – and this happens even for very small instances (𝑛 =15 nodes) – of the Max-Cut391

problem, the objective motivated by our theoretical results is able to find the optimal solutions. We392

leave more extensive experimental evaluation as an interesting direction for future work. For further393

details, see Appendix I.394

References395

[AAM22] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase396

property: a necessary and nearly sufficient condition for sgd learning of sparse functions397

9



Figure 2: Plot of the Max-Cut value trajectory of the “vanilla” objective and entropy-regularized
objective with the slow/fast mixture scheme. We remark that we plot the value of the cut of each
iteration (and not the value of the regularized-loss). On the horizontal axis we plot the number of
iterations and on the vertical axis we plot the achieved value of the cut. Both graphs used were
random 𝐺(𝑛, 𝑝) graphs generated with 𝑛 = 15 nodes and edge probabilitdy 𝑝 = 0.5. For the left
plot we used a linear network (the same exponential family as the one used in our theoretical results).
For the right plot we used a simple 3-Layer ReLU network to generate the scores. We observe that
the ”vanilla” loss gets stuck on sub-optimal solutions.

on two-layer neural networks. In Conference on Learning Theory, pages 4782–4887.398

PMLR, 2022. 5399

[ABA22] Emmanuel Abbe and Enric Boix-Adsera. On the non-universality of deep learning:400

quantifying the cost of symmetry. arXiv preprint arXiv:2208.03113, 2022. 5401

[ABAB+21] Emmanuel Abbe, Enric Boix-Adsera, Matthew S Brennan, Guy Bresler, and Dheeraj402

Nagaraj. The staircase property: How hierarchical structure can guide deep learning.403

Advances in Neural Information Processing Systems, 34:26989–27002, 2021. 5404

[ABAM23] Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd learning on405

neural networks: leap complexity and saddle-to-saddle dynamics. arXiv preprint406

arXiv:2302.11055, 2023. 5407

[AEG+22] Simon Apers, Yuval Efron, Pawel Gawrychowski, Troy Lee, Sagnik Mukhopadhyay,408

and Danupon Nanongkai. Cut query algorithms with star contraction. arXiv preprint409

arXiv:2201.05674, 2022. 2410

[AMW18] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-411

sat: An unsupervised differentiable approach. In International Conference on Learning412

Representations, 2018. 5413

[AS18] Emmanuel Abbe and Colin Sandon. Provable limitations of deep learning. arXiv414

preprint arXiv:1812.06369, 2018. 5415

[AS20] Emmanuel Abbe and Colin Sandon. On the universality of deep learning. Advances in416

Neural Information Processing Systems, 33:20061–20072, 2020. 5417

[BEG+22] Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril418

Zhang. Hidden progress in deep learning: Sgd learns parities near the computational419

limit. arXiv preprint arXiv:2207.08799, 2022. 5420

[BLP21] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinato-421

rial optimization: a methodological tour d’horizon. European Journal of Operational422

Research, 290(2):405–421, 2021. 5423

[BPL+16] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.424

Neural combinatorial optimization with reinforcement learning. arXiv preprint425

arXiv:1611.09940, 2016. 1, 2, 4, 5426

10



[CCK+21] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris,427

and Petar Veličković. Combinatorial optimization and reasoning with graph neural428

networks. arXiv preprint arXiv:2102.09544, 2021. 5429

[CCL+22] Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang.430

Sampling is as easy as learning the score: theory for diffusion models with minimal431

data assumptions. arXiv preprint arXiv:2209.11215, 2022. 5432

[CGG+19] Zongchen Chen, Andreas Galanis, Leslie Ann Goldberg, Will Perkins, James Stewart,433

and Eric Vigoda. Fast algorithms at low temperatures via markov chains. arXiv preprint434

arXiv:1901.06653, 2019. 25435

[CGKM22] Sitan Chen, Aravind Gollakota, Adam Klivans, and Raghu Meka. Hardness of noise-436

free learning for two-hidden-layer neural networks. Advances in Neural Information437

Processing Systems, 35:10709–10724, 2022. 5438

[CLS+95] William Cook, László Lovász, Paul D Seymour, et al. Combinatorial optimization:439

papers from the DIMACS Special Year, volume 20. American Mathematical Soc., 1995.440

1, 5441

[CLV22] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Spectral independence via stability442

and applications to holant-type problems. In 2021 IEEE 62nd Annual Symposium on443

Foundations of Computer Science (FOCS), pages 149–160. IEEE, 2022. 25444

[CNP20] Vaggos Chatziafratis, Sai Ganesh Nagarajan, and Ioannis Panageas. Better depth-width445

trade-offs for neural networks through the lens of dynamical systems. In International446

Conference on Machine Learning, pages 1469–1478. PMLR, 2020. 5447

[COLMS22] Amin Coja-Oghlan, Philipp Loick, Balázs F Mezei, and Gregory B Sorkin. The ising448

antiferromagnet and max cut on random regular graphs. SIAM Journal on Discrete449

Mathematics, 36(2):1306–1342, 2022. 25450

[CT19] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial451

optimization. Advances in Neural Information Processing Systems, 32, 2019. 5452

[CZ22] Xiaoyu Chen and Xinyuan Zhang. A near-linear time sampler for the ising model.453

arXiv preprint arXiv:2207.09391, 2022. 25454

[d’A08] Alexandre d’Aspremont. Smooth optimization with approximate gradient. SIAM455

Journal on Optimization, 19(3):1171–1183, 2008. 26456

[DAT20] Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning457

with combinatorial actions: An application to vehicle routing. Advances in Neural458

Information Processing Systems, 33:609–620, 2020. 5459

[DCL+18] Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-460

Martin Rousseau. Learning heuristics for the tsp by policy gradient. In International461

conference on the integration of constraint programming, artificial intelligence, and462

operations research, pages 170–181. Springer, 2018. 5463

[dPS97] JC Anglès d’Auriac, M Preissmann, and A Sebö. Optimal cuts in graphs and statistical464

mechanics. Mathematical and Computer Modelling, 26(8-10):1–11, 1997. 25465

[Edm65] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of466

research of the National Bureau of Standards B, 69(125-130):55–56, 1965. 27467

[ER18] Patrick Emami and Sanjay Ranka. Learning permutations with sinkhorn policy gradient.468

arXiv preprint arXiv:1805.07010, 2018. 5469

[GCF+19] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi.470

Exact combinatorial optimization with graph convolutional neural networks. Advances471

in Neural Information Processing Systems, 32, 2019. 5472

11



[GKKZ22] Surbhi Goel, Sham Kakade, Adam Tauman Kalai, and Cyril Zhang. Recurrent473

convolutional neural networks learn succinct learning algorithms. arXiv preprint474

arXiv:2209.00735, 2022. 5475

[GLS12] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and476

combinatorial optimization, volume 2. Springer Science & Business Media, 2012. 1, 5477

[GPRW19] Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S Matthew Weinberg.478

New query lower bounds for submodular function minimization. arXiv preprint479

arXiv:1911.06889, 2019. 2480

[HLSS15] Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-481

convex optimization. Advances in neural information processing systems, 28, 2015.482

7483

[HMR16] Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynami-484

cal systems. arXiv preprint arXiv:1609.05191, 2016. 7, 9, 15, 21, 22485

[HSS20] Oliver Hinder, Aaron Sidford, and Nimit Sohoni. Near-optimal methods for minimizing486

star-convex functions and beyond. In Conference on learning theory, pages 1894–1938.487

PMLR, 2020. 7488

[HT85] John J Hopfield and David W Tank. “neural” computation of decisions in optimization489

problems. Biological cybernetics, 52(3):141–152, 1985. 1, 5490

[Jer03] Mark Jerrum. Counting, sampling and integrating: algorithms and complexity. Springer491

Science & Business Media, 2003. 28492

[JLB19] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph con-493

volutional network technique for the travelling salesman problem. arXiv preprint494

arXiv:1906.01227, 2019. 5495

[JS93] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the496

ising model. SIAM Journal on computing, 22(5):1087–1116, 1993. 25497

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation498

algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM499

(JACM), 51(4):671–697, 2004. 28500

[Kak01] Sham M Kakade. A natural policy gradient. Advances in neural information processing501

systems, 14, 2001. 2502

[KCK+20] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and503

Seungjai Min. Pomo: Policy optimization with multiple optima for reinforcement504

learning. Advances in Neural Information Processing Systems, 33:21188–21198, 2020.505

5506

[KCY+21] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune507

Gwon. Matrix encoding networks for neural combinatorial optimization. Advances in508

Neural Information Processing Systems, 34:5138–5149, 2021. 5509

[KDZ+17] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combina-510

torial optimization algorithms over graphs. Advances in neural information processing511

systems, 30, 2017. 5512

[KL20] Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning513

framework for combinatorial optimization on graphs. Advances in Neural Information514

Processing Systems, 33:6659–6672, 2020. 5515

[KLMS19] Weiwei Kong, Christopher Liaw, Aranyak Mehta, and D Sivakumar. A new dog learns516

old tricks: Rl finds classic optimization algorithms. In International conference on517

learning representations, 2019. 5518

12



[KP+21] Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing519

problems. Advances in Neural Information Processing Systems, 34:10418–10430, 2021.520

5521

[KPP22] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for522

neural combinatorial optimization. arXiv preprint arXiv:2205.13209, 2022. 5523

[KVHW18] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing524

problems! arXiv preprint arXiv:1803.08475, 2018. 5525

[LSS19] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. The ising partition function:526

Zeros and deterministic approximation. Journal of Statistical Physics, 174(2):287–315,527

2019. 25528

[LSZ21] Troy Lee, Miklos Santha, and Shengyu Zhang. Quantum algorithms for graph problems529

with cut queries. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete530

Algorithms (SODA), pages 939–958. SIAM, 2021. 2531

[LV16] Jasper CH Lee and Paul Valiant. Optimizing star-convex functions. In 2016 IEEE532

57th Annual Symposium on Foundations of Computer Science (FOCS), pages 603–614.533

IEEE, 2016. 7534

[LZ09] Fei Liu and Guangzhou Zeng. Study of genetic algorithm with reinforcement learning535

to solve the tsp. Expert Systems with Applications, 36(3):6995–7001, 2009. 5536

[MGH+19] Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial537

optimization by graph pointer networks and hierarchical reinforcement learning. arXiv538

preprint arXiv:1911.04936, 2019. 5539

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,540

Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.541

arXiv preprint arXiv:1312.5602, 2013. 5542

[MLC+21] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and543

Jing Tang. Learning to iteratively solve routing problems with dual-aspect collaborative544

transformer. Advances in Neural Information Processing Systems, 34:11096–11107,545

2021. 5546

[MSIB21] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement547

learning for combinatorial optimization: A survey. Computers & Operations Research,548

134:105400, 2021. 5549

[MSS19] Eran Malach and Shai Shalev-Shwartz. Is deeper better only when shallow is good?550

Advances in Neural Information Processing Systems, 32, 2019. 5551

[MYSSS21] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. The connection552

between approximation, depth separation and learnability in neural networks. In553

Conference on Learning Theory, pages 3265–3295. PMLR, 2021. 5554

[NJS+20] Yatin Nandwani, Deepanshu Jindal, Parag Singla, et al. Neural learning of one-of-555

many solutions for combinatorial problems in structured output spaces. arXiv preprint556

arXiv:2008.11990, 2020. 5557

[NOST18] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Re-558

inforcement learning for solving the vehicle routing problem. Advances in neural559

information processing systems, 31, 2018. 5560

[PRW22] Orestis Plevrakis, Seyoon Ragavan, and S Matthew Weinberg. On the cut-query561

complexity of approximating max-cut. arXiv preprint arXiv:2211.04506, 2022. 2562

[PS98] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algo-563

rithms and complexity. Courier Corporation, 1998. 1, 5564

[RSW17] Aviad Rubinstein, Tselil Schramm, and S Matthew Weinberg. Computing exact565

minimum cuts without knowing the graph. arXiv preprint arXiv:1711.03165, 2017. 2566

13



[S+03] Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency,567

volume 24. Springer, 2003. 1, 5568

[SBK22] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial opti-569

mization with physics-inspired graph neural networks. Nature Machine Intelligence,570

4(4):367–377, 2022. 5571

[Sch05] Alexander Schrijver. On the history of combinatorial optimization (till 1960). Hand-572

books in operations research and management science, 12:1–68, 2005. 1, 5573

[SE20] Yang Song and Stefano Ermon. Improved techniques for training score-based generative574

models. Advances in neural information processing systems, 33:12438–12448, 2020. 4575

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van576

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc577

Lanctot, et al. Mastering the game of go with deep neural networks and tree search.578

nature, 529(7587):484–489, 2016. 5579

[Sin12] Alistair Sinclair. Algorithms for random generation and counting: a Markov chain580

approach. Springer Science & Business Media, 2012. 28, 31581

[SLB+18] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura,582

and David L Dill. Learning a sat solver from single-bit supervision. arXiv preprint583

arXiv:1802.03685, 2018. 5584

[Smi99] Kate A Smith. Neural networks for combinatorial optimization: a review of more than585

a decade of research. Informs journal on Computing, 11(1):15–34, 1999. 1, 5586

[SSDK+20] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano587

Ermon, and Ben Poole. Score-based generative modeling through stochastic differential588

equations. arXiv preprint arXiv:2011.13456, 2020. 4589

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,590

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-591

tering the game of go without human knowledge. nature, 550(7676):354–359, 2017.592

5593

[TRWG21] Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks594

for maximum constraint satisfaction. Frontiers in artificial intelligence, 3:580607, 2021.595

5596

[VFJ15] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in597

neural information processing systems, 28, 2015. 1, 5598

[YBV19] Weichi Yao, Afonso S Bandeira, and Soledad Villar. Experimental performance of599

graph neural networks on random instances of max-cut. In Wavelets and Sparsity XVIII,600

volume 11138, pages 242–251. SPIE, 2019. 5601

[YGS20] Gal Yehuda, Moshe Gabel, and Assaf Schuster. It’s not what machines can learn,602

it’s what we cannot teach. In International conference on machine learning, pages603

