
Published as a conference paper at ICLR 2024

MULTI-RESOLUTION DIFFUSION MODELS FOR TIME
SERIES FORECASTING

Lifeng Shen1 , Weiyu Chen2, James T. Kwok2

1 Division of Emerging Interdisciplinary Areas, Hong Kong University of Science and Technology
2 Department of Computer Science and Engineering, Hong Kong University of Science and Technology
lshenae@connect.ust.hk, wchenbx@cse.ust.hk, jamesk@cse.ust.hk

ABSTRACT

The diffusion model has been successfully used in many computer vision appli-
cations, such as text-guided image generation and image-to-image translation.
Recently, there have been attempts on extending the diffusion model for time series
data. However, these extensions are fairly straightforward and do not utilize the
unique properties of time series data. As different patterns are usually exhibited
at multiple scales of a time series, we in this paper leverage this multi-resolution
temporal structure and propose the multi-resolution diffusion model (mr-Diff).
By using the seasonal-trend decomposition, we sequentially extract fine-to-coarse
trends from the time series for forward diffusion. The denoising process then
proceeds in an easy-to-hard non-autoregressive manner. The coarsest trend is
generated first. Finer details are progressively added, using the predicted coarser
trends as condition variables. Experimental results on nine real-world time series
datasets demonstrate that mr-Diff outperforms state-of-the-art time series diffu-
sion models. It is also better than or comparable across a wide variety of advanced
time series prediction models.

1 INTRODUCTION

Time series data are prevalent in many real-world applications. In particular, time series forecasting
facilitates users to identify patterns and make predictions based on historical data. Examples include
stock price prediction in finance, patient health monitoring in healthcare, machine monitoring in man-
ufacturing, and traffic flow optimization in transportation. Over the years, significant advancements
in time series analysis have been made through the development of various deep neural networks,
including recurrent neural networks (Hewamalage et al., 2021), convolutional neural networks (Yue
et al., 2022), and transformers (Vaswani et al., 2017).

Besides these prominent deep neural networks, the diffusion model has recently emerged as a strong
generative modeling tool. It has outperformed many other generative models in areas such as
image synthesis (Ho et al., 2020; Dhariwal & Nichol, 2021), video generation (Harvey et al., 2022;
Blattmann et al., 2023), and multi-modal applications (Rombach et al., 2022; Saharia et al., 2022).
Very recently, researchers have sought to leverage its strong generative capacity in the time-series
domain. A number of time-series diffusion models have been developed (Rasul et al., 2021; Tashiro
et al., 2021; Alcaraz & Strodthoff, 2022; Shen & Kwok, 2023). For example, TimeGrad (Rasul
et al., 2021) integrates the standard diffusion model with recurrent neural network’s hidden states.
CSDI (Tashiro et al., 2021) uses self-supervised masking to guide an non-autoregressive denoising
process. While these time series diffusion models have demonstrated their efficacy, they do not fully
utilize the unique structural properties in time series data and are still constrained to generate the
time series directly from random vectors (Figure 1(a)). This can pose a significant challenge when
working with real-world time series that are non-stationary and noisy.

As time series usually exhibit complex patterns over multiple scales, using the underlying multi-
resolution temporal structure has been a cornerstone in traditional time series analysis. In particular,
the seasonal-trend decomposition (Robert et al., 1990) can extract the seasonal and trend components,
and the coarser temporal patterns can be used to help modeling the finer patterns. Recently, some
deep time series prediction models (Oreshkin et al., 2019; Wu et al., 2021; Zeng et al., 2023) have also

1

Published as a conference paper at ICLR 2024

incorporated multi-resolution analysis techniques. For example, NBeats (Oreshkin et al., 2019) uses
the Fourier and polynomial basis to approximate the seasonal and trend components in multiple layers,
respectively. Autoformer (Wu et al., 2021) uses average pooling to extract seasonal components
in various transformer layers. DLinear (Zeng et al., 2023) introduces an MLP with seasonal-trend
branches. N-Hits (Challu et al., 2023) uses hierarchical interpolation to better leverage the multiscale
temporal patterns. Fedformer (Zhou et al., 2022b) improves Autoformer by using mixture-of-experts
decomposition in the frequency domain. While these recent transformer and MLP models demonstrate
the effectiveness of multi-resolution analysis in deep time series modeling, the use of multi-resolution
analysis in time series diffusion models has yet to be explored.

random noises time series

(a) Standard diffusion with direct denoising.

random noises time seriescoarse trend fine trend

(b) Proposed diffusion model with multi-resolution.

Figure 1: Direct denoising versus proposed multi-
resolution denoising.

In this paper, we bridge this gap by propos-
ing the multi-resolution diffusion (mr-Diff)
model for time series forecasting. Unlike exist-
ing time series diffusion models that directly
denoises from random vectors (Figure 1(a)),
mr-Diff decomposes the denoising objective
into several sub-objectives (Figure 1(b)), each
of which corresponds to a trend extracted from
a sequence of fine-to-coarse seasonal-trend de-
compositions. This encourages the denoising
process to proceed in an easy-to-hard manner.
The coarser trends are generated first and the
finer details are then progressively added. By
better exploiting the seasonal-trend structure and
different temporal resolutions, this leads to a
more accurate generation of the time series.

The contributions of this paper can be sum-
marized as follows: (i) We propose the multi-
resolution diffusion (mr-Diff) model, which is the first to integrate the seasonal-trend
decomposition-based multi-resolution analysis into time series diffusion models. (ii) We perform
progressive denoising in an easy-to-hard manner, generating coarser signals first and then finer
details. This allows a more accurate prediction of time series. (iii) Extensive experiments show
that mr-Diff outperforms state-of-the-art time series diffusion models. It is also better than or
comparable across a wide variety of advanced time series prediction models.

2 RELATED WORKS: DEEP TIME SERIES MODELS

Recently, a number of deep time series models have been proposed that use the transformer (Vaswani
et al., 2017) to capture temporal dependencies. Informer (Zhou et al., 2021) improves the vanilla
transformer by avoiding its quadratic time complexity with sparse attention, and improves the infer-
ence speed by decoding in a non-autoregressive manner. Autoformer (Wu et al., 2021) replaces the
transformer’s self-attention block with an auto-correlation layer. Fedformer (Zhou et al., 2022b) uses
a frequency-enhanced module to capture important temporal structures by frequency domain mapping.
Pyraformer (Liu et al., 2021) uses a pyramidal attention module for multi-resolution representation of
the time series. Scaleformer (Shabani et al., 2023) generates the forecast progressively, starting from
the coarser level and then progressing to the finer levels. PatchTST (Nie et al., 2022) is similar to the
vision transformer (ViT) (Dosovitskiy et al., 2020), and performs time series prediction by patching
the time series and self-supervised pre-training to extract local semantic information. It also replaces
the transformer’s decoder with a linear mapping and uses a channel-independence strategy to achieve
good performance in multivariate time series prediction.

Besides the transformer-based models, some recent models leverage basis expansion to decompose
the time series. FiLM (Zhou et al., 2022a) uses Legendre Polynomials projections to approximate
historical information and Fourier projections to remove noise. NBeats (Oreshkin et al., 2019)
represents the trends in the time series by polynomial coefficients and the seasonal patterns by Fourier
coefficients. Depts (Fan et al., 2022) improves NBeats by using a periodicity module to model
periodic time series. N-Hits (Challu et al., 2023) uses multi-scale hierarchical interpolations to further

2

Published as a conference paper at ICLR 2024

improve NBeats. In general, these models are easier to train than transformer-based models, though
their performance can vary depending on the choice of the basis.

Besides these two types of deep learning models, other recent models are also very competitive.
SCINet (Liu et al., 2022) uses a recursive downsample-convolve-interact architecture to extract
temporal features from the downsampled sub-sequences or features. NLinear (Zeng et al., 2023)
normalizes the time series and uses a linear layer for prediction. DLinear (Zeng et al., 2023) follows
the Autoformer and uses seasonal-trend decomposition.

Very recently, diffusion models have also been developed for time series data. TimeGrad (Rasul et al.,
2021) is a conditional diffusion model which predicts in an autoregressive manner, with the denoising
process guided by the hidden state of a recurrent neural network. However, it suffers from slow
inference on long time series because of the use of autoregressive decoding. To alleviate this problem,
CSDI (Tashiro et al., 2021) uses non-autoregressive generation, and uses self-supervised masking
to guide the denoising process. However, it needs two transformers to capture dependencies in the
channel and time dimensions. Moreover, its complexity is quadratic in the number of variables and
length of time series as in other transformer models. Besides, masking-based conditioning is similar
to the task of image inpainting, and can cause disharmony at the boundaries between the masked
and observed regions (Lugmayr et al., 2022; Shen & Kwok, 2023). SSSD (Alcaraz & Strodthoff,
2022) reduces the computational complexity of CSDI by replacing the transformers with a structured
state space model. However, it uses the same masking-based conditioning as in CSDI, and thus still
suffers from the problem of boundary disharmony. To alleviate this problem, the non-autoregressive
diffusion model TimeDiff (Shen & Kwok, 2023) uses future mixup and autoregressive initialization
for conditioning. However, all these time series diffusion models do not leverage the multi-resolution
temporal structures and denoise directly from random vectors as in standard diffusion models.