10831–10841. PMLR, 2020. 5604

[YP19] Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfia-605

bility. Advances in Neural Information Processing Systems, 32, 2019. 5606

[YW20] Yunhao Yang and Andrew Whinston. A survey on reinforcement learning for combina-607

torial optimization. arXiv preprint arXiv:2008.12248, 2020. 5608

[ZCH+20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,609

Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of610

methods and applications. AI Open, 1:57–81, 2020. 5611

[ZMB+17] Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen Boyd, and612

Peter W Glynn. Stochastic mirror descent in variationally coherent optimization613

problems. Advances in Neural Information Processing Systems, 30, 2017. 7614

14



A Preliminaries and Notation615

This lemma is a useful tool for quasar convex functions.616

Lemma 1 ([HMR16]). Suppose that the functions 𝑓1, . . . , 𝑓𝑛 are individually 𝛾-quasar convex in 𝑋617

with respect to a common global minimum 𝑥. Then for non-negative weights 𝑎1, . . . , 𝑎𝑛, the linear618

combination 𝑓 =
∑︀
𝑖∈[𝑛] 𝑎𝑖𝑓𝑖 is also 𝛾-quasar convex with respect to 𝑥 in 𝑋 .619

In the proofs, we use the following notation: for a matrix 𝑊 and vectors 𝑥, 𝑧, we let620

𝜑(𝑥; 𝑧;𝑊 ) =
exp(𝑧⊤𝑊𝑧)∑︀
𝑦∈𝑋 exp(𝑧⊤𝑊𝑦)

, (1)

be a probability mass function over 𝑋 and we overload the notation as621

𝜑(𝑥;𝑤) =
exp(𝑤 · 𝑥)∑︀
𝑦∈𝑋 exp(𝑤 · 𝑦)

. (2)

B The Proof of Remark 1622

Proof. Let 𝑥1, . . . , 𝑥𝑛 be the variables of the Max-Cut problem of interest and 𝑆 = {−1, 1}𝑛 be623

the solution space. Consider 𝒫 to be the collection of product distributions over 𝑆, i.e., for any624

𝑝 ∈ 𝒫 , it holds that, for any 𝑠 ∈ 𝑆, Pr𝑥∼𝑝[𝑥 = 𝑠] =
∏︀
𝑖∈[𝑛] 𝑝

1+𝑠𝑖
2

𝑖 (1 − 𝑝𝑖)
1−𝑠𝑖

2 . Let us consider625

the cube [𝜖, 1− 𝜖]𝑛. This family is complete since the 𝑂(𝜖)-sub-optimal solution of 𝐼 belongs to 𝒫626

and is compressed since the description size is poly(𝑛, log(1/𝜖)). We show that in this setting there627

exist bad stationary points. Let 𝐿𝐺 be the Laplacian matrix of the input graph. For some product628

distribution 𝑝 ∈ 𝒫 , it holds that629

ℒ(𝑝) = − E
𝑥∼𝑝(·)

[𝑥⊤𝐿𝐺𝑥] = −(2𝑝− 1)⊤𝐿𝐺(2𝑝− 1) , ∇𝑝ℒ(𝑝) = −4𝐿𝐺(2𝑝− 1) ,

where 𝐿𝐺 is zero in the diagonal and equal to the Laplacian otherwise. Let us consider a vertex of the630

cube 𝑝 ∈ [𝜖, 1− 𝜖]𝑛 which is highly and strictly sub-optimal, i.e., any single change of a node would631

strictly improve the number of edges in the cut and the score attained in 𝑝 is very large compared to632

min𝑥∈𝑆 −𝑥⊤𝐿𝐺𝑥. For any 𝑖 ∈ [𝑛], we show that633

(∇ℒ(𝑝) · 𝑒𝑖)((2𝑝− 1) · 𝑒𝑖) < 0 .

This means that if 𝑝𝑖 is large (i.e., 1− 𝜖), then the 𝑖-th coordinate of the gradient of ℒ(𝑝) should be634

negative since this would imply that the negative gradient would preserve 𝑝𝑖 to the right boundary.635

Similarly for the case where 𝑝𝑖 is small. This means that this point is a stationary point and is highly636

sub-optimal by assumption.637

Let 𝑃 (resp. 𝑁 ) be the set of indices in [𝑛] where 𝑝 takes the value 1− 𝜖 (resp. 𝜖). For any 𝑖 ∈ [𝑛],638

let 𝒩 (𝑖) be its neighborhood in 𝐺. Let us consider 𝑖 ∈ 𝑃 . We have that (2𝑝− 1) · 𝑒𝑖 > 0 and so it639

suffices to show that640

(𝐿𝐺(2𝑝− 1)) · 𝑒𝑖 > 0 ,

which corresponds to showing that641 ∑︁
𝑗∈𝒩 (𝑖)∩𝑃

𝐿𝐺(𝑖, 𝑗)(1− 2𝜖) +
∑︁

𝑗∈𝒩 (𝑖)∩𝑁

𝐿𝐺(𝑖, 𝑗)(2𝜖− 1) > 0 ,

and so we would like to have642 ∑︁
𝑗∈𝑃

𝐿𝐺(𝑖, 𝑗)−
∑︁
𝑗∈𝑁

𝐿𝐺(𝑖, 𝑗) > 0 .

Note that this is true for any 𝑖 ∈ [𝑛] since the current solution is a strict local optimum. The same643

holds if 𝑖 ∈ 𝑁 .644

15



C Completeness645

Proposition 2 (Completeness). Consider 𝜖 > 0 and a prior ℛ over ℐ. Assume that Assumption 1646

holds. There exist 𝛽⋆, 𝜌⋆ ∈ (0, 1) and𝒲 such that the family of solution generators 𝒫 of Equation (5)647

is complete.648

Proof. Assume that 𝒪(𝑠, 𝐼) = 𝜓ℐ(𝐼)
⊤𝑀𝜓𝑆(𝑠) and let 𝑧 = 𝜓ℐ(𝐼) and 𝑥 = 𝜓𝑆(𝑠). Moreover, let649

𝛼,𝐶,𝐷𝑆 , 𝐷ℐ be the parameters promised by Assumption 1. Let us consider the family 𝒫 = {𝑝(𝑊 ) :650

𝑊 ∈ 𝒲} with651

𝑝(𝑥; 𝑧;𝑊 ) = (1− 𝛽⋆) 𝑒𝑧
⊤𝑊𝑥∑︀

𝑦∈𝑋 𝑒
𝑧⊤𝑊𝑦

+ 𝛽⋆
𝑒𝑧

⊤𝜌⋆𝑊𝑥∑︀
𝑦∈𝑋 𝑒

𝑧⊤𝜌⋆𝑊𝑦
,

where the mixing weight 𝛽⋆ ∈ (0, 1) and the inverse temperate 𝜌⋆ are to be decided. Recall that652

ℒ(𝑊 ) = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;𝑊 )

[𝐿(𝑥; 𝑧)] = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;𝑊 )

[𝑧⊤𝑀𝑥] .

Let us pick the parameter matrix 𝑊 = −𝑀/𝜆. Let us now fix a 𝑧 ∈ 𝜓ℐ(ℐ). For the given matrix653

𝑀 , we can consider the finite set of values 𝑉 obtained by the quadratic forms {𝑧⊤𝑀𝑥}𝑥∈𝜓𝑆(𝑆). We654

further cluster these values so that they have distance at least 𝜖 between each other. We consider the655

level sets 𝐶𝑖 where 𝐶1 is the subset of 𝑆 with minimum value 𝑣1(= 𝑣1(𝑧)) ∈ 𝑉 , 𝐶2 is the subset656

with the second smallest 𝑣2(= 𝑣2(𝑧)) ∈ 𝑉 , etc. For fixed 𝑧 ∈ 𝜓ℐ(ℐ), we have that657

E
𝑥∼𝑝(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥] = (1− 𝛽⋆) E
𝑥∼𝜑(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥] + 𝛽⋆ E
𝑥∼𝜑(·;𝑧;−𝜌⋆𝑀/𝜆)

[𝑧⊤𝑀𝑥] ,

where 𝜑 comes from (1). We note that658

Pr
𝑥∼𝜑(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥 ∈ 𝐶𝑖] =
|𝐶𝑖|𝑒−𝑣𝑖/𝜆∑︀
𝑗 |𝐶𝑗 |𝑒−𝑣𝑗/𝜆

.

We claim that, by letting 𝜆→ 0, the above measure concentrates uniformly on 𝐶1. The worst case659

scenario is when |𝐶2| = |𝑆| − |𝐶1| and 𝑣2 = 𝑣1 + 𝜖. Then we have that660

Pr
𝑥∼𝜑(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥 ∈ 𝐶2] =
|𝐶2|/|𝐶1|𝑒(−𝑣2+𝑣1)/𝜆

1 + |𝐶2|/|𝐶1|𝑒(−𝑣2+𝑣1)/𝜆
≤ 𝛿 ,

when 1/𝜆 > log(|𝜓𝑆(𝑆)|/𝛿)/𝜖, since in the worst case |𝐶2|/|𝐶1| = Ω(|𝜓𝑆(𝑆)|). Using this choice661

of 𝜆 and taking expectation over 𝑧, we get that662

E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥] ≤ (1−𝛽⋆) E
𝑧∼ℛ

[︂
(1− 𝛿) min

𝑥∈𝜓𝑆(𝑆)
𝐿(𝑥; 𝑧) + 𝛿𝑣2(𝑧)

]︂
+𝛽⋆ E

𝑥∼𝜑(·;𝑧;−𝜌⋆𝑀/𝜆)
[𝑧⊤𝑀𝑥] .

First, we remark that by taking 𝜌⋆ = poly(𝛼, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ), the last term in the right-hand side663

of the above expression can be replaced by the expected score of an almost-uniform solution (see664

Lemma 3 and Proposition 8), which is at most poly(𝐷𝑆 , 𝐷ℐ , 𝐶)2
−|𝜓𝑆(𝑆)| (and which is essentially665

negligible). Finally, one can pick 𝛽⋆, 𝛿 = poly(𝜖, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ) so that666

ℒ(−𝑀/𝜆) = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;−𝑀/𝜆)

[𝑧⊤𝑀𝑥] ≤ E
𝑧∼ℛ

[︂
min

𝑥∈𝜓𝑆(𝑆)
𝐿(𝑥; 𝑧)

]︂
+ 𝜖 .

This implies that 𝒫 is complete by letting 𝑊 = −𝑀/𝜆 ∈ 𝒲 . This means that one can take𝒲 be a667

ball centered at 0 with radius (of 𝜖-sub-optimality) to be of order at least 𝐵 = ‖𝑀‖F/𝜆.668

D Compression669

Proposition 3 (Compression). Consider 𝜖 > 0 and a prior ℛ over ℐ. Assume that Assumption 1670

holds. There exist 𝛽⋆, 𝜌⋆ ∈ (0, 1) and𝒲 such that the family of solution generators 𝒫 of Equation (5)671

is compressed.672

Proof. We have that the bit complexity to represent the mixing weight 𝛽⋆ is polylog(𝐷𝑆 , 𝐷ℐ , 𝐶, 1/𝜖)673

and the description size of𝒲 is polynomial in [ℐ] and in log(1/𝜖). This follows from Assumption 1674

since the feature dimensions 𝑛𝑋 and 𝑛𝑍 are poly([ℐ]) and 𝒲 is a ball centered at 0 with radius675

𝑂(𝐵), where 𝐵 = ‖𝑀‖F/𝜆 ≤ 𝐶/𝜆, which are also poly([ℐ]/𝜖).676

16



E Efficiently Optimizable677

Proposition 4 (Efficiently Optimizable). Consider 𝜖 > 0 and a prior ℛ over ℐ. Assume that678

Assumption 1 holds. There exist 𝛽⋆, 𝜌⋆ ∈ (0, 1) and𝒲 such that family of solution generators 𝒫 of679

Equation (5) is efficiently optimizable using Projected SGD, where the projection set is𝒲 .680

The proof of this proposition is essentially decomposed into two parts: first, we show that the681

entropy-reularized loss of Equation (2) is quasar convex and then apply the projected SGD algorithm682

to ℒ𝜆.683

Recall that 𝐻(𝑊 ) = E𝑧∼ℛ E𝑥∼𝜑(·;𝑧;𝑊 )[log 𝜑(𝑥; 𝑧;𝑊 )]. Let 𝑅 be a weighted sum (to be in684

accordance with the mixture structure of 𝒫) of negative entropy regularizers685

𝑅(𝑊 ) = (1− 𝛽⋆)𝐻(𝑊 ) +
𝛽⋆

𝜌⋆
𝐻(𝜌⋆𝑊 ) , (1)

where 𝛽⋆, 𝜌⋆ are the fixed parameters of 𝒫 (recall Equation (5)). We define the regularized loss686

ℒ𝜆(𝑊 ) = ℒ(𝑊 ) + 𝜆𝑅(𝑊 ) , (2)

where687

ℒ(𝑊 ) = E
𝑧∼ℛ

E
𝑥∼𝑝(·;𝑧;𝑊 )

[𝐿(𝑧;𝑥)] , 𝑝(𝑊 ) ∈ 𝒫 .

E.1 Quasar Convexity of the Regularized Loss688

In this section, we show that ℒ𝜆 of Equation (2) is quasar convex. We restate Proposition 1.689

Proposition 5 (Quasar Convexity). Consider 𝜖 > 0 and a priorℛ over ℐ . Assume that Assumption 1690

holds. The function ℒ𝜆 of Equation (2) with domain𝒲 is poly(𝐶,𝐷𝑆 , 𝐷ℐ , 1/𝜖, 1/𝛼)-quasar convex691

with respect to −𝑀/𝜆 on the domain𝒲 .692

Proof. We can write the loss ℒ𝜆 as693

ℒ𝜆(𝑊 ) = E
𝑧∼ℛ

[ℒ𝜆,𝑧(𝑊 )] = E
𝑧∼ℛ

[ℒ𝑧(𝑊 ) + 𝜆𝑅𝑧(𝑊 )] ,

where the mappings ℒ𝑧 and 𝑅𝑧 are instance-specific (i.e., we have fixed 𝑧). We can make use of694

Lemma 1, which states that linear combinations of quasar convex (with the same minimizer) remain695

quasar convex. Hence, since the functions ℒ𝜆,𝑧 have the same minimizer −𝑀/𝜆, it suffices to show696

quasar convexity for a particular fixed instance mapping, i.e., it sufffices to show that the function697

ℒ𝜆,𝑧(𝑊 ) = ℒ𝑧(𝑊 ) + 𝜆𝑅𝑧(𝑊 )

is quasar convex. Recall that 𝑊 is a matrix of dimension 𝑛𝑍 × 𝑛𝑋 . To deal with the function ℒ𝜆,𝑧 ,698

we consider the simpler function that maps vectors instead of matrices to real numbers. For some699

vector 𝑐, let ℒvec
𝜆 : R𝑛𝑋 → R be700

ℒvec
𝜆 (𝑤) = E

𝑥∼𝑝(·;𝑤)
[𝑐 · 𝑥] + 𝜆𝑅vec(𝑤) , (3)

where for any vector 𝑤 ∈ R𝑛𝑋 , we define the probability distribution 𝜑(·;𝑤) over the solution space701

𝑋 = 𝜓𝑆(𝑆) with probability mass function702

𝜑(𝑥;𝑤) =
𝑒𝑤·𝑥∑︀
𝑦∈𝑋 𝑒

𝑤·𝑦 .

We then define703

𝑝(·;𝑤) = (1− 𝛽⋆)𝜑(·;𝑤) + 𝛽⋆𝜑(·; 𝜌⋆𝑤) ,

and 𝑅vec(𝑤) = (1 − 𝛽⋆)𝐻(𝑤) + 𝛽⋆

𝜌⋆𝐻(𝜌⋆𝑤) (this is a essentially a weighted sum of regularizers,704

needed to simplify the proof) with 𝐻(𝑤) = E𝑥∼𝜑(·;𝑤) log 𝜑(𝑥,𝑤). These quantities are essentially705

the fixed-instance analogues of Equations (5) and (2). The crucial observation is that by taking706

𝑐 = 𝑧⊤𝑀 and applying the chain rule we have that707

∇𝑊ℒ𝜆,𝑧(𝑊 ) = 𝑧 ·
[︀
∇𝑤ℒvec

𝜆 (𝑧⊤𝑊 )
]︀⊤

. (4)

17



This means that the gradient of the fixed-instance objective ℒ𝜆,𝑧 is a matrix of dimension 𝑛𝑍 × 𝑛𝑋708

that is equal to the outer product of the instance featurization 𝑧 and the gradient of the simpler709

function ℒvec
𝑤 evaluated at 𝑧⊤𝑊 . Let us now return on showing that ℒ𝜆,𝑧 is quasar convex. To this710

end, we observe that711

∇𝑊ℒ𝜆,𝑧(𝑊 ) ·
(︂
𝑊 +

𝑀

𝜆

)︂
= ∇𝑤ℒvec

𝜆 (𝑧⊤𝑊 ) ·
(︂
𝑧⊤𝑊 + 𝑧⊤

𝑀

𝜆

)︂
.

This means that, since 𝑧 is fixed, it suffices to show that the function ℒvec
𝜆 is quasar convex. We712

provide the next key proposition that deals with issue. This result is one the main technical aspects of713

this work and its proof can be found in Appendix E.2.714

In the following, intuitively 𝒳 is the post-featurization instance space and 𝒵 is the parameter space.715

Proposition 6. Consider 𝜖, 𝜆 > 0. Let ‖𝑐‖2 ≤ 𝐶1. Let 𝒵 be an open ball centered at 0 with716

diameter 2𝐶1/𝜆. Let 𝒳 be a space of diameter 𝐷 and let Var𝑥∼𝑈(𝒳 )[𝑣 · 𝑥] ≥ 𝛼‖𝑣‖22 for any 𝑣 ∈ 𝒵 .717

The function ℒvec
𝜆 (𝑤) = E𝑥∼𝑝(·;𝑤)[𝑐 · 𝑥] + 𝜆𝑅vec(𝑤) is poly(1/𝐶1, 1/𝐷, 𝜖, 𝛼)-quasar convex with718

respect to −𝑐/𝜆 on 𝒵 .719

We can apply the above result with 𝑐 = 𝑧⊤𝑀,𝑤 = 𝑧⊤𝑊,𝐷 = 𝐷𝑆 and 𝐶1 = 𝐷ℐ𝐶. These give that720

the quasar convexity parameter 𝛾 is of order 𝛾 = poly(𝜖, 𝛼, 1/𝐶, 1/𝐷𝑆 , 1/𝐷ℐ). Since we have that721

ℒvec
𝜆 (𝑧⊤𝑊 ) = ℒ𝜆,𝑧(𝑊 ), we get that722

∇𝑊ℒ𝜆,𝑧(𝑊 ) · (𝑊 +𝑀/𝜆) ≥ 𝛾(ℒ𝜆,𝑧(𝑊 )− ℒ𝜆,𝑧(−𝑀/𝜆)) .

This implies that ℒ𝜆,𝑧 is 𝛾-quasar convex with respect to the minimizer −𝑀/𝜆 and completes the723

proof using Lemma 1.724

E.2 The Proof of Proposition 6725

Let us consider ℒvec
𝜆 to be a real-valued differentiable function defined on 𝒵 . Let 𝑤,−𝑐/𝜆 ∈ 𝒵 and726

let 𝐿 be the line segment between them with 𝐿 ∈ 𝒵 . The mean value theorem implies that there727

exists 𝑤′ ∈ 𝐿 such that728

ℒvec
𝜆 (𝑤)− ℒvec

𝜆 (−𝑐/𝜆) = ∇𝑤ℒvec
𝜆 (𝑤′) · (𝑤 + 𝑐/𝜆) ≤ ‖∇ℒvec

𝜆 (𝑤′)‖2‖𝑤 + 𝑐/𝜆‖2 .

Now we have that ℒvec
𝜆 has bounded gradient (see Lemma 2) and so we get that729

‖∇𝑤ℒvec
𝜆 (𝑤′)‖2 ≤ 𝐷2‖𝑐+ 𝜆𝑤′‖2 = 𝐷2𝜆‖𝑤′ + 𝑐/𝜆‖2 ≤ 𝐷2𝜆‖𝑤 + 𝑐/𝜆‖2 ,

since 𝑤′ ∈ 𝐿. This implies that730

ℒvec
𝜆 (𝑤)− ℒvec

𝜆 (−𝑐/𝜆) ≤ 𝐷2𝜆‖𝑤 + 𝑐/𝜆‖22 ≤
1

𝛾
∇ℒvec

𝜆 (𝑤) · (𝑤 + 𝑐/𝜆) ,

where 1/𝛾 = poly(𝐶1,𝐷)
𝜖3𝛼2 . The last inequality is an application of the correlation lower bound (see731

Lemma 3).732

In the above proof, we used two key lemmas: a bound for the norm of the gradient and a lower bound733

for the correlation. In the upcoming subsections, we prove these two results.734

E.2.1 Bounded Gradient Lemma and Proof735

Lemma 2 (Bounded Gradient Norm of ℒvec
𝜆 ). Consider 𝜖, 𝜆 > 0. Let 𝒵 be the domain of ℒvec

𝜆 of736

(3). Let 𝒳 be a space of diameter 𝐷. For any 𝑤 ∈ 𝒵 , it holds that737

‖∇𝑤ℒvec
𝜆 (𝑤)‖2 ≤ 𝑂(𝐷2)‖𝑐+ 𝜆𝑤‖2 .

Proof. We have that738

∇𝑤ℒvec
𝜆 (𝑤) = (1− 𝛽⋆)𝐺𝑤 + 𝛽⋆𝜌⋆𝐺𝜌⋆𝑤 ,

where739

𝐺𝑤 = E
𝑥∼𝜑(·;𝑤)

[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝑤)

[(𝑐+ 𝜆𝑤) · 𝑥] E
𝑥∼𝜑(·;𝑤)

[𝑥] ,

18



and740

𝐺𝜌⋆𝑤 = E
𝑥∼𝜑(·;𝜌⋆𝑤)

[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝜌⋆𝑤)

[(𝑐+ 𝜆𝑤) · 𝑥] E
𝑥∼𝜑(·;𝜌⋆𝑤)

[𝑥] .

Note that since 𝑥 ∈ 𝒳 , it holds that ‖𝑥‖2 ≤ 𝐷. Hence741

‖𝐺𝑤‖2 = sup
𝑣:‖𝑣‖2=1

|𝑣 ·𝐺𝑤| ≤ 2𝐷2‖𝑐+ 𝜆𝑤‖2 .

Moreover, we have that742

‖𝐺𝜌⋆𝑤‖2 ≤ 2𝐷2‖𝑐+ 𝜆𝑤‖2 .
This means that743

‖∇𝑤ℒvec
𝜆 (𝑤)‖2 ≤ 2(1− 𝛽⋆)‖𝑐+ 𝜆𝑤‖2𝐷2 + 2𝛽⋆𝜌⋆‖𝑐+ 𝜆𝑤‖2𝐷2 = 𝑂(𝐷2)‖𝑐+ 𝜆𝑤‖2 .

744

E.2.2 Correlation Lower Bound Lemma and Proof745

The following lemma is the second ingredient in order to show Proposition 6.746

Lemma 3 (Correlation Lower Bound for ℒvec
𝜆 ). Let 𝜆 > 0. Let ‖𝑐‖2 ≤ 𝐶1. Let 𝒵 be an open ball747

centered at 0 with diameter 𝐵 = 2𝐶1/𝜆. Let 𝒳 be a space of diameter 𝐷. Assume that 𝑤 ∈ 𝒵 and748

Var𝑥∼𝑈(𝒳 )[(𝑐 + 𝜆𝑤) · 𝑥] ≥ 𝛼‖𝑐 + 𝜆𝑤‖22 for some 𝛼 > 0. Then, for any 𝛽⋆ ∈ (0, 1), there exists749

𝜌⋆ > 0 such that it holds that750

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+ 𝜆𝑤) = Ω

(︀
𝛽⋆𝛼2/(𝐵𝐷3)‖𝑐+ 𝜆𝑤‖22

)︀
,

where ℒvec
𝜆 is the regularized loss of Proposition 6, 𝜌⋆ is the scale in the second component of the751

mixture of (5) and 𝛽⋆ ∈ (0, 1) is the mixture weight.752

First, in Lemma 4 and Lemma 5, we give a formula for the desired correlation∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+𝜆𝑤)753

and, then we can provide a proof for Lemma 3 by lower bounding this formula.754

Lemma 4 (Correlation with Regularization). Consider the function 𝑔(𝑤) = E𝑥∼𝜑(·;𝑤)[𝑐·𝑥]+𝜆𝐻(𝑤),755

where 𝐻 is the negative entropy regularizer. Then it holds that756

∇𝑤𝑔(𝑤) · (𝑐+ 𝜆𝑤) = Var𝑥∼𝜑(·;𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] .

Proof. Let us consider the following objective function:757

𝑔(𝑤) = E
𝑥∼𝜑(·;𝑤)

[𝑐 · 𝑥] + 𝜆𝐻(𝑤) , 𝜑(𝑥;𝑤) =
exp(𝑤 · 𝑥)∑︀
𝑦∈𝒳 exp(𝑤 · 𝑦)

,

where 𝐻 is the negative entropy regularizer, i.e.,758

𝐻(𝑤) = E
𝑥∼𝜑(·;𝑤)

[log 𝜑(𝑥;𝑤)] = E
𝑥∼𝜑(·;𝑤)

[𝑤 · 𝑥]− log

⎛⎝∑︁
𝑦∈𝒳

𝑒𝑤·𝑦

⎞⎠ .

The gradient of 𝑔 with respect to 𝑤 ∈ 𝒲 is equal to759

∇𝑤𝑔(𝑤) = E
𝑥∼𝜑(·;𝑤)

[(𝑐 · 𝑥)∇𝑤 log 𝜑(𝑥;𝑤)] + 𝜆∇𝑤𝐻(𝑤) .

It holds that760

∇𝑤 log 𝜑(𝑥;𝑤) = ∇𝑤

⎛⎝𝑤 · 𝑥− log
∑︁
𝑦∈𝒳

𝑒𝑤·𝑦

⎞⎠ = 𝑥− E
𝑥∼𝜑(·;𝑤)

[𝑥] ,

and761

∇𝐻(𝑤) = E
𝑥∼𝜑(·;𝑤)

[𝑥]+ E
𝑥∼𝜑(·;𝑤)

[(𝑤·𝑥)∇𝑤 log 𝜑(𝑥;𝑤)]− E
𝑥∼𝜑(·;𝑤)

[𝑥] = E
𝑥∼𝜑(·;𝑤)

[(𝑤·𝑥)∇𝑤 log 𝜑(𝑥;𝑤)] .

So, we get that762

∇𝑤𝑔(𝑤) = E
𝑥∼𝜑(·;𝑤)

[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝑤)

[(𝑐+ 𝜆𝑤) · 𝑥] E
𝑥∼𝜑(·;𝑤)

[𝑥] .