In this paper, we propose to decompose the time series into multiple resolutions using seasonal-
trend decomposition, and use the fine-to-coarse trends as intermediate latent variables to guide
the denoising process. Recently, other multiresolution analysis techniques besides using seasonal-
trend decomposition have also been used for time series modeling. For example, Yu et al. (2021)
propose a U-Net (Ronneberger et al., 2015) for graph-structured time series, and leverage temporal
information from different resolutions by pooling and unpooling. Mu2ReST (Niu et al., 2022) works
on spatio-temporal data and recursively outputs predictions from coarser to finer resolutions. Yformer
(Madhusudhanan et al., 2021) captures temporal dependencies by combining downscaling/upsampling
with sparse attention. PSA-GAN (Jeha et al., 2022) trains a growing U-Net, and captures multi-
resolution patterns by progressively adding trainable modules at different levels. However, all these
methods need to design very specific U-Net structures.

3 BACKGROUND

3.1 DENOISING DIFFUSION PROBABILISTIC MODELS

A well-known diffusion model is the denoising diffusion probabilistic model (DDPM) (Ho et al.,
2020). It is a latent variable model with forward diffusion and backward denoising processes. During
forward diffusion, an input x0 is gradually corrupted to a Gaussian noise vector. Specifically, at the
kth step, xk is generated by corrupting the previous iterate xk−1 (scaled by

√
1− βk) with zero-mean

Gaussian noise (with variance βk ∈ [0, 1]):

q(xk|xk−1) = N (xk;
√

1− βkx
k−1, βkI), k = 1, . . . ,K.

It can be shown that this can also be rewritten as q(xk|x0) = N (xk;
√
ᾱkx

0, (1 − ᾱk)I), where
ᾱk = Πk

s=1αs, and αk = 1− βk. Thus, xk can be simply obtained as

xk =
√
ᾱkx

0 +
√
1− ᾱkϵ, (1)

where ϵ is a noise from N (0, I). This equation also allows x0 to be easily recovered from xk.

In DDPM, backward denoising is defined as a Markovian process. Specifically, at the kth denoising
step, xk−1 is generated from xk by sampling from the following normal distribution:

pθ(x
k−1|xk) = N (xk−1;µθ(x

k, k),Σθ(x
k, k)). (2)

3

Published as a conference paper at ICLR 2024

Here, the variance Σθ(x
k, k) is usually fixed as σ2

kI, while the mean µθ(x
k, k) is defined by a neural

network (parameterized by θ). This is usually formulated as a noise estimation or data prediction
problem (Benny & Wolf, 2022). For noise estimation, a network ϵθ predicts the noise of the diffused
input xk, and then obtains µθ(x

k, k) as 1√
αk

xk − 1−αk√
1−ᾱk

√
αk

ϵθ(x
k, k). Parameter θ is learned by

minimizing the loss Lϵ = Ek,x0,ϵ

[
∥ϵ− ϵθ(x

k, k)∥2
]
. Alternatively, the data prediction strategy uses

a denoising network xθ to obtain an estimate xθ(x
k, k) of the clean data x0 given xk, and then set

µθ(x
k, k)=

√
αk(1− ᾱk−1)

1− ᾱk
xk+

√
ᾱk−1βk

1− ᾱk
xθ(x

k, k). (3)

Parameter θ is learned by minimizing the loss

Lx = Ex0,ϵ,k∥x0 − xθ(x
k, k)∥2. (4)

3.2 CONDITIONAL DIFFUSION MODELS FOR TIME SERIES PREDICTION

In time series forecasting, one aims to predict the future values x0
1:H ∈ Rd×H given the past

observations x0
−L+1:0 ∈ Rd×L of the time series. Here, d is the number of variables, H is the length

of the forecast window, and L is the length of the lookback window. When using conditional diffusion
models for time series prediction, the following distribution is considered (Rasul et al., 2021; Tashiro
et al., 2021; Shen & Kwok, 2023)

pθ(x
0:K
1:H |c)=pθ(x

K
1:H)

K∏
k=1

pθ(x
k−1
1:H |xk

1:H , c), c = F(x0
−L+1:0), (5)

where xK
1:H ∼ N (0, I), c is the condition, and F is a conditioning network that takes the past

observations x0
−L+1:0 as input. Correspondingly, the denoising process at step k is given by

pθ(x
k−1
1:H |xk

1:H , c) = N (xk−1
1:H ;µθ(x

k
1:H , k|c), σ2

kI), k = K,K − 1, . . . , 1. (6)

During inference, we denote the generated sample corresponding to xk
1:H by x̂k

1:H . We first initialize
x̂K
1:H as a noise vector from N (0, I). By repeatedly running the denoising step in (6) till k = 1, the

final generated sample is x̂0
1:H .

4 MR-DIFF: MULTI-RESOLUTION DIFFUSION MODEL

As discussed in Section 1, recent transformer and MLP models demonstrate the effectiveness of
seasonal-trend decomposition-based multi-resolution analysis in deep time series modeling. However,
the use of multi-resolution temporal patterns in the diffusion model has yet to be explored. In
this paper, we address this gap by proposing the multi-resolution diffusion (mr-Diff) model. An
overview of the proposed model is shown in Figure 2.

The proposed mr-Diff can be viewed as a cascaded diffusion model (Ho et al., 2022), and proceeds
in S stages, with the resolution getting coarser as the stage proceeds (Section 4.1). This allows
capturing the temporal dynamics at multiple temporal resolutions. In each stage, the diffusion process
is interleaved with seasonal-trend decomposition. For simplicity of notations, we use X = x−L+1:0

and Y = x1:H for the time series segments in the lookback and forecast windows, respectively. Let
the trend component of the lookback (resp. forecast) segment at stage s+ 1 be Xs (resp. Ys). The
trend gets coarser as s increases, and with X0 = X and Y0 = Y. In each stage s+ 1, a conditional
diffusion model is learned to reconstruct the trend component Ys extracted from the forecast window
(Section 4.2). The reconstruction at stage 1 then corresponds to the target time series forecast.

While the forward diffusion process in this diffusion model is straightforward and similar to existing
diffusion models, design of the denoising process, particularly on the denoising conditions and
denoising network, are less trivial. During training, to guide the reconstruction of Ys, the proposed
model takes the lookback segment Xs (which has the same resolution as Ys) and the coarser trend
Ys+1 (which provides an overall picture of the finer Ys) as denoising condition. On inference, the
ground-truth Ys+1 is not available, and is replaced by its estimate Ŷ0

s+1 produced by the denoising
process at stage s + 1. By combining the diffusion model and seasonal-trend decomposition in a
multi-resolution manner, the proposed model encourages a better modeling of real-world time series.

4

Published as a conference paper at ICLR 2024

forecast window

lookback window

Y0Y0

X0X0

Y1Y1

X1X1 X2X2

Trend
Extraction

c0c0 c1c1

seasonal

trend Trend
Extraction

seasonal

trend

Trend
Extraction

seasonal

trend Trend
Extraction

seasonal

trend

Y2Y2

denoising
network

denoising
network

denoising
network

forward
diffusion

forward
diffusion

Yk0Yk0 Yk1Yk1 Yk2Yk2

c2c2

random noise

inference only

training only

final prediction L0L0 L1L1 L2L2

Ŷ02Ŷ02Ŷ01Ŷ01
Ŷ00Ŷ00

conditioning
network

conditioning
network

conditioning
network

Stage 1 Stage 2 Stage 3

forward
diffusion

Figure 2: The proposed multi-resolution diffusion model mr-Diff. For simplicity of illustration,
we use S = 3 stages. At stage s+ 1, Ys denotes the corresponding trend component extracted from
the segment in the forecast window, Yk

s is the diffusion sample at diffusion step k, and Ŷ0
s is the

denoised output.

4.1 EXTRACTING FINE-TO-COARSE TRENDS

For the given time series segment X0 in the lookback window, its trend components are successively
extracted by the TrendExtraction module as:

Xs = AvgPool(Padding(Xs−1), τs), s = 1, . . . , S − 1,

where AvgPool is the average pooling operation (Wu et al., 2021), Padding keeps the lengths of
Xs−1 and Xs the same, and τs is the smoothing kernel size which increases with s so as to generate
fine-to-coarse trends. Processing for the segment Y0 in the forecast window is analogous, and its
trend components {Ys}s=1,...,S−1 are extracted.

Note that while the seasonal-trend decomposition obtains both the seasonal and trend components,
the focus here is on the trend. On the other hand, models such as the Autoformer (Wu et al., 2021)
and Fedformer (Zhou et al., 2022b) focus on progressively decomposing the seasonal component. As
we use the diffusion model for time series reconstruction at various stages/resolutions (Section 4.2),
intuitively, it is easier to predict a finer trend from a coarser trend. On the other hand, reconstruction
of a finer seasonal component from a coarser seasonal component may be difficult, especially as the
seasonal component may not present clear patterns.

4.2 TEMPORAL MULTI-RESOLUTION RECONSTRUCTION

In each stage s+ 1, we use a conditional diffusion model to reconstruct the future trend Ys extracted
in Section 4.1. As in the standard diffusion model, it consists of a forward diffusion process and a
backward denoising process. Forward diffusion does not involve learnable parameters, while the
training procedure of the backward denoising process needs optimization as shown in Algorithm 1.

An d′-dimensional embedding pk of the diffusion step k is used in both the forward and backward
denoising processes. As in (Rasul et al., 2021; Tashiro et al., 2021; Kong et al., 2020), this is
obtained by first taking the sinusoidal position embedding (Vaswani et al., 2017): kembedding =[
sin(10

0×4
w−1 t), . . . , sin(10

w×4
w−1 t), cos(10

0×4
w−1 t), . . . , cos(10

w×4
w−1 t)

]
where w = d′

2 , and then passing
it through two fully-connected (FC) layers to obtain

pk = SiLU(FC(SiLU(FC(kembedding)))), (7)

where SiLU is the sigmoid-weighted linear unit (Elfwing et al., 2017). By default, d′ is set to 128.

5

Published as a conference paper at ICLR 2024

estimated coarser trend
from stage s+1

inference onlytraining only

random noise

XsXs

coarser future trend

Y0
s+1Y0
s+1

forecast window

lookback window linear mapping

future mixup

zhistoryzhistory

zmixzmix

concat

Conditioning Network

{Yk
s}K

k=1{Yk
s}K

k=1

Encoder

Denoising Network

Decoderzkzk

cscs

pkpk

Conv

Forward Diffusion Yk
s = ᾱkY0

s + 1 − ᾱkϵYk
s = ᾱkY0

s + 1 − ᾱkϵ

Y0
sY0
s

Training objective :

Denoising step :

Ŷ0
sŶ0
s

Ŷ0
s+1Ŷ0
s+1

denoising network’s output

Yθs
(Yk

s, k |cs)Yθs
(Yk

s, k |cs)

Yθs
(Yk

s, k |cs)Yθs
(Yk

s, k |cs)

Figure 3: The conditioning network and denoising network.

4.2.1 FORWARD DIFFUSION

Forward diffusion is straightforward. Analogous to (1), with Y0
s = Ys, we obtain at step k,

Yk
s =

√
ᾱkY

0
s +

√
1− ᾱkϵ, k = 1, . . . ,K, (8)

where the noise matrix ϵ is sampled from N (0, I) with the same size as Ys.

4.2.2 BACKWARD DENOISING

Standard diffusion models perform one-stage denoising directly from random vectors. In this section,
we decompose the denoising objective of mr-Diff, into S sub-objectives, one for each stage. As
will be seen, this encourages the denoising process to proceed in an easy-to-hard manner, such that
the coarser trends are generated first and the finer details are then progressively added.

Conditioning network. The conditioning network (Figure 3, top) constructs a condition to guide
the denoising network (to be discussed). Existing time series diffusion models (Rasul et al., 2021;
Tashiro et al., 2021) simply use the original time series’ lookback segment X0 as condition c in
(5). With the proposed multi-resolution seasonal-trend decomposition, we instead use the lookback
segment Xs at the same decomposition stage s. This allows better and easier reconstruction, as Xs

has the same resolution as Ys to be reconstructed. On the other hand, when X0 is used as in existing
time series diffusion models, the denoising network may overfit temporal details at the finer level.

A linear mapping is applied on Xs to produce a tensor zhistory ∈ Rd×H . For better denoising
performance, during training we use future-mixup (Shen & Kwok, 2023) to enhance zhistory. It
combines zhistory and the (ground-truth) future observation Y0

s with mixup (Zhang et al., 2018):

zmix = m⊙ zhistory + (1−m)⊙Y0
s , (9)

where ⊙ denotes the Hadamard product, and m ∈ [0, 1)d×H is a mixing matrix in which each
element is randomly sampled from the uniform distribution on [0, 1). Future-mixup is similar to
teacher forcing (Williams & Zipser, 1989), which mixes the ground truth with previous prediction
output at each decoding step of autoregressive decoding.

Besides using Xs on training, the coarser trend Ys+1 (= Y0
s+1) can provide an overall picture of

the finer trend Ys and is thus also useful for conditioning. Hence, zmix in (9) is concatenated with
Y0

s+1 along the channel dimension to produce the condition cs (a 2d×H tensor). For s = S (the
last stage), there is no coarser trend and cs is simply equal to zmix.

On inference, the ground-truth Y0
s is no longer available. Hence, future-mixup in (9) is not used,

and we simply set zmix = zhistory. Moreover, the coarser trend Ys+1 is also not available, and we
concatenate zmix with the estimate Ŷ0

s+1 generated from stage s+ 2 instead.

6

Published as a conference paper at ICLR 2024

Denoising network. Analogous to (6), the denoising process at step k of stage s+ 1 is given by

pθs(Y
k−1
s |Yk

s , cs) = N (Yk−1
s ;µθs(Y

k
s , k|cs, σ2

kI)), k = K, . . . , 1, (10)
where θs includes all parameters in the conditional network and denoising network at stage s+1, and

µθs(Y
k
s , k|cs, σ2

kI)=

√
αk(1−ᾱk−1)

1−ᾱk
Yk

s+

√
ᾱk−1βk

1−ᾱk
Yθs(Y

k
s , k|cs). (11)

As in (3), Yθs(Y
k
s , k|cs) is an estimate of Y0

s .

The denoising network (also shown in Figure 3) outputs Yθs(Y
k
s , k|cs) with guidance from the

condition cs (output by the conditioning network). Specifically, it first maps Yk
s to the embedding

z̄k ∈ Rd′×H by an input projection block consisting of several convolutional layers. This z̄k, together
with the diffusion-step k’s embedding pk ∈ Rd′

in (7), is fed to an encoder (which is a convolution
network) to obtain the representation zk ∈ Rd′′×H . Next, we concatenate zk and cs along the
variable dimension to form a tensor of size (2d+ d′′)×H . This is then fed to a decoder, which is
also a convolution network, and outputs Yθs(Y

k
s , k|cs). Finally, analogous to (4), θs is obtained by

minimizing the following denoising objective

min
θs

Ls(θs) = min
θs

EY0
s∼q(Ys),ϵ∼N (0,I),k

∥∥Y0
s −Yθs(Y

k
s , k|cs)

∥∥2 . (12)

On inference, for each s = S, . . . , 1, we start from ŶK
s ∼ N (0, I) (step 9 in Algorithm 2). Based on

the data prediction strategy in (11), each denoising step from Ŷk
s (an estimate of Yk

s) to Ŷk−1
s is:

Ŷk−1
s =

√
αk(1−ᾱk−1)

1−ᾱk
Ŷk

s+

√
ᾱk−1βk

1−ᾱk
Yθs(Ŷ

k
s , k|cs) + σkϵ, (13)

where ϵ ∼ N (0, I) when k > 1, and ϵ = 0 otherwise.

The pseudocode for the training and inference procedures of the backward denoising process can be
found in Appendix A.

Discussion. The proposed mr-Diff is related to the Scaleformer (Shabani et al., 2023), which also
generates the forecast progressively from the coarser level to the finer ones. However, besides the
obvious difference that Scaleformer is based on the transformer while mr-Diff is based on the
diffusion model, Scaleformer uses one single forecasting module (a transformer) at all resolutions.
However, as the time series patterns at different resolutions may be different, in mr-Diff, each
resolution has its own denoising network and is thus more flexible. Moreover, in moving from
a lower resolution to a higher resolution during both training and inference, Scaleformer needs
linear interpolation and an additional cross-scale normalization mechanism. On the other hand, in
mr-Diff, the lower-resolution prediction is fed into the conditioning network as a condition. The
conditioning network can learn a more flexible nonlinear mapping to fuse the cross-scale trends.
Coherent probabilistic forecasting (Rangapuram et al., 2023) also uses a temporal hierarchy to
produce forecasts at multiple resolutions. However, it is more stringent than mr-Diff and requires
the model to produce consistent forecasts at all resolutions. As will be shown in Section 5, this
enables mr-Diff to have better empirical performance.

5 EXPERIMENTS

In this section, we conduct time series prediction experiments by comparing 22 recent strong pre-
diction models on 9 popular real-world time series datasets. Due to space constraints, detailed
introductions about the datasets and selected baselines are in Appendix B and Appendix C, respec-
tively. For performance evaluation, we use the mean absolute error (MAE) and mean squared error
(MSE) averaged over ten randomly sampled trajectories. Because of the lack of space, results on
MSE are in Appendix D. Furthermore, ablation studies are provided in Appendix E.

Implementation Details. We train the proposed model using Adam with a learning rate of 10−3. The
batch size is 64, and training with early stopping for a maximum of 100 epochs. K = 100 diffusion
steps are used, with a linear variance schedule (Rasul et al., 2021) starting from β1 = 10−4 to
βK = 10−1. S = 5 stages are used. The history length (in {96, 192, 336, 720, 1440}) is selected by
using the validation set. All experiments are run on an Nvidia RTX A6000 GPU with 48GB memory.
More details can be found in Appendix F.