Note that763

∇𝑤𝑔(𝑤) · (𝑐+ 𝜆𝑤) = Var𝑥∼𝜑(·;𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] .
764

19



Lemma 5 (Gradient with Regularization and Mixing). For any 𝜖 > 0, for the family of solution765

generators 𝒫 = {𝑝(·;𝑤) = (1 − 𝛽⋆)𝜑(·;𝑤) + 𝛽⋆𝜑(·; 𝜌⋆𝑤) : 𝑤 ∈ 𝒲} and the objective ℒvec
𝜆 of766

Equation (3), it holds that767

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+𝜆𝑤) = (1− 𝛽⋆)Var𝑥∼𝜑(·;𝑤)[(𝑐+𝜆𝑤) · 𝑥] + 𝛽⋆𝜌⋆Var𝑥∼𝜑(·;𝜌⋆𝑤)[(𝑐+𝜆𝑤) · 𝑥] ,

for any 𝜆 > 0.768

Proof. Let us first consider the scaled parameter 𝜌𝑤 ∈ 𝒲 for some 𝜌 > 0. Then it holds that769

∇𝑤 E
𝑥∼𝜑(·;𝜌𝑤)

[𝑐·𝑥] = E
𝑥∼𝜑(·;𝜌𝑤)

[︂
(𝑐 · 𝑥)

(︂
𝜌𝑥− E

𝑥∼𝜑(·;𝜌𝑤)
[𝜌𝑥]

)︂]︂
= 𝜌 E

𝑥∼𝜑(·;𝜌𝑤)

[︂
(𝑐 · 𝑥)

(︂
𝑥− E

𝑥∼𝜑(·;𝜌𝑤)
[𝑥]

)︂]︂
.

Moreover, the negative entropy regularizer at 𝜌𝑤 is770

𝐻(𝜌𝑤) = E
𝑥∼𝜑(·;𝜌𝑤)

[(𝜌𝑤) · 𝑥]− log
∑︁
𝑦∈𝒳

𝑒(𝜌𝑤)·𝑦 .

It holds that771

∇𝑤𝐻(𝜌𝑤) = E
𝑥∼𝜑(·;𝜌𝑤)

[(𝜌𝑤·𝑥)∇𝑤 log 𝜑(𝑥; 𝜌𝑤)] = 𝜌2
(︂

E
𝑥∼𝜑(·;𝜌𝑤)

[(𝑤 · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝜌𝑤)

[𝑤 · 𝑥] E
𝑥∼𝜑(·;𝜌𝑤)

[𝑥]

)︂
.

We consider the objective function ℒvec
𝜆 to be defined as follows: first, we take772

𝑝(·;𝑤) = (1− 𝛽⋆)𝜑(·;𝑤) + 𝛽⋆𝜑(·; 𝜌⋆𝑤) ,

i.e., 𝑝(·;𝑤) is the mixture of the probability measures 𝜑(·;𝑤) and 𝜑(·; 𝜌⋆𝑤) with weights 1− 𝛽⋆ and773

𝛽⋆ respectively for some scale 𝜌⋆ > 0. Moreover, we take 𝑅vec(𝑤) = (1− 𝛽⋆)𝐻(𝑤) + 𝛽⋆

𝜌⋆𝐻(𝜌⋆𝑤).774

Then we define our regularized loss ℒvec
𝜆 to be775

ℒvec
𝜆 (𝑤) = E

𝑥∼𝑝(·;𝑤)
[𝑐 · 𝑥] + 𝜆𝑅vec(𝑤) .

Using Lemma 4 and the above calculations, we have that776

∇𝑤ℒvec
𝜆 (𝑤) = (1− 𝛽⋆)∇𝑤 E

𝑥∼𝜑(·;𝑤)
[𝑐 · 𝑥] + 𝜆(1− 𝛽⋆)∇𝑤𝐻(𝑤) + 𝛽⋆∇ E

𝑥∼𝜑(·;𝜌⋆𝑥)
[𝑐 · 𝑥] + 𝜆

𝛽⋆

𝜌⋆
∇𝑤𝐻(𝜌⋆𝑤)

= (1− 𝛽⋆)
(︂

E
𝑥∼𝜑(·;𝑤)

[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝑤)

[(𝑐+ 𝜆𝑤) · 𝑥] E
𝑥∼𝜑(·;𝑤)

[𝑥]

)︂
+

+ 𝛽⋆𝜌⋆
(︂

E
𝑥∼𝜑(·;𝜌⋆𝑤)

[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝜌⋆𝑤)

[(𝑐+ 𝜆𝑤) · 𝑥] E
𝑥∼𝜑(·;𝜌⋆𝑤)

[𝑥]

)︂
.

The above calculations yield777

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+ 𝜆𝑤) = (1− 𝛽⋆)Var𝑥∼𝜑(·;𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] + 𝛽⋆𝜌⋆Var𝑥∼𝜑(·;𝜌⋆𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] ,

and this concludes the proof.778

The above correlation being positive intuitively means that performing gradient descent to ℒvec
𝜆 gives779

that the parameter 𝑤 converges to −𝑐/𝜆, the point that achieves completeness for that objective.780

However, to obtain fast convergence, we need to show that the above correlation is non-trivial.781

This means that our goal in order to prove Lemma 3 is to provide a lower bound for the above782

quantity, i.e., it suffices to give a non-trivial lower bound for the variance of the random variable783

(𝑐 + 𝜆𝑤) · 𝑥 with respect to the probability measure 𝜑(·; 𝜌⋆𝑤). It is important to note that in the784

above statement we did not fix the value of 𝜌⋆. We can now make use of Proposition 8. Intuitively,785

by taking the scale parameter appearing in the mixture 𝜌⋆ to be sufficiently small, we can manage786

to provide a lower bound for the variance of (𝑐 + 𝜆𝑤) · 𝑥 with respect to the almost uniform787

measure, i.e, the second summand of the above right-hand side expression has significant contribution.788

We remark that 𝜌 corresponds to the inverse temperature parameter. Hence, our previous analysis789

essentially implies that policy gradient on combinatorial optimization potentially works if the variance790

Var𝑥∼𝜑(·;𝜌𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] is non-vanishing at high temperatures 1/𝜌.791

20



The proof of Lemma 3. Recall that792

𝜑(𝑥;𝑤) =
𝑒𝑤·𝑥∑︀
𝑦∈𝒳 𝑒

𝑤·𝑦 .

Let also 𝐷 be the diameter of 𝒳 and 𝐵 the diameter of 𝒵 . Recall from Lemma 5 that we have that793

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+ 𝜆𝑤) = (1− 𝛽⋆)Var𝑥∼𝑝(·;𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] + 𝛽⋆𝜌⋆Var𝑥∼𝑝(·;𝜌⋆𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] ,

where the scale parameter 𝜌⋆ > 0 is to be decided. This means that794

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+ 𝜆𝑤) ≥ 𝛽⋆𝜌⋆Var𝑥∼𝜑(·;𝜌⋆𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] .

Our goal is now to apply Proposition 8 in order to lower bound the above variance. Applying795

Proposition 8 for 𝜇← 𝜑(·; 𝜌⋆𝑤), 𝑐← 𝑐+ 𝜆𝑤 ∈ 𝒵 and, so for some absolute constant 𝐶0, we can796

pick797

𝜌⋆ = 𝐶0
𝛼

𝐵𝐷3
.

Thus, we have that798

Var𝑥∼𝜑(·;𝜌⋆𝑤)[(𝑐+ 𝜆𝑤) · 𝑥] ≥ Ω(𝛼‖𝑐+ 𝜆𝑤‖22) .
This implies the desired result since799

∇𝑤ℒvec
𝜆 (𝑤) · (𝑐+ 𝜆𝑤) ≥ 𝐶0𝛽

⋆𝛼2/(𝐵𝐷3)‖𝑐+ 𝜆𝑤‖22 .
800

E.3 Convergence for Quasar Convex Functions801

The fact that ℒ𝜆 is quasar convex with respect to −𝑀/𝜆 implies that projected SGD converges to802

that point in a small number if steps and hence the family 𝒫 is efficiently optimizable. The analysis803

is standard (see e.g., [HMR16]). For completeness a proof can be found in Appendix E.3.804

Proposition 7 (Convergence). Consider 𝜖 > 0 and a prior ℛ over ℐ. Assume that Assumption 1805

holds with parameters 𝐶,𝐷𝑆 , 𝐷ℐ , 𝛼. Let 𝑊1, . . . ,𝑊𝑇 be the updates of the SGD algorithm with806

projection set𝒲 performed on ℒ𝜆 of Equation (2) with appropriate step size and parameter 𝜆. Then,807

for the non-regularized objective ℒ, it holds that808

E
𝑡∼𝑈([𝑇 ])

[ℒ(𝑊𝑡)] ≤ ℒ(−𝑀/𝜆) + 𝜖 ,

when 𝑇 ≥ poly(1/𝜖, 1/𝛼,𝐶,𝐷𝑆 , 𝐷ℐ , ‖𝑊0 +𝑀/𝜆‖F).809

Our next goal is to use Proposition 1 and show that standard projected SGD on the objective ℒ𝜆810

converges in a polynomial number of steps. The intuition behind this result is that since the correlation811

between∇ℒ𝜆(𝑊 ) and the direction 𝑀 + 𝜆𝑊 is positive and non-trivial, the gradient field drives the812

optimization method towards the point −𝑀/𝜆.813

Proof. Consider the sequence of matrices 𝑊1, . . . ,𝑊𝑡, . . . ,𝑊𝑇 generated by applying PSGD on ℒ𝜆814

with step size 𝜂 (to be decided) and initial parameter vector 𝑊0 ∈ 𝒲 . We have that ℒ𝜆 is 𝛾-quasar815

convex and is also 𝑂(Γ)-weakly smooth2 since we now show that it is Γ-smooth.816

Lemma 6. ℒ𝜆 is poly(𝐷𝑆 , 𝐷ℐ , 𝐶)-smooth.817

Proof. We have that818

‖∇ℒ𝜆(𝑊 )‖2F = ‖ E
𝑧∼ℛ

[∇ℒ𝜆,𝑧(𝑊 )]‖2F ≤ E
𝑧∼ℛ
‖𝑧‖22‖∇𝑤ℒvec

𝜆 (𝑧⊤𝑊 )‖2F .

It suffices to show that ℒvec
𝜆 is smooth. Recall that819

∇𝑤ℒvec
𝜆 (𝑤) = (1− 𝛽⋆)

(︂
E

𝑥∼𝜑(·;𝑤)
[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E

𝑥∼𝜑(·;𝑤)
[(𝑐+ 𝜆𝑤) · 𝑥] E

𝑥∼𝜑(·;𝑤)
[𝑥]

)︂
+

+ 𝛽⋆𝜌⋆
(︂

E
𝑥∼𝜑(·;𝜌⋆𝑤)

[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]− E
𝑥∼𝜑(·;𝜌⋆𝑤)

[(𝑐+ 𝜆𝑤) · 𝑥] E
𝑥∼𝜑(·;𝜌⋆𝑤)

[𝑥]

)︂
.

2As mentioned in [HMR16], a function 𝑓 is Γ-weakly smooth if for any point 𝜃, ‖∇𝑓(𝜃)‖2 ≤ Γ(𝑓(𝜃) −
𝑓(𝜃⋆)). Moreover, a function 𝑓 that is Γ-smooth (in the sense ‖∇2𝑓‖ ≤ Γ), is also 𝑂(Γ)-weakly smooth.

21



This means that820

‖∇2
𝑤ℒvec

𝜆 (𝑤)‖2F ≤ (1− 𝛽⋆)(𝐴1 +𝐴2) + 𝛽⋆𝜌⋆(𝐴3 +𝐴4) ,

where821

𝐴1 =

⃦⃦⃦⃦
∇𝑤 E

𝑥∼𝜑(·;𝑤)
[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]

⃦⃦⃦⃦2
F

, 𝐴2 =

⃦⃦⃦⃦
∇𝑤 E

𝑥∼𝜑(·;𝑤)
[(𝑐+ 𝜆𝑤) · 𝑥] E

𝑥∼𝜑(·;𝑤)
[𝑥]

⃦⃦⃦⃦2
F

,

822

𝐴3 =

⃦⃦⃦⃦
∇𝑤 E

𝑥∼𝜑(·;𝜌⋆𝑤)
[((𝑐+ 𝜆𝑤) · 𝑥)𝑥]

⃦⃦⃦⃦2
F

, 𝐴4 =

⃦⃦⃦⃦
∇𝑤 E

𝑥∼𝜑(·;𝜌⋆𝑤)
[(𝑐+ 𝜆𝑤) · 𝑥] E

𝑥∼𝜑(·;𝜌⋆𝑤)
[𝑥]

⃦⃦⃦⃦2
F

.

Standard computation of these values yields that, since𝐷𝑆 and𝐷ℐ are bounds to 𝑥 and 𝑧 respectively,823

we have that ℒ𝜆 is smooth with parameter poly(𝐷𝑆 , 𝐷ℐ , 𝐶).824

Let 𝑉 be the variance of the unbiased estimator used for∇𝑊ℒ𝜆(𝑊 ). We can apply the next result of825

[HMR16].826

Lemma 7 ([HMR16]). Suppose the objective function 𝑓 is 𝛾-weakly quasi convex and Γ-weakly827

smooth, and let 𝑟(·) be an unbiased estimator for ∇𝑓(𝜃) with variance 𝑉 . Moreover, suppose the828

global minimum 𝜃 belongs to𝒲 , and the initial point 𝜃0 satisfies ‖𝜃0 − 𝜃‖2 ≤ 𝑅. Then projected829

stochastic gradient descent with a proper learning rate returns 𝜃𝑇 in 𝑇 iterations with expected error830

E
𝑡∼𝑈([𝑇 ])

𝑓(𝜃𝑡)− 𝑓(𝜃) ≤ max

{︃
Γ𝑅2

𝛾2𝑇
,
𝑅
√
𝑉

𝛾
√
𝑇

}︃
.