7

Published as a conference paper at ICLR 2024

Table 1: Univariate prediction MAEs on the real-world time series datasets (subscript is the rank).
Results of all baselines (except NLinear, SCINet, and N-Hits) are from (Shen & Kwok, 2023).

NorPool Caiso Traffic Electricity Weather Exchange ETTh1 ETTm1 Wind avg rank

mr-Diff 0.609(2) 0.212(4) 0.197(2) 0.332(1) 0.032(1) 0.094(1) 0.196(1) 0.149(1) 1.168(2) 1.7

TimeDiff 0.613(3) 0.209(3) 0.207(3) 0.341(3) 0.035(4) 0.102(7) 0.202(2) 0.154(6) 1.209(5) 4.0
TimeGrad 0.841(23) 0.386(22) 0.894(23) 0.898(23) 0.036(6) 0.155(21) 0.212(8) 0.167(12) 1.239(11) 16.6

CSDI 0.763(20) 0.282(14) 0.468(20) 0.540(19) 0.037(7) 0.200(23) 0.221(12) 0.170(14) 1.218(7) 15.1
SSSD 0.770(21) 0.263(12) 0.226(6) 0.403(8) 0.041(11) 0.118(16) 0.250(20) 0.169(13) 1.356(22) 14.3

D3VAE 0.774(22) 0.613(23) 0.237(9) 0.539(18) 0.039(9) 0.107(13) 0.221(12) 0.160(9) 1.321(19) 14.9
CPF 0.710(15) 0.338(18) 0.385(19) 0.592(21) 0.035(4) 0.094(1) 0.221(12) 0.153(5) 1.256(12) 11.9

PSA-GAN 0.623(5) 0.250(8) 0.355(17) 0.373(6) 0.139(22) 0.109(14) 0.225(16) 0.174(16) 1.287(16) 13.3

N-Hits 0.646(7) 0.276(13) 0.232(7) 0.419(9) 0.033(2) 0.100(5) 0.228(17) 0.157(8) 1.256(12) 8.9
FiLM 0.654(9) 0.290(15) 0.315(14) 0.362(5) 0.069(14) 0.104(10) 0.210(6) 0.149(1) 1.189(3) 8.6
Depts 0.616(4) 0.205(1) 0.241(10) 0.434(12) 0.102(19) 0.106(12) 0.202(2) 0.165(10) 1.472(23) 10.3

NBeats 0.671(10) 0.228(5) 0.225(5) 0.439(13) 0.130(21) 0.096(3) 0.242(18) 0.165(10) 1.236(9) 10.4

Scaleformer 0.687(12) 0.320(16) 0.375(18) 0.430(10) 0.083(17) 0.148(19) 0.302(22) 0.210(22) 1.348(21) 17.4
PatchTST 0.590(1) 0.260(11) 0.269(11) 0.478(17) 0.098(18) 0.111(15) 0.260(21) 0.174(16) 1.338(20) 14.4
FedFormer 0.725(17) 0.254(9) 0.278(12) 0.453(14) 0.057(13) 0.168(22) 0.212(8) 0.195(20) 1.271(14) 14.3
Autoformer 0.755(19) 0.339(19) 0.495(21) 0.623(22) 0.040(10) 0.152(20) 0.220(11) 0.174(16) 1.319(18) 17.3
Pyraformer 0.747(18) 0.257(10) 0.215(4) 0.455(15) 0.107(20) 0.104(10) 0.211(7) 0.179(19) 1.284(15) 13.1
Informer 0.698(13) 0.345(20) 0.308(13) 0.433(11) 0.069(14) 0.118(16) 0.212(8) 0.172(15) 1.236(9) 13.2

Transformer 0.723(16) 0.345(20) 0.336(16) 0.469(16) 0.071(16) 0.103(9) 0.247(19) 0.196(21) 1.212(6) 15.4

SCINet 0.653(8) 0.244(7) 0.322(15) 0.377(7) 0.037(7) 0.101(6) 0.205(5) 0.150(4) 1.167(1) 6.7
NLinear 0.637(6) 0.238(6) 0.192(1) 0.334(2) 0.033(2) 0.097(4) 0.203(4) 0.149(1) 1.197(4) 3.3
DLinear 0.671(10) 0.206(2) 0.236(8) 0.348(4) 0.310(23) 0.102(7) 0.222(15) 0.155(7) 1.221(8) 9.3
LSTMa 0.707(14) 0.333(17) 0.757(22) 0.557(20) 0.053(12) 0.136(18) 0.332(23) 0.239(23) 1.298(17) 18.4

5.1 MAIN RESULTS

Table 1 shows the MAEs on the univariate time series. As can be seen, the proposed mr-Diff is
the best in 5 of the 9 datasets. The improvement is particularly significant on the more complicated
datasets, such as Exchange and ETTh1. On the remaining 4 datasets, mr-Diff ranks second in 3 of
them. Overall, its average ranking is better than all other baselines (which include the most recent
diffusion models). Note that there is no improvement on datasets such as Caiso. This is because there
is no complex trend information on this dataset that can be leveraged (as can be seen in Figure 5(b)
Appendix B).

Figure 4 shows example prediction results on ETTh1 by mr-Diff and three competitive models:
SCINet, NLinear and the recent diffusion model TimeDiff. As can be seen, mr-Diff produces
higher-quality predictions than the others.

(a) SCINet. (b) NLinear. (c) TimeDiff. (d) mr-Diff.

Figure 4: Visualizations on ETTh1 by (a) SCINet (Liu et al., 2022), (b) NLinear (Zeng et al., 2023),
(c) TimeDiff (Shen & Kwok, 2023) and (d) the proposed mr-Diff.

Table 2 shows the MAEs on the multivariate time series. Baselines N-Hits, FiLM and SCINet have
strong performance because they also leverage multiresolution information in prediction. However,
the proposed mr-Diff is still very competitive compared to these strong baselines. It ranks among
the top-2 methods on 5 of the 9 datasets, and is the best overall. This is then followed by the recent
diffusion-based model TimeDiff.

5.2 INFERENCE EFFICIENCY

In this experiment, we compare the inference efficiency of mr-Diff (with 1-4 stages) with the other
time series diffusion model baselines (TimeDiff, TimeGrad, CSDI, SSSD) on the univariate ETTh1
dataset. Due to space constraints, we compare the training efficiency in Appendix G. Besides using a

8

Published as a conference paper at ICLR 2024

Table 2: Multivariate prediction MAEs on the real-world time series datasets (subscript is the rank).
CSDI runs out of memory on Traffic and Electricity. Results of all baselines (except for NLinear,
SCINet, and N-Hits) are from (Shen & Kwok, 2023).

NorPool Caiso Traffic Electricity Weather Exchange ETTh1 ETTm1 Wind avg rank

mr-Diff 0.604(2) 0.219(3) 0.320(5) 0.252(3) 0.324(2) 0.082(3) 0.422(2) 0.373(2) 0.675(1) 2.6

TimeDiff 0.611(3) 0.234(6) 0.384(8) 0.305(6) 0.312(1) 0.091(7) 0.430(3) 0.372(1) 0.687(3) 4.2
TimeGrad 0.821(19) 0.339(18) 0.849(22) 0.630(21) 0.381(14) 0.193(19) 0.719(22) 0.605(22) 0.793(21) 19.8

CSDI 0.777(17) 0.345(19) - - 0.374(12) 0.194(20) 0.438(5) 0.442(15) 0.741(10) 14.0
SSSD 0.753(13) 0.295(10) 0.398(13) 0.363(12) 0.350(8) 0.127(12) 0.561(17) 0.406(10) 0.778(18) 12.6

D3VAE 0.692(9) 0.331(16) 0.483(17) 0.372(14) 0.380(13) 0.301(22) 0.502(14) 0.391(8) 0.779(19) 14.7
CPF 0.889(21) 0.424(21) 0.714(21) 0.643(22) 0.781(23) 0.082(3) 0.597(20) 0.472(16) 0.757(15) 18.0

PSA-GAN 0.890(22) 0.477(22) 0.697(20) 0.533(20) 0.578(22) 0.087(6) 0.546(16) 0.488(18) 0.756(13) 17.7

N-Hits 0.643(7) 0.221(4) 0.268(2) 0.245(2) 0.335(4) 0.085(5) 0.480(8) 0.388(6) 0.734(8) 5.1
FiLM 0.646(8) 0.278(8) 0.398(13) 0.320(8) 0.336(5) 0.079(1) 0.436(4) 0.374(3) 0.717(5) 6.1
Depts 0.611(3) 0.204(2) 0.568(19) 0.401(17) 0.394(16) 0.100(9) 0.491(12) 0.412(12) 0.751(12) 11.3

NBeats 0.832(20) 0.235(7) 0.265(1) 0.370(13) 0.420(17) 0.081(2) 0.521(15) 0.409(11) 0.741(10.5) 10.7

Scaleformer 0.769(16) 0.310(12) 0.379(7) 0.304(5) 0.438(18) 0.138(14) 0.579(19) 0.475(17) 0.864(22) 14.4
PatchTST 0.710(10) 0.293(9) 0.411(16) 0.348(11) 0.555(21) 0.147(15) 0.489(11) 0.392(9) 0.720(6) 12.0
FedFormer 0.744(11) 0.317(13) 0.385(9) 0.341(10) 0.347(7) 0.233(21) 0.484(9) 0.413(13) 0.762(16) 12.1
Autoformer 0.751(12) 0.321(14) 0.392(12) 0.313(7) 0.354(9) 0.167(16) 0.484(9) 0.496(19) 0.756(13) 12.3
Pyraformer 0.781(18) 0.371(20) 0.390(10) 0.379(15) 0.385(15) 0.112(11) 0.493(13) 0.435(14) 0.735(9) 13.9

Informer 0.757(14) 0.336(17) 0.391(11) 0.383(16) 0.364(10) 0.192(18) 0.605(21) 0.542(20) 0.772(17) 16.0
Transformer 0.765(15) 0.321(14) 0.410(15) 0.405(18) 0.370(11) 0.178(17) 0.567(18) 0.592(21) 0.785(20) 16.6

SCINet 0.601(1) 0.193(1) 0.335(6) 0.280(4) 0.344(6) 0.137(13) 0.463(7) 0.389(7) 0.732(7) 5.8
NLinear 0.636(5) 0.223(5) 0.293(4) 0.239(1) 0.328(3) 0.091(7) 0.418(1) 0.375(4) 0.706(4) 3.8
DLinear 0.640(6) 0.497(23) 0.268(2) 0.336(9) 0.444(19) 0.102(10) 0.442(6) 0.378(5) 0.686(2) 9.1
LSTMa 0.974(23) 0.305(11) 0.510(18) 0.444(19) 0.501(20) 0.534(20) 0.782(23) 0.699(23) 0.897(23) 20.3

prediction horizon of H = 168 as in the previous experiment, we also use H = 96, 192, 336 and 720
as in (Wu et al., 2021; Zhou et al., 2022b).

Table 3 shows the number of trainable parameters and inference time. As can be seen, mr-Diff
has a smaller number of trainable parameters. Moreover, even with S = 4 or 5 stages, its inference
is more efficient than SSSD, CSDI, and TimeGrad. When S = 3 (the setting used in the previous
experiments), mr-Diff is even faster than TimeDiff. The inference efficiency of mr-Diff over
existing diffusion models is due to: (i) It is non-autoregressive, which avoids autoregressive decoding
in each time step as in TimeGrad. (ii) It uses convolution layers. This avoids the scaling problem
in CSDI, whose complexity is quadratic with the number of variables and time series length. (iii)
Use of the acceleration technique DPM-Solver (Lu et al., 2022), which further reduces the number of
denoising steps in each stage. Moreover, it is also faster than TimeDiff when S = 2 or 3, thanks to its
use of a linear mapping for future mixup instead of employing additional deep layers for this purpose.

Table 3: Number of trainable parameters and inference time (in ms) of various time series diffusion
models with different prediction horizons (H) on the univariate ETTh1.

inference time (ms)
of trainable params H=96 H=168 H=192 H=336 H=720

mr-Diff (S=2) 0.9M 8.3 9.5 9.8 11.9 21.6
mr-Diff (S=3) 1.4M 12.5 14.3 14.9 16.8 27.5
mr-Diff (S=4) 1.8M 16.7 19.1 19.7 28.5 36.4
mr-Diff (S=5) 2.3M 30.0 30.2 30.2 35.0 43.6

TimeDiff 1.7M 16.2 17.3 17.6 26.5 34.6
TimeGrad 3.1M 870.2 1620.9 1854.5 3119.7 6724.1

CSDI 10M 90.4 128.3 142.8 398.9 513.1
SSSD 32M 418.6 590.2 645.4 1054.2 2516.9

6 CONCLUSION

In this paper, we propose the mutli-resolution diffusion model mr-Diff. Different from the
existing time series diffusion model, mr-Diff incorporates seasonal-trend decomposition and
uses multiple temporal resolutions in both the diffusion and denoising processes. By progressively
denoising the time series in a coarse-to-fine manner, mr-Diff is able to produce more reliable
predictions. Experiments on a number of real-world univariate and multivariate time series datasets
show that mr-Diff outperforms the state-of-the-art time series diffusion models. It also achieves
very competitive performance even when compared to various families of non-diffusion-based time
series prediction models.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This research was supported in part by the Research Grants Council of the Hong Kong Special
Administrative Region (Grant 16200021), and the Science and Technology Planning Project of
Guangdong Province (Grant 2023A0505050106).

REFERENCES

Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and forecast-
ing with structured state space models. Technical report, arXiv, 2022.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations, 2015.

Yaniv Benny and Lior Wolf. Dynamic dual-output diffusion models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza, Max Mergenthaler-Canseco, and
Artur Dubrawski. N-HITS: Neural hierarchical interpolation for time series forecasting. In AAAI
Conference on Artificial Intelligence, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In Advances
in Neural Information Processing Systems, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsbym. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2020.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Technical report, arXiv, 2017.

Wei Fan, Shun Zheng, Xiaohan Yi, Wei Cao, Yanjie Fu, Jiang Bian, and Tie-Yan Liu. DEPTS: Deep
expansion learning for periodic time series forecasting. In International Conference on Learning
Representations, 2022.

William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood. Flexible
diffusion modeling of long videos. In Advances in Neural Information Processing Systems, 2022.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of Forecasting, 37
(1):388–427, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Paul Jeha, Michael Bohlke-Schneider, Pedro Mercado, Shubham Kapoor, Rajbir Singh Nirwan,
Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. PSA-GAN: Progressive self attention
GANs for synthetic time series. In International Conference on Learning Representations, 2022.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

10

Published as a conference paper at ICLR 2024

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2020.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In International ACM SIGIR Conference on Research
& Development in Information Retrieval, 2018.

Yan Li, Xinjiang Lu, Yaqing Wang, and Dejing Dou. Generative time series forecasting with diffusion,
denoise, and disentanglement. In Advances in Neural Information Processing Systems, 2022.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. In Advances in
Neural Information Processing Systems, 2022.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International Conference on Learning Representations, 2021.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A fast
ODE solver for diffusion probabilistic model sampling in around 10 steps. In Advances in Neural
Information Processing Systems, 2022.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

Kiran Madhusudhanan, Johannes Burchert, Nghia Duong-Trung, Stefan Born, and Lars Schmidt-
Thieme. Yformer: U-net inspired transformer architecture for far horizon time series forecasting.
Technical report, arXiv, 2021.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. Technical report, arXiv, 2022.

Hao Niu, Chuizheng Meng, Defu Cao, Guillaume Habault, Roberto Legaspi, Shinya Wada, Chihiro
Ono, and Yan Liu. Mu2ReST: Multi-resolution recursive spatio-temporal transformer for long-term
prediction. In Advances in Knowledge Discovery and Data Mining, 2022.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural
basis expansion analysis for interpretable time series forecasting. In International Conference on
Learning Representations, 2019.

Syama Sundar Rangapuram, Shubham Kapoor, Rajbir Singh Nirwan, Pedro Mercado, Tim
Januschowski, Yuyang Wang, and Michael Bohlke-Schneider. Coherent probabilistic forecasting
of temporal hierarchies. In International Conference on Artificial Intelligence and Statistics, 2023.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In International Conference
on Machine Learning, 2021.

Cleveland Robert, C William, and Terpenning Irma. STL: A seasonal-trend decomposition procedure
based on loess. Journal of Official Statistics, 1990.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J.
Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language
understanding. In Advances in Neural Information Processing Systems, 2022.

11

Published as a conference paper at ICLR 2024

Mohammad Amin Shabani, Amir H. Abdi, Lili Meng, and Tristan Sylvain. Scaleformer: Iterative
multi-scale refining transformers for time series forecasting. In International Conference on
Learning Representations, 2023.

Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series
prediction. In International Conference on Machine Learning, 2023.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional score-based
diffusion models for probabilistic time series imputation. In Advances in Neural Information
Processing Systems, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Ronald J. Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270–280, 1989.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transform-
ers with auto-correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. St-unet: A spatio-temporal U-network for graph-structured
time series modeling. Technical report, arXiv, 2021.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. TS2Vec: Towards universal representation of time series. In AAAI Conference on
Artificial Intelligence, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI Conference on Artificial Intelligence, 2023.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI
Conference on Artificial Intelligence, 2021.

Tian Zhou, Ziqing MA, Xue Wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, and Rong Jin.
FiLM: Frequency improved legendre memory model for long-term time series forecasting. In
Advances in Neural Information Processing Systems, 2022a.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, 2022b.

12

Published as a conference paper at ICLR 2024

A PSEUDOCODE

The training and inference procedures are shown in Algorithms 1 and 2, respectively.