We apply the above result toℒ𝜆 in order to find matrices𝑊1, ...,𝑊𝑇 that achieve good loss on average831

compared to −𝑀/𝜆. Moreover, using a batch SGD update, we can take 𝑉 to be also polynomial832

in the crucial parameters of the problem. We note that one can adapt the above convergence proof833

and show that the actual loss ℒ (and not the loss ℒ𝜆) are close after sufficiently many iterations (as834

indicated by the above lemma). We know that the Frobenius norm of the gradient of ℒ(𝑊 ) is at most835

of order 𝑂(𝐷2
ℐ𝐶𝐷

2
𝑆). We can apply the mean value theorem in high dimensions (by taking𝒲 to836

be an open ball of radius 𝑂(𝐵)) and this yields that the difference between the values of ℒ(𝑊𝑇 )837

and ℒ(−𝑀/𝜆) is at most 𝐷2
ℐ𝐶𝐷

2
𝑆‖𝑊𝑡 +𝑀/𝜆‖2F. However, the right-hand side is upper bounded838

by the correlation between∇ℒ𝜆(𝑊𝑡) and 𝑊𝑡 +𝑀/𝜆. Hence, we can still use this correlation as a839

potential in order to minimize ℒ. This implies that the desired convergence guarantee holds as long840

as 𝑇 ≥ poly(1/𝜖, 1/𝛼,𝐶,𝐷𝑆 , 𝐷ℐ , ‖𝑊0 +𝑀/𝜆‖F) .841

F Deferred Proofs: Variance under Almost Uniform Distributions842

This section is a technical section that states some properties of exponential families. We use some843

standard notation, such as 𝑤 and 𝑥, for the statements and the proofs but we underline that these844

symbols do not correspond to the notation in the main body of the paper.845

We consider the parameter space Θ and for any parameter 𝑤 ∈ Θ, we define the probability846

distribution 𝜑(·;𝑤) over a space 𝒳 with density847

𝜑(𝑥;𝑤) =
𝑒𝑤·𝑥∑︀
𝑦∈𝒳 𝑒

𝑤·𝑦 .

In this section, our goal is to relate the variance of 𝑐 · 𝑥 under the measure 𝜑(·; 0) (uniform case) and848

𝜑(·; 𝜌⋆𝑤) for some 𝑤 ∈ 𝒲 and some sufficiently small 𝜌⋆ (almost uniform case). The main result of849

this section follows.850

Proposition 8 (Variance Lower Bound Under Almost Uniform Distributions). Assume that the851

variance of 𝑐 · 𝑥 under the uniform distribution over 𝒳 , whose diameter is 𝐷, is lower bounded by852

𝛼‖𝑐‖22. Moreover assume that 𝑤 ∈ Θ with ‖𝑤‖2 ≤ 𝐵. Then, setting 𝜌⋆ = 𝑂(𝛼/(𝐵𝐷3)), it holds853

that Var𝑥∼𝜑(·;𝜌⋆𝑤)[𝑐 · 𝑥] = Ω(𝛼‖𝑐‖22).854

We first provide a general abstract lemma that relates the variance of the uniform distribution 𝑈 over855

𝒳 to the variance of an almost uniform probability measure 𝜇. For simplicity, we denote the uniform856

distribution over 𝒳 with 𝑈 = 𝑈(𝒳 ).857

22



Lemma 8. Let 𝑤 ∈ Θ and 𝑥 ∈ 𝒳 with ‖𝑥‖2 ≤ 𝐷. Consider the uniform probability measure 𝑈858

over 𝒳 and let 𝜇 over 𝒳 be such that there exist 𝜖1, 𝜖2 > 0 with:859

• ‖E𝑥∼𝑈 [𝑥]−E𝑥∼𝜇[𝑥]‖2 ≤ 𝜖1, and,860

• 𝑤⊤ E𝑥∼𝜇[𝑥𝑥
⊤]𝑤 ≥ 𝑤⊤ E𝑥∼𝑈 [𝑥𝑥

⊤]𝑤 − 𝜖2‖𝑤‖22.861

Then it holds that Var𝑥∼𝜇[𝑤 · 𝑥] ≥ Var𝑥∼𝑈 [𝑤 · 𝑥]− 3max{𝜖21, 𝜖1𝐷, 𝜖2}‖𝑤‖22.862

Proof. We have that863

Var𝑥∼𝜇[𝑤 · 𝑥] = E
𝑥∼𝜇

[︀
(𝑤 · 𝑥)2

]︀
−

(︂
E
𝑥∼𝜇

[𝑤 · 𝑥]
)︂2

.

We first deal with upper-bounding the square of the first moment. Note that864

𝑤 ·
(︂

E
𝑥∼𝜇

[𝑥]− E
𝑥∼𝑈

[𝑥]

)︂
≤ ‖𝑤‖2

⃦⃦⃦⃦
E
𝑥∼𝜇

[𝑥]− E
𝑥∼𝑈

[𝑥]

⃦⃦⃦⃦
2

≤ 𝜖1‖𝑤‖2 .

Let us take 𝜖 > 0 (with 𝜖 < 𝜖1) for simplicity to be such that (E𝑥∼𝜇[𝑤 · 𝑥])2 =865

(E𝑥∼𝑈 [𝑤 · 𝑥] + 𝜖‖𝑤‖2)2. This means that866 (︂
E
𝑥∼𝜇

[𝑤 · 𝑥]
)︂2

≤
(︁

E
𝑥∼𝑈

[𝑤 · 𝑥]
)︁2

+ 2𝜖‖𝑤‖2
⃒⃒⃒
E
𝑥∼𝑈

[𝑤 · 𝑥]
⃒⃒⃒
+ 𝜖2‖𝑤‖22

≤
(︁

E
𝑥∼𝑈

[𝑤 · 𝑥]
)︁2

+ 2𝜖𝐷‖𝑤‖22 + 𝜖2‖𝑤‖22 .

Next we lower-bound the second moment. It holds that867

E
𝑥∼𝜇

[︀
(𝑤 · 𝑥)2

]︀
= 𝑤⊤ E

𝑥∼𝜇

[︀
𝑥𝑥⊤

]︀
𝑤 ≥ E

𝑥∼𝑈
[(𝑤 · 𝑥)2]− 𝜖2‖𝑤‖22 ,

for some 𝜖2 > 0. This means that868

Var𝑥∼𝜇(𝑤 · 𝑥) ≥ E
𝑥∼𝑈

[︀
(𝑤 · 𝑥)2

]︀
− 𝜖2‖𝑤‖22 −

(︁
E
𝑥∼𝑈

[𝑤 · 𝑥]
)︁2

− 2𝜖𝐷‖𝑤‖22 − 𝜖2‖𝑤‖22 .

Hence,869

Var𝑥∼𝜇[𝑤 · 𝑥] ≥ Var𝑥∼𝑈 [𝑤 · 𝑥]− 3max{𝜖2, 𝜖21, 𝜖1𝐷}‖𝑤‖22 .
870

Our next goal is to relate 𝜑(·; 𝜌⋆𝑤) with the uniform measure 𝜑(·; 0). According to the above general871

lemma, we have to relate the first and second moments of 𝜑(·; 𝜌⋆𝑤) with the ones of the uniform872

distribution 𝑈 = 𝜑(·; 0).873

The Proof of Proposition 8. Our goal is to apply Lemma 8. First, let us set874

𝑓𝑣(𝜌) = E
𝑥∼𝜑(·;𝜌𝑤)

[𝑣 · 𝑥] ,

for any unit vector 𝑣 ∈ Θ. Then it holds that875 ⃦⃦⃦⃦
E

𝑥∼𝜑(·;0)
[𝑥]− E

𝑥∼𝜑(·;𝜌⋆𝑤)
[𝑥]

⃦⃦⃦⃦
2

= sup
𝑣:‖𝑣‖2=1

|𝑓𝑣(0)− 𝑓𝑣(𝜌⋆)| .

Using the mean value theorem in [0, 𝜌⋆] for any unit vector 𝑣, we have that there exists a 𝜉 = 𝜉𝑣 ∈876

(0, 𝜌⋆) such that877

|𝑓𝑣(0)− 𝑓𝑣(𝜌⋆)| = 𝜌⋆ |𝑓 ′𝑣(𝜉)| .
It suffices to upper bound 𝑓 ′𝑣(𝜉) for any unit vector 𝑣 and 𝜉 ∈ (0, 𝜌⋆). Let us compute 𝑓 ′𝑣. We have878

that879

𝑑𝑓𝑣
𝑑𝜌

=

∫︁
𝑆

(𝑣 · 𝑥) 𝑑
𝑑𝜌

𝑒𝜌(𝑤𝑥)∫︀
𝑆
𝑒𝜌(𝑤𝑦)𝑑𝑦

𝑑𝑥 = E
𝑥∼𝜑(·;𝜌𝑤)

[(𝑣 · 𝑥)(𝑤 · 𝑥)]− E
𝑥∼𝜑(·;𝜌𝑤)

[𝑣 · 𝑥] E
𝑥∼𝜑(·;𝜌𝑤)

[𝑤 · 𝑥] .

23



Since 𝑥 ∈ 𝒳 , we have that880

sup
𝑣:‖𝑣‖2=1

sup
𝜉∈(0,𝜌⋆)

|𝑓 ′𝑣(𝜉)| ≤ 2‖𝑤‖2𝐷2 .

This gives that881 ⃦⃦⃦⃦
E

𝑥∼𝜑(·;0)
[𝑥]− E

𝑥∼𝜑(·;𝜌⋆𝑤)
[𝑥]

⃦⃦⃦⃦
2

≤ 2𝜌⋆‖𝑤‖2𝐷2 .

We then continue with controlling the second moment: it suffices to find 𝜖2 such that for any 𝑣 ∈ Θ,882

it holds883

𝑣⊤ E
𝑥∼𝜑(·;𝜌⋆𝑤)

[𝑥𝑥⊤]𝑣 ≥ 𝑣⊤ E
𝑥∼𝜑(·;0)

[𝑥𝑥⊤]𝑣 − 𝜖2‖𝑣‖22 .

Let us set 𝑔𝑣(𝜌) = E𝑥∼𝜑(·;𝜌𝑤)[(𝑣 · 𝑥)2] for any vector 𝑣 ∈ Θ. We have that884

|𝑔𝑣(0)− 𝑔𝑣(𝜌⋆)| = 𝜌⋆|𝑔′𝑣(𝜉)| ,
where 𝜉 ∈ (0, 𝜌⋆). It holds that885 ⃒⃒⃒⃒

𝑑𝑔𝑣
𝑑𝜌

⃒⃒⃒⃒
=

⃒⃒⃒⃒
E

𝑥∼𝜑(·;𝜌𝑤)
[(𝑣 · 𝑥)2(𝑤 · 𝑥)]− E

𝑥∼𝜑(·;𝜌𝑤)
[(𝑣 · 𝑥)2] E

𝑥∼𝜑(·;𝜌𝑤)
[𝑤 · 𝑥]

⃒⃒⃒⃒
≤ 2‖𝑣‖2‖𝑤‖2𝐷3 .

This gives that for any 𝑣 ∈ Θ, it holds886

𝑣⊤ E
𝑥∼𝜑(·;𝜌⋆𝑤)

[𝑥𝑥⊤]𝑣 ≥ 𝑣⊤ E
𝑥∼𝜑(·;0)

[𝑥𝑥⊤]𝑣 − 2𝜌⋆‖𝑤‖2𝐷3‖𝑣‖22 .

Note that the above holds for 𝑣 = 𝑐 too. Lemma 8 gives us that887

Var𝑥∼𝜑(·;𝜌⋆𝑤)[𝑐 · 𝑥] ≥ Var𝑥∼𝜑(·;0)[𝑐 · 𝑥]− 3max{𝜖2, 𝜖21, 𝜖1𝐷}‖𝑐‖22 ,
where 𝜖1 = 2𝜌⋆𝐵𝐷2 and 𝜖2 = 2𝜌⋆𝐵𝐷3. This implies that by picking888

𝜌⋆ = 𝐶0
𝛼

𝐵𝐷3

for some universal constant 𝐶0, we get that889

Var𝑥∼𝜑(·;𝜌⋆𝑤)[𝑐 · 𝑥] = Ω(𝛼‖𝑐‖22) .
890

In this section, we considered 𝜌⋆ as indicated by the above Proposition 8.891

G Applications to Combinatorial Problems892

In this section we provide a series of combinatorial applications of our theoretical framework893

(Theorem 1). In particular, for each one of the following combinatorial problems (that provably894

satisfy Assumption 1), it suffices to specify the feature mappings 𝜓𝑆 , 𝜓ℐ and compute the parameters895

𝐶,𝐷𝑆 , 𝐷ℐ , 𝛼.896

G.1 Maximum Cut, Maximum Flow and Max-𝑘-CSPs897

We first provide a general lemma for the variance of ”linear tensors” under the uniform measure.898

Lemma 9 (Variance Lower Bound Under Uniform). Let 𝑛, 𝑘 ∈ N. For any 𝑤 ∈ R(
𝑛
𝑘), it holds that899

Var𝑥∼𝑈({−1,1}𝑛)[𝑤 · 𝑥⊗𝑘] =
∑︁

∅̸=𝑆⊆[𝑛]:|𝑆|≤𝑘

𝑤2
𝑆 .

Proof. For any 𝑤 ∈ R(
𝑛
𝑘), it holds that900

Var𝑥∼𝑈({−1,1}𝑛)[𝑤 · 𝑥⊗𝑘] = E
𝑥∼𝑈({−1,1}𝑛)

[︀
(𝑤 · 𝑥⊗𝑘)2

]︀
− E
𝑥∼𝑈({−1,1}𝑛)

[𝑤 · 𝑥⊗𝑘]2 .