Algorithm 1 Training procedure of the backward denoising process.
1: repeat
2: (X0,Y0) ∼ q(X,Y)
3: {Xs}s=1,...,S−1 = TrendExtraction(X0)
4: {Ys}s=1,...,S−1 = TrendExtraction(Y0)
5: for s = S − 1, . . . , 0 do
6: k ∼ Uniform({1, 2, . . . ,K})
7: ϵ ∼ N (0, I)
8: Generate diffused sample Yk

s by Yk
s =

√
ᾱkY

0
s+

√
1− ᾱkϵ

9: Obtain diffusion step k’s embedding pk using (7)
10: Randomly generate a matrix m in (9)
11: Obtain zhistory using linear mapping on Xs

12: Obtain zmix using (9)
13: if s < S − 1 then
14: Obtain condition cs by concatenating zmix and Y0

s+1

15: else
16: Obtain condition cs = zmix
17: end if
18: Calculate the loss Lk

s (θs) in (12)
19: Take a gradient descent step based on ∇θsLk(θs)
20: end for
21: until converged

Algorithm 2 Inference procedure.
1: {Xs}s=1,...,S−1 = TrendExtraction(X0)
2: for s = S − 1, . . . , 0 do
3: Obtain zhistory using linear mapping on Xs

4: if s < S − 1 then
5: Obtain condition cs by concatenating zhistory and Y0

s+1

6: else
7: Obtain condition cs = zhistory
8: end if
9: Initialization: ŶK

s ∼ N (0, I)
10: for k = K, . . . , 1 do
11: ϵ ∼ N (0, I), if k > 1, else ϵ = 0
12: Obtain diffusion step k’s embedding pk using (7)
13: Obtain the denoised output Ŷk−1

s by (13)
14: end for
15: end for
16: return Ŷ0

0

B DATASETS

Experiments are performed on nine commonly-used real-world time series datasets (Zhou et al.,
2021; Wu et al., 2021; Fan et al., 2022): (i) NorPool 1, which includes eight years of hourly energy
production volume series in multiple European countries; (ii) Caiso 2, which contains eight years
of hourly actual electricity load series in different zones of California; (iii) Traffic 3, which records
the hourly road occupancy rates generated by sensors in the San Francisco Bay area freeways; (iv)
Electricity 4, which includes the hourly electricity consumption of 321 clients over two years; (v)
Weather 5, which records 21 meteorological indicators at 10-minute intervals from 2020 to 2021; (vi)

1https://www.nordpoolgroup.com/Market-data1/Power-system-data
2http://www.energyonline.com/Data
3http://pems.dot.ca.gov
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5https://www.bgc-jena.mpg.de/wetter/

13

https://www.nordpoolgroup.com/Market-data1/Power-system-data
http://www.energyonline.com/Data
http://pems.dot.ca.gov
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://www.bgc-jena.mpg.de/wetter/

Published as a conference paper at ICLR 2024

Exchange 6 (Lai et al., 2018), which describes the daily exchange rates of eight countries (Australia,
British, Canada, Switzerland, China, Japan, New Zealand, and Singapore); (vii)-(viii) ETTh1 and
ETTm1,7, which contain two years of electricity transformer temperature data (Zhou et al., 2021)
collected in China, at 1-hour and 15-minute intervals, respectively; (ix) Wind 8, which contains wind
power records from 2020-2021 at 15-minute intervals (Li et al., 2022). Table 4 shows the dataset
information. As different datasets have different sampling interval lengths, we follow (Shen & Kwok,
2023) and consider prediction tasks with more reasonable prediction lengths.

Table 4: Summary of dataset statistics, including the dimension, total number of observations,
sampling frequency, and prediction length H used in the experiments.

dimension #observations frequency steps (H)

NorPool 18 70,128 1 hour 720 (1 month)
Caiso 10 74,472 1 hour 720 (1 month)
Traffic 862 17,544 1 hour 168 (1 week)
Electricity 321 26,304 1 hour 168 (1 week)
Weather 21 52,696 10 mins 672 (1 week)
Exchange 8 7,588 1 day 14 (2 weeks)
ETTh1 7 17,420 1 hour 168 (1 week)
ETTm1 7 69,680 15 mins 192 (2 days)
Wind 7 48,673 15 mins 192 (2 days)

Besides running directly on these multivariate datasets, we also convert them to univariate time series
for performance comparison. For NorPool and Caiso, the univariate time series are extracted from
all variables as in (Fan et al., 2022). For the other datasets, we follow (Wu et al., 2021; Zhou et al.,
2021) and extract the univariate time series by using the last variable only.

Figure 5 shows examples of the time series data used in the experiments. Since all of them are
multivariate, we only show the last variate. As can be seen, these datasets are representative in
exhibiting various temporal characteristics (different stationary states, periodicities, and sampling
rates). For example, Electricity contains obvious periodic patterns, while ETTh1 and ETTm1 exhibit
non-stationary trends.

Real-world time series often have irregular dynamics over time or across variables. As in many deep
time series models (Kim et al., 2021; Zhou et al., 2022a; Liu et al., 2022; Zeng et al., 2023), it is
often useful to normalize the scales of the time series in each window. In the proposed method, we
use instance normalization, which has also been used in RevIN (Kim et al., 2021) (which is referred
to as reversible instance normalization) and FiLM (Zhou et al., 2022a). Specifically, we subtract the
time series value in each window by its lookback window mean, and then divide by the lookback
window’s standard deviation. During inference, the mean and standard deviation are added back to
the prediction.

C BASELINES IN MAIN EXPERIMENTS

We compare with several types of baselines, including: (i) recent time series diffusion models:
non-autoregressive diffusion model TimeDiff (Shen & Kwok, 2023), TimeGrad (Rasul et al., 2021),
conditional score-based diffusion model for imputation (CSDI) (Tashiro et al., 2021), structured state
space model-based diffusion (SSSD) (Alcaraz & Strodthoff, 2022); (ii) recent generative models
for time series prediction: variational autoencoder with diffusion, denoise and disentanglement
(D3VAE) (Li et al., 2022), coherent probabilistic forecasting (CPF) (Rangapuram et al., 2023),
and PSA-GAN (Jeha et al., 2022); (iii) recent prediction models based on basis expansion: N-
Hits (Challu et al., 2023), frequency improved Legendre memory model (FiLM) (Zhou et al.,
2022a), Depts (Fan et al., 2022) and NBeats (Oreshkin et al., 2019); (iv) time series transformers:
Scaleformer (Shabani et al., 2023), PatchTST (Nie et al., 2022), Fedformer (Zhou et al., 2022b),
Autoformer (Wu et al., 2021), Pyraformer (Liu et al., 2021), Informer (Zhou et al., 2021) and the

6https://github.com/laiguokun/multivariate-time-series-data
7https://github.com/zhouhaoyi/ETDataset
8https://github.com/PaddlePaddle/PaddleSpatial/tree/main/paddlespatial/

datasets/WindPower

14

https://github.com/laiguokun/multivariate-time-series-data
https://github.com/zhouhaoyi/ETDataset
https://github.com/PaddlePaddle/PaddleSpatial/tree/main/paddlespatial/datasets/WindPower
https://github.com/PaddlePaddle/PaddleSpatial/tree/main/paddlespatial/datasets/WindPower

Published as a conference paper at ICLR 2024

(a) NorPool. (b) Caiso.

(c) Traffic. (d) Electricity.

(e) Weather. (f) Exchange.

(g) ETTh1. (h) ETTm1.

(i) Wind.

Figure 5: Visualization of the time series datasets.

standard Transformer (Vaswani et al., 2017); and (v) other competitive baselines: SCINet (Liu et al.,
2022) that introduces sample convolution and interaction for time series prediction, NLinear (Zeng
et al., 2023), DLinear (Zeng et al., 2023) LSTMa (Bahdanau et al., 2015), and an attention-based
LSTM (Hochreiter & Schmidhuber, 1997). We do not compare with (Yu et al., 2021; Niu et al., 2022;
Madhusudhanan et al., 2021) because their codes are not publicly available.

D RESULTS ON MSE

Tables 5 and 6 show the MSE results on the univariate and multivariate time series, respectively, for
the experiment in Section 5.1. As can be seen, the proposed mr-Diff still achieves the best overall
MSE performance in terms of average rank. Moreover, since deep models for time series forecasting
may be influenced by different random initializations, Table 7 shows the prediction results on the
univariate time series over 5 random runs. As can be seen, the largest standard deviation is 0.0042,
indicating that the proposed model is robust towards different initializations.

E ABLATION STUDIES

In this section, we perform a number of ablation experiments on mr-Diff using the Electricity,
ETTh1 and ETTm1 datasets. These datasets are representative in exhibiting various temporal char-
acteristics (different stationary states, periodicities, and sampling rates). For example, Electricity
contains obvious periodic patterns, while ETTh1 and ETTm1 exhibit non-stationary trends.

15

Published as a conference paper at ICLR 2024

Table 5: Univariate prediction MSEs on the real-world time series datasets (subscript is the rank).
Results of all baselines (except NLinear, SCINet, and N-Hits) are from (Shen & Kwok, 2023).