Note that 𝑤 ∈ R(
𝑛
𝑘) can be written as 𝑤 = (𝑤∅, 𝑤−∅) where 𝑤∅ corresponds to the constant term of901

the Fourier expansion and 𝑤−∅ = (𝑤𝑆)∅̸=𝑆⊆[𝑛]:|𝑆|≤𝑘 is the vector of the remaining coordinates. The902

Fourier expansion implies that903

Var𝑥∼𝑈({−1,1}𝑛)[𝑤 · 𝑥⊗𝑘] = ‖𝑤−∅‖22 ,
which yields the desired equality for the variance.904

24



G.1.1 Maximum Cut905

Let us consider a graph with 𝑛 nodes and weighted adjacency matrix 𝐴 with non-negative weights.906

Maximum cut is naturally associated with the Ising model and, intuitively, our approach does not907

yield an efficient algorithm for solving Max-Cut since we cannot efficiently sample from the Ising908

model in general. To provide some further intuition, consider a single-parameter Ising model for909

𝐺 = (𝑉,𝐸) with Hamiltonian 𝐻𝐺(𝑥) =
∑︀

(𝑖,𝑗)∈𝐸
1+𝑥𝑖𝑥𝑗

2 . Then the partition function is equal910

to 𝑍𝐺(𝛽) =
∑︀
𝑥∈{−1,1}𝑉 exp(𝛽𝐻𝐺(𝑥)). Note that when 𝛽 > 0, the Gibbs measure favours911

configurations with alligned spins (ferromagnetic case) and when 𝛽 < 0, the measure favours912

configurations with opposite spins (anti-ferromagnetic case). The antiferromagnetic Ising model913

appears to be more challenging. According to physicists the main reason is that its Boltzmann914

distribution is prone to a complicated type of long-range correlation known as ‘replica symmetry915

breaking’ [COLMS22]. From the TCS viewpoint, observe that as 𝛽 goes to −∞, the mass of the916

Gibbs distribution shifts to spin configurations with more edges joining vertices with opposite spins917

and concentrates on the maximum cuts of the graph. Hence, being able to efficiently approximate the918

log-partition function for general Ising models, would lead to solving the Max-Cut problem.919

Theorem 2 (Max-Cut has a Compressed and Efficiently Optimizable Solution Generator). Consider920

a prior over Max-Cut instances with 𝑛 nodes. For any 𝜖 > 0, there exists a solution generator921

𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲} such that 𝒫 is complete, compressed with description poly(𝑛)polylog(1/𝜖)922

and ℒ + 𝜆𝑅 : 𝒲 ↦→ R is efficiently optimizable via projected stochastic gradient descent in923

poly(𝑛, 1/𝜖) steps for some 𝜆 > 0.924

Proof of Theorem 2. It suffices to show that Max-Cut satisfies Assumption 1. Consider an input925

graph 𝐺 with 𝑛 nodes and Laplacian matrix 𝐿𝐺. Then926

MAXCUT =
1

4
max

𝑠∈{−1,1}𝑛
𝑠⊤𝐿𝐺𝑠 =

1

4
min

𝑠∈{−1,1}𝑛
−𝑠⊤𝐿𝐺𝑠 .

We show that there exist feature mappings so that the cost of every solution 𝑠 under any instance/graph927

𝐺 is a bilinear function of the feature vectors (cf. Item 2 of Assumption 1). We consider the correlation-928

based feature mapping 𝜓𝑆(𝑠) = (𝑠𝑠⊤)♭ ∈ R𝑛2

, where by (·)♭ we denote the vectorization/flattening929

operation and the negative Laplacian for the instance (graph), 𝜓ℐ(𝐺) = (−𝐿𝐺)♭ ∈ R𝑛2

. Then simply930

setting the matrix 𝑀 to be the identity 𝐼 ∈ R𝑛2×𝑛2

the cost of any solution 𝑠 can be expressed as the931

bilinear function 𝜓ℐ(𝐺)
⊤𝑀𝜓𝑆(𝑠) = (−𝐿♭𝐺)⊤(𝑠𝑠𝑇 )♭ = −𝑠⊤𝐿𝐺𝑠. We observe that (for unweighted932

graphs) with 𝑛 nodes the bit-complexity of the family of all instances ℐ is roughly 𝑂(𝑛2), and933

therefore the dimensions of the 𝜓𝑆 , 𝜓ℐ feature mappings are clearly polynomial in the bit-complexity934

of ℐ. Moreover, considering unweighted graphs, it holds ‖𝜓ℐ(𝐺)‖2, ‖𝜓𝑆(𝑠)‖2, ‖𝑀‖F ≤ poly(𝑛).935

Therefore, the constants 𝐷𝑆 , 𝐷ℐ , 𝐶 are polynomial in the bit-complexity of the instance family.936

It remains to show that our solution feature mapping satisfy the variance preservation assumption.937

For any 𝑣, we have that Var𝑠∼𝑈(𝑆)[𝑣 · 𝜓𝑆(𝑠)] = Var𝑠∼𝑈({−1,1}𝑛)[𝑣 · (𝑠𝑠⊤)♭] = Ω(‖𝑣‖22), using938

Lemma 9 with 𝑘 = 2, since 𝑐∅ = 0 with loss of generality.939

G.1.2 Minimum Cut/Maximum Flow940

Let us again consider a graph with 𝑛 nodes and Laplacian matrix 𝐿𝐺. It is known that the minimum941

cut problem is solvable in polynomial time when all the weights are positive. From the discussion942

of the maximum cut case, we can intuitively relate minimum cut with positive weights to the943

ferromagnetic Ising setting [dPS97]. We remark that we can consider the ferromagnetic parameter944

space 𝒲fer = R(
𝑛
2)

≥0 and get the variance lower bound from Lemma 9. We constraint projected945

SGD in𝒲fer. This means that during any step of SGD our algorithm has to sample from a mixture946

of ferromagnetic models with known mixture weights. The state of the art approximate sampling947

algorithm from ferromagnetic Ising models achieves the following performance, improving on prior948

work [JS93, LSS19, CLV22, CGG+19].949

Proposition 9 (Theorem 1.1 of [CZ22]). Let 𝛿𝛽 , 𝛿𝜆 ∈ (0, 1) be constants and 𝜇 be the Gibbs950

distribution of the ferromagnetic Ising model specified by graph 𝐺 = (𝑉,𝐸), |𝑉 | = 𝑛, |𝐸| = 𝑚,951

parameters 𝛽 ∈ [1 + 𝛿𝛽 ,+∞)𝑚 and external field 𝜆 ∈ [0, 1− 𝛿𝜆]𝑛. There exists an algorithm that952

25



samples 𝑋 satisfying TV(𝑋,𝜇) ≤ 𝜖 for any given parameter 𝜖 ∈ (0, 1) within running time953

𝑚

(︂
log 𝑛

𝜖

)︂𝑂𝛿𝛽,𝛿𝜆
(1)

.

This algorithm can handle general instances and it only takes a near-linear running time when954

parameters are bounded away from the all-ones vector. Our goal is to sample from a mixture of955

two such ferromagnetic Ising models which can be done efficiently. For simplicity, we next restrict956

ourselves to the unweighted case.957

Theorem 3 (Min-Cut has a Compressed, Efficiently Optimizable and Samplable Solution Generator).958

Consider a prior over Min-Cut instances with 𝑛 nodes. For any 𝜖 > 0, there exists a solution generator959

𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲} such that 𝒫 is complete, compressed with description poly(𝑛)polylog(1/𝜖),960

ℒ+ 𝜆𝑅 :𝒲 ↦→ R is efficiently optimizable via projected stochastic gradient descent in poly(𝑛, 1/𝜖)961

steps for some 𝜆 > 0 and efficiently samplable in poly(𝑛, 1/𝜖) steps.962

Proof. We have that963

MINCUT =
1

4
min

𝑥∈{−1,1}𝑛
𝑥⊤𝐿𝐺𝑥 .

The analysis (i.e., the selection of the feature mappings) is similar to the one of Theorem 2 with the964

sole difference that the parameter space is constrained to be𝒲fer and 𝜓ℐ(𝐺) = (𝐿𝐺)
♭. We note that965

Proposition 9 is applicable during the optimization steps. Having an efficient approximate sampler966

for solutions of Min-Cut, it holds that the runtime of the projected SGD algorithm is poly(𝑛, 1/𝜖).967

We note that during the execution of the algorithm we do not have access to perfectly unbiased968

samples from mixture of ferromagnetic Ising models. However, we remark that SGD is robust to that969

inaccuracy in the stochastic oracle. For further details, we refer e.g., to [d’A08]).970

G.1.3 Max-𝑘-CSPs971

In this problem, we are given a set of variables {𝑥𝑢}𝑢∈𝒰 where |𝒰| = 𝑛 and a set of Boolean972

predicates 𝑃 . Each variable 𝑥𝑢 takes values in {−1, 1}. Each predicate depends on at most 𝑘973

variables. For instance, Max-Cut is a Max-2-CSP. Our goal is to assign values to variables so as to974

maximize the number of satisfied constraints (i.e., predicates equal to 1). Let us fix a predicate ℎ ∈ 𝑃 ,975

i.e., a Boolean function ℎ : {−1, 1}𝑛 → {0, 1} which is a 𝑘-junta. Using standard Fourier analysis,976

the number of satisfied predicates for the assignment 𝑥 ∈ {−1, 1}𝑛 is977

𝐹 (𝑥) =

|𝑃 |∑︁
𝑗=1

∑︁
𝑆⊆[𝑛],|𝑆|≤𝑘

̂︀ℎ𝑗(𝑆) ∏︁
𝑢∈𝑆

𝑥𝑢 ,

where ̂︀ℎ𝑗(𝑆) is the Fourier coefficient of the predicate ℎ𝑗 at 𝑆.978

Theorem 4 (Max-𝑘-CSPs have a Compressed and Efficiently Optimizable Solution Generator).979

Consider a prior over Max-𝑘-CSP instances with 𝑛 variables, where 𝑘 ∈ N can be considered980

constant compared to 𝑛. For any 𝜖 > 0, there exists a solution generator 𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲}981

such that 𝒫 is complete, compressed with description 𝑂(𝑛𝑘)polylog(1/𝜖) and ℒ + 𝜆𝑅 : 𝒲 ↦→ R982

is efficiently optimizable via projected stochastic gradient descent in poly(𝑛𝑘, 1/𝜖) steps for some983

𝜆 > 0.984

Proof. Any instance of Max-𝑘-CSP is a list of predicates (i.e., Boolean functions) and our goal985

is to maximize the number of satisfied predicated with a single assignment 𝑠 ∈ {−1, 1}𝑛. We986

show that there exist feature mappings so that the cost of every solution 𝑠 under any instance/predi-987

cates list 𝑃 is a bilinear function of the feature vectors (cf. Item 2 of Assumption 1). We con-988

sider the order 𝑘 correlation-based feature mappings 𝜓𝑆(𝑠) = (𝑠⊗𝑘)♭ ∈ R𝑛𝑘

, where by (·)♭989

we denote the flattening operation of the order 𝑘 tensor, and, 𝜓ℐ(𝑃 ) = 𝜓ℐ(ℎ1, . . . , ℎ|𝑃 |) =990

−
∑︀|𝑃 |
𝑗=1((

̂︀ℎ𝑗(𝑆))𝑆⊆[𝑛],|𝑆|≤𝑘)
⊤ ∈ R𝑛𝑘

, where (̂︀ℎ𝑗(𝑆))𝑆⊆[𝑛],|𝑆|≤𝑘 is a vector of size 𝑛𝑘 with991

the Fourier coeffients of the 𝑗-th predicate. We take 𝜓ℐ being the coordinate-wise sum of992

these coefficients. The setting the matrix 𝑀 to be the identity matrix 𝐼 ∈ R𝑛𝑘×𝑛𝑘

, we get993

that the cost of any solution 𝑠 can be expressed as the bilinear function 𝜓ℐ(𝑃 )
⊤𝑀𝜓𝑆(𝑠) =994

26



−
∑︀|𝑃 |
𝑗=1

∑︀
𝑆⊆[𝑛],|𝑆|≤𝑘

̂︀ℎ𝑗(𝑆)∏︀𝑢∈𝑆 𝑥𝑢. For any ℎ : {−1, 1}𝑛 → {0, 1}, we get that the description995

size of any ̂︀ℎ(𝑆) is poly(𝑛, 𝑘) and so the dimensions of the 𝜓𝑆 , 𝜓ℐ feature mappings are polynomial996

in the description size of ℐ. Moreover, we get that ‖𝜓ℐ(𝑃 )‖, ‖𝜓𝑆(𝑠)‖, ‖𝑀‖ ≤ poly(𝑛𝑘). Hence,997

the constants 𝐷𝑆 , 𝐷ℐ , 𝐶 are polynomial in the description size of the instance family. Finally, we998

have that for any 𝑣, Var𝑠∼𝑈(𝑆)[𝑣 ·𝜓𝑆(𝑠)] = Var𝑠∼𝑈({−1,1}𝑛)[𝑣 · 𝑠⊗𝑘] = Ω(‖𝑣‖22), using Lemma 9,999

assuming that 𝑣∅ is 0 without loss of generality. This implies the result.1000

G.2 Bipartite Matching and TSP1001

G.2.1 Maximum Weight Bipartite Matching1002

In Maximum Weight Bipartite Matching (MWBM) there exists a complete bipartite graph (𝐴,𝐵)1003

with |𝐴| = |𝐵| = 𝑛 (the assumptions that the graph is complete and balanced is without loss of1004

generality) with weight matrix 𝑊 where 𝑊 (𝑖, 𝑗) indicates the value of the edge (𝑖, 𝑗), 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵1005

and the goal is to match the vertices in order to maximize the value. Hence the goal is to maximize1006

𝐿(Π) = 𝑊 · Π over all permutation matrices. By the structure of the problem some maximum1007

weight matching is a perfect matching. Furthermore, by negating the weights of the edges we1008

can state the problem as the following minimization problem: given a bipartite graph (𝐴,𝐵) and1009

weight matrix 𝑊 ∈ (R ∪ {∞})𝑛×𝑛, find a perfect matching 𝑀 with minimum weight. One of the1010

fundamental results in combinatorial optimization is the polynomial-time blossom algorithm for1011

computing minimum-weight perfect matchings by [Edm65].1012

We begin this section by showing a variance lower bound under the uniform distribution over the1013

permutation group.1014

Lemma 10 (Variance Lower Bound). Let 𝑈(S𝑛) be the uniform distribution over 𝑛× 𝑛 permutation1015

matrices. For any matrix 𝑊 ∈ R𝑛×𝑛, with
∑︀
𝑖𝑊𝑖𝑗 = 0 and

∑︀
𝑗𝑊𝑖𝑗 = 0 we have1016

VarΠ∼𝑈(S𝑛)[𝑊 ·Π] =
‖𝑊‖2F
𝑛− 1

.

Proof. We have that EΠ∼𝑈(S𝑛)[Π𝑖𝑗 ] = 1/𝑛 and EΠ∼𝑈(S𝑛)[Π𝑖𝑗Π𝑎𝑏] =
1{𝑖 ̸=𝑎∧𝑗 ̸=𝑏}
𝑛(𝑛−1) + 1{𝑖=𝑎,𝑗=𝑏}

𝑛 .1017

We have1018

VarΠ∼𝑈(S𝑛)[𝑊 ·Π] = E
Π∼𝑈(S𝑛)

[(𝑊 ·Π)2]−
(︂

E
Π∼𝑈(S𝑛)

[𝑊 ·Π]

)︂2

=
∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑎𝑏𝑊𝑖𝑗

(︂
1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏}

𝑛(𝑛− 1)
+
1{𝑖 = 𝑎, 𝑗 = 𝑏}

𝑛

)︂
−

⎛⎝∑︁
𝑖,𝑗

𝑊𝑖𝑗

𝑛

⎞⎠2

=
1

𝑛

∑︁
𝑖,𝑗

𝑊 2
𝑖𝑗 +

∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏
1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏}

𝑛(𝑛− 1)

=
‖𝑊‖2F
𝑛

+
∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏
1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏}

𝑛(𝑛− 1)
,

where to obtain the third equality we used our assumption that
∑︀
𝑖𝑗𝑊𝑖𝑗 = 0. We observe that, by1019

our assumption that
∑︀
𝑏𝑊𝑎𝑏 = 0 for all 𝑎 it holds

∑︀
𝑏 ̸=𝑗𝑊𝑎𝑏 = −𝑊𝑎𝑗 and therefore, we have1020 ∑︁

𝑏

𝑊𝑎𝑏1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏} = 1{𝑖 ̸= 𝑎}
∑︁
𝑏

𝑊𝑎𝑏1{𝑗 ̸= 𝑏} = −1{𝑖 ̸= 𝑎}𝑊𝑎𝑗 .

Similarly, using the fact that
∑︀
𝑎̸=𝑖𝑊𝑎𝑗 = −𝑊𝑖𝑗 we obtain that1021 ∑︁

𝑎𝑏

𝑊𝑎𝑏1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏} =
∑︁
𝑎

−𝑊𝑎𝑗1{𝑖 ̸= 𝑎} =𝑊𝑖𝑗 .

Therefore, using the above identity, we have that1022 ∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏
1{𝑖 ̸= 𝑎, 𝑗 ̸= 𝑏}

𝑛(𝑛− 1)
=

∑︁
𝑖,𝑗

𝑊 2
𝑖𝑗

𝑛(𝑛− 1)
=
‖𝑊‖2F
𝑛(𝑛− 1)

.

Combining the above we obtain the claimed identity.1023

27



Remark 8. We note that in MWBM the conditions
∑︀
𝑖𝑊𝑖𝑗 = 0 and

∑︀
𝑗𝑊𝑖𝑗 = 0 are without loss of1024

generality.1025

We next claim that there exists an efficient algorithm for (approximately) sampling such permutation1026

matrices.1027

Lemma 11 (Efficient Sampling). There exists an algorithm that generates approximate samples1028

from the Gibbs distribution 𝑝(·;𝑊 ) with parameter 𝑊 over the symmetric group, i.e., 𝑝(Π;𝑊 ) ∝1029

exp(𝑊 ·Π)1{Π ∈ S𝑛}, in poly(𝑛) time.1030

Proof. This lemma essentially requires approximating the permanent of a weighted matrix, since1031

this would imply that one has an approximation of the partition function. Essentially, our goal is to1032

generate a random variable 𝑋 that is 𝜖-close in statistical distance to the probability measure1033

𝑝(Π;𝑊 ) ∝ exp(𝑊 ·Π)1{Π ∈ S𝑛} .

Note that the partition function is1034

𝑍(𝑊 ) =
∑︁
Π∈S𝑛

𝑒𝑊 ·Π =
∑︁
Π∈S𝑛

∏︁
(𝑖,𝑗)

𝑒𝑊𝑖𝑗Π𝑖𝑗 =
∑︁
𝜎∈S𝑛

∏︁
𝑖∈[𝑛]

𝐴𝑖,𝜎(𝑖) ,

where 𝐴 is a non-negative real matrix with entries 𝐴𝑖𝑗 = exp(𝑊𝑖𝑗). Note that in the third equality,1035

we used the isomorphism between permutations and permutation matrices. Hence, 𝑍(𝑊 ) is exactly1036

the permanent of the matrix 𝐴.1037

Proposition 10 ([JSV04]). There exists a fully polynomial randomized approximation scheme for the1038

permanent of an arbitrary 𝑛× 𝑛 matrix 𝐴 with non-negative entries.1039

To conclude the proof of the lemma, we need the following standard result.1040

Proposition 11 (See Appendix H and [Sin12, Jer03]). For self-reducible problems, fully polynomial1041

approximate integration and fully polynomial approximate sampling are equivalent.1042

This concludes the proof since weighted matchings are self-reducible (see Appendix H).1043

The above lemma establishes our goal:1044

Theorem 5 (MWBM has a Compressed, Efficiently Optimizable and Samplable Solution Gen-1045

erator). Consider a prior over MWBM instances with 𝑛 nodes. For any 𝜖 > 0, there exists a1046

solution generator 𝒫 = {𝑝(𝑤) : 𝑤 ∈ 𝒲} such that 𝒫 is complete, compressed with description1047

poly(𝑛)polylog(1/𝜖),ℒ+ 𝜆𝑅 :𝒲 ↦→ R is efficiently optimizable via projected stochastic gradient1048

descent in poly(𝑛, 1/𝜖) steps for some 𝜆 > 0 and efficiently samplable in poly(𝑛, 1/𝜖) steps.1049

Proof. Consider an input graph 𝐺 with 𝑛 nodes and adjacency matrix 𝐸. The feature vector1050

corresponding to a matching can be represented as a binary matrix Π ∈ {0, 1}𝑛×𝑛 with
∑︀
𝑗 Π𝑖𝑗 = 11051

for all 𝑖 and
∑︀
𝑖Π𝑖𝑗 = 1 for all 𝑗, i.e., Π is a permutation matrix. Then1052

MWBM = max
Π∈S𝑛

𝐸 ·Π = min
Π∈S𝑛

−𝐸 ·Π .

Therefore, for a candidate matching 𝑠, we set 𝜓𝑆(𝑠) to be the matrix Π defined above. Moreover,1053

the feature vector of the graph is the negative (flattened) adjacency matrix −𝐸♭. The cost oracle1054

is then 𝐿(𝑅;𝐸) = −
∑︀
𝑖𝑗 𝐸𝑖𝑗𝑀𝑖𝑗𝑅𝑖𝑗 perhaps for an unknown weight matrix 𝑀𝑖𝑗 (see Remark 6).1055

This means that the dimensions of the feature mappings 𝜓𝑆 , 𝜓ℐ are polynomial in the bit complexity1056

of ℐ. Moreover, we get that ‖𝜓ℐ(𝐼)‖F, ‖𝜓𝑆(𝑠)‖F, ‖𝑀‖𝐹 ≤ poly(𝑛). We can employ Lemma 101057

to get the variance lower bound under the uniform probability distribution in the subspace induced1058

by the matrices satisfying Lemma 10, i.e., the matrices of the parameter space (see Remark 9).1059

Finally, (approximate) sampling from our solution generators can be done efficiently using Lemma 111060

and hence (noisy) projected SGD will have a runtime of order poly(𝑛, 1/𝜖) (as in the case of Min-1061

Cut).1062

We close this section with a remark about Item 3 of Assumption 1.1063

28



Remark 9. We note that Item 3 of Assumption 1 can be weakened. We use our variance lower bound1064

in order to handle inner products of the form 𝑤 · 𝑥 where 𝑤 will lie in the parameter space and1065

𝑥 is the featurization of a solution that lies in some space 𝑋 . Hence it is possible that 𝑤 lies in a1066

low-dimensional subspace of 𝑋 . For our optimization purposes, it suffices to provide variance lower1067

bounds only in the subspace where 𝑤 lies into.1068

G.2.2 Travelling Salesman Problem1069

Let us consider a weighted clique 𝐾𝑛 with 𝑛 vertices and weight matrix 𝑊 ∈ R𝑛×𝑛. A solution1070

to the TSP instance 𝑊 is a sequence 𝜋 : [𝑛] → [𝑛] of the 𝑛 elements indicating the TSP tour1071

(𝜋(1), 𝜋(2), . . . , 𝜋(𝑛), 𝜋(1)) and suffers a cost1072

𝐿(𝜋) =

𝑛−1∑︁
𝑖=1

𝑊𝜋(𝑖),𝜋(𝑖+1) +𝑊𝜋(𝑛),𝜋(1) .

Crucially, the allowed sequences are a proper subset of all possible permutations. For instance, the1073

permutations with fixed points or small cycles are not allowed. In particular, the solution space of1074

TSP corresponds to the set of cyclic permutations with no trivial cycles, i.e., containing an 𝑛-cycle.1075

Clearly, the number of 𝑛-cycles is (𝑛− 1)!. The goal is to find a tour of minimum cost. Our first goal1076

is to write the cost objective as a linear function of the weight matrix 𝑊 and the feasible solutions,1077

which correspond to cyclic permutations. To this end, we can think of each cyclic permutation 𝜋 as a1078

cyclic permutation matrix Π ∈ {0, 1}𝑛×𝑛. Then, the desired linearization is given by 𝐿(Π) =𝑊 ·Π1079

(for a fixed graph instance).1080

Our next task is to provide a Gibbs measure that generates random cyclic permutations. Let C𝑛 be1081

the space of 𝑛× 𝑛 cyclic permutation matrices. Then we have that the tour Π is drawn from1082

𝑝𝑊 (Π) =
exp(𝑊 ·Π)1{Π ∈ C𝑛}∑︀

Π′∈C𝑛
exp(𝑊 ·Π′)

,

where 𝑊 is the weight matrix. The following key lemma provides guarantees for the performance1083

of our approach to TSP. This lemma allows us to show that the number of optimization steps is1084

poly(𝑛, 1/𝜖).1085

Lemma 12 (Variance Lower Bound). Let 𝑈(C𝑛) be the uniform distribution over 𝑛 × 𝑛 cyclic1086

permutation matrices. For any matrix 𝑊 ∈ R𝑛×𝑛, with
∑︀
𝑖𝑊𝑖𝑗 = 0 and

∑︀
𝑗𝑊𝑖𝑗 = 0 we have1087

VarΠ∼𝑈(C𝑛)[𝑊 ·Π] ≥ ‖𝑊‖2F
(𝑛− 1)(𝑛− 2)

.

Proof. The first step is to compute some standard statistics about cyclic permutations (see Lemma 13).1088

Lemma 13 and the analysis of Lemma 10 gives us that VarΠ∼𝑈(C𝑛)[𝑊 ·Π] is equal to1089

‖𝑊‖2F
𝑛− 1

+
∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏

(︂
1{𝑖 ̸= 𝑎 = 𝑗 ̸= 𝑏}
(𝑛− 1)(𝑛− 2)

+
1{𝑗 ̸= 𝑏 = 𝑖 ̸= 𝑎}
(𝑛− 1)(𝑛− 2)

+
1{𝑖 ̸= 𝑎 ̸= 𝑗 ̸= 𝑏 ̸= 𝑖}

(𝑛− 1)(𝑛− 3)

)︂
.

Let us set1090

𝐴1 =
∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏1{𝑖 ̸= 𝑎 = 𝑗 ̸= 𝑏} .

We have that1091 ∑︁
𝑏

𝑊𝑎𝑏1{𝑖 ̸= 𝑎}1{𝑎 = 𝑗}1{𝑗 ̸= 𝑏} = 1{𝑖 ̸= 𝑎}1{𝑎 = 𝑗}
∑︁
𝑏

𝑊𝑎𝑏1{𝑗 ̸= 𝑏} = −1{𝑖 ̸= 𝑎}1{𝑎 = 𝑗}𝑊𝑎𝑗 .

Hence1092

𝐴1 = −
∑︁
𝑖,𝑗,𝑎

𝑊𝑖𝑗𝑊𝑎𝑗1{𝑖 ̸= 𝑎}1{𝑎 = 𝑗} = −
∑︁
𝑖,𝑗

𝑊𝑖𝑗𝑊𝑗𝑗1{𝑖 ̸= 𝑗} =
∑︁
𝑗

𝑊 2
𝑗𝑗 .

Due to symmetry, 𝐴2 =
∑︀
𝑖,𝑗,𝑎,𝑏𝑊𝑖𝑗𝑊𝑎𝑏1{𝑗 ̸= 𝑏 = 𝑖 ̸= 𝑎} =

∑︀
𝑗𝑊

2
𝑗𝑗 . It remains to argue about1093

𝐴3 =
∑︁
𝑖,𝑗,𝑎,𝑏

𝑊𝑖𝑗𝑊𝑎𝑏1{𝑖 ̸= 𝑎 ̸= 𝑗 ̸= 𝑏 ̸= 𝑖} .

29



We have that1094 ∑︁
𝑏

𝑊𝑎𝑏1{𝑖 ̸= 𝑎}1{𝑎 ̸= 𝑗}1{𝑗 ̸= 𝑏}1{𝑏 ̸= 𝑖} = −1{𝑖 ̸= 𝑎}1{𝑎 ̸= 𝑗}(𝑊𝑎𝑗 +𝑊𝑎𝑖) .

This gives that1095

𝐴3 = −
∑︁
𝑖,𝑗,𝑎

𝑊𝑖𝑗(𝑊𝑎𝑗 +𝑊𝑎𝑖)1{𝑖 ̸= 𝑎}1{𝑎 ̸= 𝑗} .