Method NorPool Caiso Traffic Electricity Weather Exchange ETTh1 ETTm1 Wind Rank

mr-Diff 0.667(4) 0.122(3) 0.119(1) 0.234(3) 0.002(1) 0.016(1) 0.066(1) 0.039(2) 2.182(4) 2.2

TimeDiff 0.636(2) 0.122(3) 0.121(2) 0.232(2) 0.002(1) 0.017(4) 0.066(1) 0.040(5) 2.407(13) 3.7
TimeGrad 1.129(22) 0.325(22) 1.223(23) 0.920(23) 0.002(1) 0.041(20) 0.078(10) 0.048(11) 2.530(18) 16.7
CSDI 0.967(21) 0.192(14) 0.393(20) 0.520(18) 0.002(1) 0.071(23) 0.083(15) 0.050(15) 2.434(15) 15.8
SSSD 1.145(23) 0.176(12) 0.151(8) 0.370(11) 0.004(11) 0.023(16) 0.097(20) 0.049(13) 3.149(22) 15.1

D3VAE 0.964(20) 0.521(23) 0.151(8) 0.535(19) 0.003(9) 0.019(12) 0.078(10) 0.044(9) 2.679(20) 14.4
CPF 0.855(15) 0.260(21) 0.279(18) 0.609(21) 0.002(1) 0.016(1) 0.080(13) 0.041(6) 2.430(14) 12.2
PSA-GAN 0.658(3) 0.150(7) 0.250(17) 0.273(7) 0.035(21) 0.020(13) 0.084(16) 0.051(16) 2.510(17) 13.0

N-Hits 0.739(9) 0.170(11) 0.147(7) 0.346(8) 0.002(1) 0.017(4) 0.089(17) 0.043(8) 2.406(12) 8.6
FiLM 0.707(7) 0.185(13) 0.198(13) 0.260(5) 0.007(14) 0.018(9) 0.070(3) 0.038(1) 2.143(2) 7.4
Depts 0.668(5) 0.107(1) 0.151(8) 0.380(14) 0.024(19) 0.020(13) 0.070(3) 0.046(10) 3.457(23) 10.7
NBeats 0.768(11) 0.125(5) 0.142(6) 0.378(13) 0.137(22) 0.016(1) 0.095(19) 0.048(11) 2.434(15) 11.4

Scaleformer 0.778(12) 0.232(16) 0.286(19) 0.361(9) 0.009(17) 0.035(19) 0.150(22) 0.078(22) 2.646(19) 17.2
PatchTST 0.595(1) 0.193(15) 0.177(12) 0.450(17) 0.026(20) 0.020(13) 0.106(21) 0.052(18) 2.698(21) 21
FedFormer 0.891(16) 0.164(9) 0.173(11) 0.376(12) 0.005(12) 0.050(22) 0.076(7) 0.065(21) 2.351(11) 13.4
Autoformer 0.946(19) 0.248(17) 0.473(21) 0.659(22) 0.003(9) 0.041(20) 0.081(14) 0.051(16) 2.349(10) 16.4
Pyraformer 0.933(18) 0.165(10) 0.136(4) 0.389(15) 0.020(18) 0.017(7) 0.076(7) 0.054(19) 2.279(6) 11.2
Informer 0.804(13) 0.250(18) 0.213(15) 0.363(10) 0.007(14) 0.023(16) 0.076(7) 0.049(13) 2.297(7) 12.6
Transformer 0.928(17) 0.250(18) 0.238(16) 0.430(14) 0.007(14) 0.018(9) 0.092(18) 0.058(20) 2.306(9) 15.2

SCINet 0.746(10) 0.154(8) 0.212(14) 0.272(6) 0.002(1) 0.018(9) 0.071(6) 0.039(2) 2.063(1) 6.3
NLinear 0.708(8) 0.147(6) 0.124(3) 0.231(1) 0.002(1) 0.017(4) 0.070(3) 0.039(2) 2.193(5) 3.7
DLinear 0.671(6) 0.118(2) 0.139(5) 0.244(4) 0.168(23) 0.017(4) 0.078(10) 0.041(6) 2.171(3) 7.0
LSTMa 0.836(14) 0.253(20) 1.032(22) 0.596(20) 0.005(12) 0.031(18) 0.167(23) 0.091(23) 2.299(8) 17.8

Table 6: Multivariate prediction MSEs on the real-world time series datasets (subscript is the rank).
CSDI runs out of memory on Traffic and Electricity. Results of all baselines (except for NLinear,
SCINet, and N-Hits) are from (Shen & Kwok, 2023).

Method NorPool Caiso Traffic Electricity Weather Exchange ETTh1 ETTm1 Wind Rank

mr-Diff 0.645(2) 0.127(3) 0.474(6) 0.155(3) 0.296(1) 0.016(1) 0.411(3) 0.340(2) 0.881(1) 2.4

TimeDiff 0.665(4) 0.136(6) 0.564(7) 0.193(5) 0.311(2) 0.018(6) 0.407(1) 0.336(1) 0.896(2) 3.8
TimeGrad 1.152(20) 0.258(19) 1.745(22) 0.736(21) 0.392(14) 0.079(20) 0.993(22) 0.874(21) 1.209(21) 20.0
CSDI 1.011(19) 0.253(18) - - 0.356(9) 0.077(19) 0.497(7) 0.529(17) 1.066(9) 14.0
SSSD 0.872(12) 0.195(10) 0.642(11) 0.255(12) 0.349(8) 0.061(16) 0.726(18) 0.464(13) 1.188(19) 13.2

D3VAE 0.745(9) 0.241(17) 0.928(17) 0.286(15) 0.375(11) 0.200(22) 0.504(9) 0.362(8) 1.118(15) 13.7
CPF 1.613(23) 0.383(21) 1.625(21) 0.793(22) 1.390(23) 0.016(1) 0.730(19) 0.482(15) 1.140(17) 18.0
PSA-GAN 1.501(22) 0.510(23) 1.614(20) 0.535(20) 1.220(21) 0.018(6) 0.623(17) 0.537(18) 1.127(16) 18.1

N-Hits 0.716(7) 0.131(4) 0.386(2) 0.152(2) 0.323(4) 0.017(5) 0.498(8) 0.353(6) 1.033(6) 4.9
FiLM 0.723(8) 0.179(8) 0.628(10) 0.210(8) 0.327(5) 0.016(1) 0.426(5) 0.347(4) 0.984(4) 5.9
Depts 0.662(3) 0.106(2) 1.019(19) 0.319(17) 0.761(19) 0.020(9) 0.579(13) 0.380(10) 1.082(12) 11.6
NBeats 0.832(10) 0.141(7) 0.373(1) 0.269(13) 1.344(22) 0.016(1) 0.586(15) 0.391(11) 1.069(10) 10.0

Scaleformer 0.983(15) 0.207(13) 0.618(9) 0.195(6) 0.462(16) 0.036(12) 0.613(16) 0.481(14) 1.359(22) 13.7
PatchTST 0.851(11) 0.193(9) 0.831(16) 0.225(10) 0.782(20) 0.047(14) 0.526(11) 0.372(9) 1.070(11) 12.3
FedFormer 0.873(13) 0.205(11) 0.591(8) 0.238(11) 0.342(7) 0.133(21) 0.541(12) 0.426(12) 1.113(14) 12.1
Autoformer 0.940(14) 0.226(15) 0.688(15) 0.201(7) 0.360(10) 0.056(15) 0.516(10) 0.565(19) 1.083(13) 13.1
Pyraformer 1.008(18) 0.273(20) 0.659(12) 0.273(14) 0.394(15) 0.032(11) 0.579(13) 0.493(16) 1.061(8) 14.1
Informer 0.985(16) 0.231(16) 0.664(13) 0.298(16) 0.385(12) 0.073(18) 0.775(21) 0.673(20) 1.168(18) 16.7
Transformer 1.005(17) 0.206(12) 0.671(14) 0.328(18) 0.388(13) 0.062(17) 0.759(20) 0.992(22) 1.201(20) 17.0

SCINet 0.613(1) 0.095(1) 0.434(5) 0.171(4) 0.329(6) 0.036(12) 0.465(6) 0.359(7) 1.055(7) 5.4
NLinear 0.707(6) 0.135(5) 0.430(4) 0.147(1) 0.313(3) 0.019(8) 0.410(2) 0.349(5) 0.989(5) 4.3
DLinear 0.670(5) 0.461(22) 0.389(3) 0.215(9) 0.488(17) 0.022(10) 0.415(4) 0.345(3) 0.899(3) 8.4
LSTMa 1.481(21) 0.217(14) 0.966(18) 0.414(19) 0.662(18) 0.403(23) 1.149(23) 1.030(23) 1.464(23) 20.2

Length of lookback window L. Table 8 shows the prediction MAE of mr-Diff with different
lengths (L) of the lookback window. We consider L = {96, 192, 336, 720, 1440} as used in (Shen
& Kwok, 2023; Zeng et al., 2023; Wu et al., 2021). As can be seen, on Electricity, ETTh1 and