Note that1096 ∑︁
𝑖,𝑗,𝑎

𝑊𝑖𝑗𝑊𝑎𝑗1{𝑖 ̸= 𝑎}1{𝑎 ̸= 𝑗} =
∑︁
𝑗,𝑎

𝑊𝑎𝑗1{𝑎 ̸= 𝑗}
∑︁
𝑖

𝑊𝑖𝑗1{𝑖 ̸= 𝑎} = −
∑︁
𝑗,𝑎

𝑊 2
𝑎𝑗1{𝑎 ̸= 𝑗} .

This implies that1097

𝐴3 =
∑︁
𝑗 ̸=𝑎

𝑊 2
𝑎𝑗 +

∑︁
𝑖̸=𝑎

𝑊 2
𝑎𝑖 = 2

∑︁
𝑗 ̸=𝑎

𝑊 2
𝑎𝑗 .

In total, this gives that1098

VarΠ∼𝑈(C𝑛)[𝑊 ·Π] =
‖𝑊‖2F
𝑛− 1

+
2
∑︀
𝑗𝑊

2
𝑗𝑗

(𝑛− 1)(𝑛− 2)
+

2
∑︀
𝑖 ̸=𝑗𝑊

2
𝑖𝑗

(𝑛− 1)(𝑛− 3)
≥ ‖𝑊‖

2
F

𝑛− 1
+

‖𝑊‖2F
(𝑛− 1)(𝑛− 2)

.

1099

Remark 10. We note that in TSP the conditions
∑︀
𝑖𝑊𝑖𝑗 = 0 and

∑︀
𝑗𝑊𝑖𝑗 = 0 are without loss of1100

generality.1101

The next lemma is a generic lemma that states some properties of random cyclic permutation matrices.1102

Lemma 13. Consider a uniformly random cyclic permutation matrix Π. Let us fix 𝑖 ̸= 𝑗 and 𝑎 ̸= 𝑏.1103

Then1104

• E[Π𝑖𝑗 ] =
1

𝑛−1 .1105

• E[Π𝑖𝑗Π𝑎𝑏] =
1{𝑖 ̸=𝑎=𝑗 ̸=𝑏}
(𝑛−1)(𝑛−2) + 1{𝑗 ̸=𝑏=𝑖 ̸=𝑎}

(𝑛−1)(𝑛−2) + 1{𝑖 ̸=𝑎̸=𝑗 ̸=𝑏̸=𝑖}
(𝑛−1)(𝑛−3) + 1{𝑖=𝑎,𝑗=𝑏}

𝑛−1 .1106

Proof. First, note that any matrix that corresponds to a cyclic permutation does not contain fixed1107

points and so the diagonal elements are 0 deterministically. For the first item, the number of cyclic1108

permutations such that 𝑖→ 𝑗 (i.e., Π𝑖𝑗 = 1) is (𝑛− 2)!. This implies that the desired expectation is1109

(𝑛− 2)!/|C𝑛| = 1/(𝑛− 1). For the second item, if 𝑖 = 𝑎, 𝑗 = 𝑏, we recover the first item. Otherwise1110

if 𝑖 = 𝑎 or 𝑗 = 𝑏, then the expectation vanishes since we deal with permutation matrices. Finally, let1111

us consider the case where 𝑖 ̸= 𝑎 and 𝑗 ̸= 𝑏. Our goal is to count the number of cyclic permutations1112

with 𝑖→ 𝑗 and 𝑎→ 𝑏.1113

• If 𝑖 ̸= 𝑎 ̸= 𝑗 ̸= 𝑏 ̸= 𝑖, then there are 𝑛 choices to place 𝑖 and 𝑛− 2 choices to place 𝑎. Then1114

there are (𝑛− 4)! possible orderings for the remaining elements. This gives an expectation1115

equal to 1/((𝑛− 1)(𝑛− 3)).1116

• If 𝑖 ̸= 𝑎 = 𝑗 ̸= 𝑏 or 𝑗 ̸= 𝑏 = 𝑖 ̸= 𝑎, then there are 𝑛 choices for 𝑖 and (𝑛− 3)! orderings for1117

the remaining elements. Hence, the expectation is 1/((𝑛− 1)(𝑛− 2)).1118

1119

We note that sampling from our solution generators is the reason that we cannot find an optimal TSP1120

solution efficiently. In general, an algorithm that has converged to an almost optimal parameter 𝑊 ⋆1121

has to generate samples from the Gibbs measure that is concentrated on cycles with minimum weight.1122

In this low-temperature regime, sampling is NP-hard. We are now ready to state our result.1123

Theorem 6 (TSP has a Compressed, Efficiently Optimizable Solution Generator). Consider a1124

prior over TSP instances with 𝑛 nodes. For any 𝜖 > 0, there exists a solution generator 𝒫 =1125

{𝑝(𝑤) : 𝑤 ∈ 𝒲} such that 𝒫 is complete, compressed with description poly(𝑛)polylog(1/𝜖) and1126

ℒ+ 𝜆𝑅 :𝒲 ↦→ R is efficiently optimizable via projected stochastic gradient descent in poly(𝑛, 1/𝜖)1127

steps for some 𝜆 > 0.1128

30



Proof. Consider an input graph 𝐺 with 𝑛 nodes and weighted adjacency matrix 𝐸. The feature vector1129

is again a permutation matrix Π with the additional constraint that Π has to represent a single cycle1130

(a tour over all cities). Then1131

TSP = min
Π∈C𝑛

𝐸 ·Π .

The cost function for TSP is 𝐿(Π;𝐸) =
∑︀
𝑖𝑗 𝐸𝑖𝑗𝑀𝑖𝑗Π𝑖𝑗 . We refer to Theorem 5 for the details1132

about the feature mappings. We can finally use Lemma 12 to obtain a variance lower bound (in the1133

subspace induced by the parameters satisfying this lemma, see Remark 9) under the uniform measure1134

over the space of cyclic permutation matrices C𝑛.1135

H Sampling and Counting1136

In this section, we give a quick overview of the connections between approximate sampling and1137

counting. For a formal treatment, we refer to [Sin12].1138

In what follows, 𝜎 may be thought of as an encoding of an instance of some combinatorial problem,1139

and the 𝜔 of interest are encodings of the structures we wish to generate. Consider a weight function1140

𝑊 and assume that 𝑊 (𝜎, 𝜔) is computable in time polynomial in |𝜎|.1141

Definition 4 (Approximate Sampling). A fully polynomial approximate sampler for (Ω𝜎, 𝜋𝜎) is1142

a Probabilistic Turing Machine which, on inputs 𝜎 and 𝜖 ∈ Q+ (0 < 𝜖 ≤ 1), outputs 𝜔 ∈ Σ⋆,1143

according to a measure 𝜇𝜎 satisfying TV(𝜋𝜎, 𝜇𝜎) ≤ 𝜖, in time bounded by a bivariate polynomial in1144

|𝜎| and log(1/𝜖).1145

One of the main applications of sampling is to approximate integration. In our setting this means1146

estimating 𝑍(𝜎) to some specified relative error.1147

Definition 5 (Approximate Integration). A fully polynomial randomized approximation scheme for1148

𝑍(𝜎) is a Probabilistic Turing Machine which on input 𝜎, 𝜖, outputs an estimate ̂︀𝑍 so that1149

Pr[𝑍/(1 + 𝜖) ≤ ̂︀𝑍 ≤ (1 + 𝜖)𝑍] ≥ 3/4 ,

and which runs in time polynomial in |𝜎| and 1/𝜖.1150

Definition 6 (Self-Reducible Problems). An NP search problem is self-reducible if the set of solutions1151

can be partitioned into polynomially many sets each of which is in a one-to-one correspondence1152

with the set of solutions of a smaller instance of the problem, and the polynomial size set of smaller1153

instances are efficiently computable.1154

For instance, consider the relation MATCH which associates with an undirected graph 𝐺 all matchings1155

(independent sets of edges) of𝐺. Then MATCH is self-reducible since, for any edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸(𝐺),1156

we have that1157

MATCH(𝐺) = MATCH(𝐺1) ∪ {𝑀 ∪ {𝑒} :𝑀 ∈ MATCH(𝐺2)} ,
where 𝐺1 is the graph obtained by deleting 𝑒 and 𝐺2 is the graph obtained be deleting both 𝑢 and 𝑣1158

together with all their incident edges.1159

Theorem 7 (See Corollary 3.16 in [Sin12]). For self-reducible problems, approximate integration1160

and good sampling are equivalent.1161

We remark that the above result holds for the more general class of self-partitionable problems.1162

I Details of the Experimental Evaluation1163

We investigate the effect of the entropy regularizer (see Equation (2)) in a very simple setting: we try1164

to find the Max-Cut of a fixed graph 𝐺, i.e., the support of the priorℛ is a single graph. We show that1165

while the unregularized objective is often “stuck” at sub-optimal solutions – and this happens even for1166

very small instances (15 nodes) – of the Max-Cut problem, the regularized version (with the fast/slow1167

mixture scheme) is able to find the optimal solutions. We consider an instance randomly generated1168

by the Erdős–Rényi model 𝐺(𝑛, 𝑝) and then optimize the “vanilla” loss ℒ and the regularized loss1169

ℒ𝜆 defined in Equation (3). The solutions are vectors 𝑠 ∈ {±1}𝑛. We first use the feature mapping1170

𝜓𝑆(𝑠) = (𝑠𝑠⊤)♭ described in Section 1.1 and an exponential family solution generator that samples a1171

31



class FastSlowMixture(torch.nn.Module):
def __init__(self, dimension, rho):

"""
The Model parameters.
"""
super().__init__()

self.l1 = torch.nn.Parameter(torch.empty(30, dimension))
torch.nn.init.kaiming_uniform_(self.l1, a=5**0.5)

self.l2 = torch.nn.Parameter(torch.empty(10, 30))
torch.nn.init.kaiming_uniform_(self.l2, a=5**0.5)

self.l3 = torch.nn.Parameter(torch.empty(1, 10))
torch.nn.init.kaiming_uniform_(self.l3, a=5**0.5)

self.a2 = torch.nn.ReLU()
self.a1 = torch.nn.ReLU()

self.rho = rho

def forward(self, x, is_cold=True):

temp = self.rho * (1. - is_cold) + is_cold

out = x
out = torch.nn.functional.linear(out, temp * self.l1)
out = self.a1(out)
out = torch.nn.functional.linear(out, temp * self.l2)
out = self.a2(out)
out = torch.nn.functional.linear(out, temp * self.l3)

return out

Figure 3: Our implementation of the fast/slow network. The output of the network is the log-density
(score) of a solution 𝑠 ∈ {±1}dimension. If evaluated with the is-cold set to False, the parameters of
every linear layer are re-scaled by the inverse temperature rho.

solution 𝑠 with probability ∝ exp(𝑤 · 𝜓𝑆(𝑠)) for some weight vector 𝑤 ∈ R𝑛2

. We also consider1172

optimizing a simple 3-layer ReLU network as solution generator with input 𝑠 ∈ {±1}𝑛 on the same1173

random graphs. We generate 100 random 𝐺(𝑛, 𝑝) graphs with 𝑛 = 15 nodes and 𝑝 = 0.5 and train1174

solution generators using both the ”vanilla” and the entropy-regularized loss functions. We perform1175

600 iterations and, for the entropy regularization, we progressively decrease the regularization weight,1176

starting from 10, and dividing it by 2 every 60 iterations. We used a fast/slow mixing with mixture1177

probability 0.2 and inverse temperature rho=0.03 (see Figure 3).1178

For convenience, we present a pytorch implementation of our simple 3-layer ReLU network here.1179

For more details we refer to our full code submitted in the supplementary material.1180

Out of the 100 trials we found that our proposed objective was always able to find the optimal cut1181

while the model trained with the vanilla loss was able to find it for approximately 65% of the graphs1182

(for 65 out of 100 using the linear network and for 66 using the ReLU network). In Figure 2 we show1183

two instances where the model trained with the ”vanilla” loss gets stuck on a sub-optimal solution1184

while the entropy-regularized one succeeds in finding the optimal solution. Our experiments show1185

that the regularization term and the fast/slow mixture scheme that we introduced to achieve our main1186

theoretical convergence result, see Section 3 and Proposition 4, are potentially useful for training1187

more realistic models for bigger instances and we leave more extensive experimental evaluation as an1188

interesting direction for future work.1189

32



We note that, similarly to our theoretical results, our sampler in this experimental section is of the1190

form 𝑒score(𝑠;𝑤), where 𝑠 ∈ {−1, 1}𝑛 ( here 𝑛 is the number of nodes in the graph) is a candidate1191

solution of the Max-Cut problem. The function used is a 3-layer MLP (see Figure Figure 3). Since1192

the instances that we consider here are small (𝑛 = 15) we can explicitly compute the density (score)1193

of every solution and use that to compute the expected gradient. For larger instances, one could use1194

some approximate sampler (e.g., via Langevin dynamics) to generate samples. The main message1195

of the current experimental section is that even for very small instances of Max-Cut (i.e., with 151196

nodes), optimizing the vanilla objective is not sufficient and the iteration gets trapped in local optima.1197

In contrast, our entropy regularized always manages to find the optimal cut.1198

33


	Introduction
	Our Framework
	Our Results
	Related Work
	Combinatorial Applications
	Optimization Landscape
	Complete, Compressed and Efficiently Optimizable Solution Generators
	Experimental Evaluation
	Preliminaries and Notation
	The Proof of remark:just some properties
	Completeness
	Compression
	Efficiently Optimizable 
	Quasar Convexity of the Regularized Loss
	The Proof of prop:quasar-vec
	Bounded Gradient Lemma and Proof
	Correlation Lower Bound Lemma and Proof
	Convergence for Quasar Convex Functions
	Deferred Proofs: Variance under Almost Uniform Distributions
	Applications to Combinatorial Problems
	Maximum Cut, Maximum Flow and Max-k-CSPs
	Maximum Cut
	Minimum Cut/Maximum Flow
	Max-k-CSPs
	Bipartite Matching and TSP
	Maximum Weight Bipartite Matching
	Travelling Salesman Problem
	Sampling and Counting
	Details of the Experimental Evaluation