16

Published as a conference paper at ICLR 2024

Table 7: Univariate prediction errors of mr-Diff obtained on five runs.
NorPool Caiso Traffic Electricity

MAE MSE MAE MSE MAE MSE MAE MSE

0 0.6096 0.6668 0.2129 0.1225 0.1973 0.1192 0.3322 0.2331
1 0.6092 0.6664 0.2131 0.1226 0.1974 0.1195 0.3267 0.2293
2 0.6087 0.6659 0.2091 0.1220 0.1970 0.1193 0.3327 0.2409
3 0.6099 0.6672 0.2129 0.1225 0.1976 0.1192 0.3382 0.2347
4 0.6091 0.6665 0.2120 0.1221 0.1973 0.1195 0.3321 0.2339

mean 0.6093 0.6666 0.2120 0.1223 0.1973 0.1193 0.3324 0.2343
std deviation 0.0005 0.0005 0.0017 0.0003 0.0002 0.0001 0.0041 0.0042

Weather Exchange ETTh1 ETTm1 Wind
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

0 0.0322 0.0019 0.0936 0.0155 0.1964 0.0663 0.1486 0.0389 1.1704 2.1862
1 0.0321 0.0018 0.0935 0.0155 0.1968 0.0667 0.1489 0.0387 1.1682 2.1820
2 0.0323 0.0018 0.0947 0.0158 0.1956 0.0660 0.1483 0.0384 1.1690 2.1822
3 0.0322 0.0019 0.0954 0.0160 0.1959 0.0661 0.1486 0.0387 1.1676 2.1807
4 0.0322 0.0018 0.0946 0.0159 0.1965 0.0671 0.1489 0.0389 1.1670 2.1804

mean 0.0322 0.0018 0.0943 0.0157 0.1962 0.0664 0.1486 0.0387 1.1684 2.1823
std deviation 0.0001 0.0001 0.0008 0.0002 0.0005 0.0004 0.0003 0.0002 0.0013 0.0023

ETTm1 (corresponding to 168/168/192-step-ahead prediction, respectively), good performance can
be obtained when L is 336 or above.

forecast window

lookback window

Y0Y0

X0X0

c0c0

denoising
network

Yk0Yk0

random noise

inference only

training only

final prediction L0L0
Ŷ00Ŷ00

conditioning
network

forward
diffusion

Figure 6: The baseline without seasonal-trend decomposition blocks.

Table 8: Prediction MAE versus lookback window length L.

L Electricity ETTh1 ETTm1

96 0.449 0.210 0.165
192 0.376 0.202 0.163
336 0.362 0.196 0.157
720 0.332 0.196 0.152

1,440 0.346 0.199 0.149

Number of stages S. In this experiment, we vary the number of stages S. The kernel size τs is
set to increase with the stage number s, so as to generate fine-to-coarse trends. We also compare
with a variant that does not perform seasonal-trend decomposition (illustrated in Figure 6). This
variant directly generates the forecast window from a random noise vector without using the coarser

17

Published as a conference paper at ICLR 2024

trend Y0
s+1. Table 9 shows the prediction errors. As can be seen, using multiple stages improves

performance, and not using the seasonal-trend decomposition leads to the worst performance.

Table 9: Prediction MAE versus number of stages S. L is set to the optimal setting in Table 8 (i.e.,
Electricity: 720, ETTh1: 336, ETTm1: 1440.

S Electricity ETTh1 ETTm1

1 0.403 0.208 0.1573
2 0.389 0.200 0.1529
3 0.363 0.196 0.1525
4 0.346 0.197 0.1509
5 0.332 0.197 0.1496

Number of diffusion steps K. Table 10 shows the prediction error of mr-Diff with K, the
number of diffusion steps. As can be seen, setting K = 100 leads to stable performance across
all four datasets. This also agrees with (Li et al., 2022) in that a small K may lead to incomplete
diffusion, while a K too large may involve unncessary computations.

Table 10: Prediction MAE versus number of diffusion steps K.

K Electricity ETTh1 ETTm1

50 0.348 0.199 0.151
100 0.332 0.196 0.149
500 0.335 0.198 0.151

1,000 0.337 0.199 0.151

Gaussian noise variance βk. Recall from Section 5 that βk is generated by a linear variance
schedule (Rasul et al., 2021). In this experiment, we vary βK in {0.001,0.01,0.1,0.9}, with β1 fixed
to 10−4. As can be seen from Table 11, setting βK = 0.1 always has the best performance. Li et al.
(2022) has a similar conclusion that a βK too small can lead to a unsatisfactory diffusion, while a βK

too large can make the diffusion out of control.

Table 11: Prediction MAE versus Gaussian noise variance upper bound βk.

βK Electricity ETTh1 ETTm1

0.001 0.403 0.198 0.151
0.01 0.365 0.198 0.152
0.1 0.332 0.196 0.149
0.9 0.372 0.201 0.154

Future mixup. Recall that each element of the future mixup matrix m in (9) is randomly sampled
from the uniform distribution on [0; 1). In this experiment, we study the effect of m by sampling each
of its elements from the Beta distribution Beta(γ, γ) where γ ∈ {0.1, 1, 2}. Note that Beta(1, 1)
reduces to the uniform distribution. Also, we include a mr-Diff variant that does not use future
mixup (by replacing (9) with zmix = zhistory). Table 12 shows the prediction results. As can be
seen, the uniform distribution (with γ = 1) as used in mr-Diff has the best performance.

F MORE IMPLEMENTATION DETAILS

In the proposed mr-Diff, the conditioning network and the denoising network’s encoder/decoder are
built by stacking a number of convolutional blocks. The default configuration of each convolutional
block is shown in Table 13.

The number S is selected from {2, 3, 4, 5} (the number of stages S is greater than the number of
decompositions by 1). When S = 2, the kernel size τ1 is selected from {5, 25}; When S = 3,

18

Published as a conference paper at ICLR 2024

Table 12: Prediction MAE with future mixup matrix m from different Beta distributions Beta(γ, γ).

γ Electricity ETTh1 ETTm1

0.1 0.348 0.202 0.154
1 0.332 0.196 0.149
2 0.776 0.222 0.200

variant without future mixup 0.349 0.198 0.151

Table 13: Configuration of the convolutional block.

layer operator default parameters

1 Conv1d in channel=256, out channel=256, kernel size=3, stride=1, padding=1
2 BatchNorm1d number of features=256
3 LeakyReLU negative slope=0.1
4 Dropout dropout rate=0.1

the kernel size (τ1, τ2) is selected from {(5, 25), (25, 51), (51, 201)}; When S = 4, the kernel size
(τ1, τ2, τ3) is selected from {(5, 25, 51), (25, 51, 201)}. When S = 5, the kernel size (τ1, τ2, τ3, τ4)
is selected from {(5, 25, 51, 201)}. In practice, we run a grid search over S for each dataset. This is
not expensive as the number of choices is small (as can be seen from above). Usually, S = 2 and the
combinations (5,25) and (25,51) achieve promising performance.

G TRAINING EFFICIENCY

In Section 5.2, we discussed inference efficiency. In this section, we further compare training
efficiency of mr-Diff with the other time series diffusion model baselines (TimeDiff, TimeGrad,
CSDI, SSSD) on the univariate ETTh1 dataset. As can be seen from Table 14, the proposed model
requires less training time compared to TimeGrad, CSDI, and SSSD. This suggests that the proposed
model is more efficient in terms of training. This is because, during training, mr-Diff uses
convolution layers in its denoising networks, which eliminates the need for large modules like
residual blocks (in TimeGrad and SSSD) and self-attention layers (in CSDI). Moreover, it is also
faster than TimeDiff, thanks to its use of a linear mapping for future mixup instead of employing
additional deep layers for this purpose.

Table 14: Training time (ms) of various time series diffusion models with different prediction horizons
(H) on the univariate ETTh1.

training time (ms)
H = 96 H = 168 H = 192 H = 336 H = 720

mr-Diff (S=2) 0.54 0.57 0.58 0.62 0.66
mr-Diff (S=3) 0.59 0.69 0.71 0.74 0.82
mr-Diff (S=4) 0.78 0.96 0.99 1.07 1.45
mr-Diff (S=5) 1.19 1.26 1.27 1.31 1.72

TimeDiff 0.71 0.75 0.77 0.82 0.85
TimeGrad 2.11 2.42 3.21 4.22 5.93

CSDI 5.72 7.09 7.59 10.59 17.21
SSSD 16.98 19.34 22.64 32.12 52.93

19

	Introduction
	Related Works: Deep Time Series models
	Background
	Denoising Diffusion Probabilistic Models
	Conditional Diffusion Models for Time Series Prediction

	mr-Diff: Multi-Resolution Diffusion Model
	Extracting Fine-to-Coarse Trends
	Temporal Multi-resolution Reconstruction
	Forward Diffusion
	Backward Denoising

	Experiments
	Main Results
	Inference Efficiency

	Conclusion
	Pseudocode
	Datasets
	Baselines in Main Experiments
	Results on MSE
	Ablation Studies
	More Implementation Details
	Training Efficiency

