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ABSTRACT
Streaming videos from resource-constrained front-end devices over
networks to resource-rich cloud servers has long been a common
practice for surveillance and analytics. Most existing live video an-
alytics (LVA) systems, however, are built over terrestrial networks,
limiting their applications during natural disasters and in remote ar-
eas that desperately call for real-time visual data delivery and scene
analysis. With the recent advent of space networking, in particu-
lar, Low Earth Orbit (LEO) satellite constellations such as Starlink,
high-speed truly global Internet access is becoming available and
affordable. This paper examines the challenges and potentials of
LVA over modern LEO satellite networking (LSN). Using Starlink
as the testbed, we have carried out extensive in-the-wild measure-
ments to gain insights into its achievable performance for LVA.
The results reveal that, the uplink bottleneck in today’s LSN, to-
gether with the volatile network conditions, can significantly affect
the service quality of LVA and necessitate prompt adaptation. We
accordingly develop StarStream, a novel LSN-adaptive stream-
ing framework for LVA. At its core, StarStream is empowered by
a transformer-based network performance predictor tailored for
LSN and a content-aware configuration optimizer. We discuss a
series of key design and implementation issues of StarStream and
demonstrate its effectiveness and superiority through trace-driven
experiments with real-world network and video processing data.

CCS CONCEPTS
• Networks→ Network measurement; • Information systems
→Multimedia streaming.

KEYWORDS
live video analytics, LEO satellite, network measurement

1 INTRODUCTION
Live video analytics (LVA) [13–15, 20, 21] analyzes online video
data from networked cameras for automated knowledge extraction.
Given the limited resources in front-end cameras [14], the video
data are typically streamed to resource-abundant edge or cloud
servers for real-time analytics [4, 14, 15, 40]. To date, most data
are carried over terrestrial networks, which have covered much of
the human-inhabited lands and major roads in developed countries.
Yet, despite global efforts to connect the uncovered, unserved, and
underserved populations to the Internet, one-third of the Earth’s
population (around 2.9 billion people) remains disconnected [25].
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Many rural and remote areas, crucial for industries such as mining,
fishing, or forestry, have not been covered, or may never be, includ-
ing places like Alaska in the USA, northern Canada, and central
Australia. Additionally, their terrestrial network services can be
vulnerable to disruptions from extreme weather, natural disasters,
or other emergencies.

To bridge this digital gap, recent years have seen the rapid devel-
opment and deployment of space networking based on Low Earth
Orbit (LEO) satellites. Compared to geostationary (GEO) satellites at
the 35, 786 km orbit, LEO satellites are much closer to Earth (below
2, 000 km). This proximity significantly reduces the launching cost
as well as the signal travel distance, resulting in substantially lower
network latency (600+ vs. 25 ms [23]). With a massive amount
of smaller satellites operating in higher frequency bands, an LEO
satellite constellation provides truly global coverage with much
higher bandwidth than GEO (e.g., 178 vs. 82 Mbps median down-
load throughput [18]). As a key player in this field, Starlink has
approximately 5, 788 LEO satellites serving at altitudes about 550
km up to date, with plans to expand to 42, 000 over the long haul
[31]. They together offer high-speed and affordable Internet access
to 2.6 M subscribers, many in remote areas with no terrestrial ac-
cesses [11, 17, 18], making latency- and bandwidth-critical LVA
anywhere on the Earth possible.1

As the LEO satellite networking (LSN) evolves into a seamless
global coverage, LVA applications built upon it will accordingly
expand to currently underserved areas. With LSN, LVA applica-
tions that are difficult to develop with terrestrial networks, such
as disaster response and relief, wildlife monitoring, and maritime
surveillance, can be easily implemented. Even in urban areas with
well-established terrestrial infrastructures, LSN can serve as a re-
silient alternative or even the preferred communication method for
latency and cost reasons. Starlink [22] has recently partnered with
cloud providers to install ground stations (GSes) within or near
cloud data centers to process user data directly from space at the
edge of the LSN [6, 11]. The enhanced integration of communica-
tions and computing infrastructures creates new possibilities for
realizing resource-efficient LSN-enabled LVA.

Recent measurement studies [11, 18, 43] have confirmed the ad-
vantages of LSN over its GEO counterparts and identified its poten-
tial in supporting various network-intensive applications, such as
video streaming [43] and cloud gaming [18]. However, LSN shows
highly asymmetric uplink and downlink performance2, with the
mean download throughput being more than 10× higher than the
upload throughput according to our measurements. The scarcity
of uplink resources poses non-trivial challenges for LVA, which
primarily consumes the upload bandwidth to ship videos from cam-
eras to remote servers. Furthermore, being highly susceptible to
environmental factors (e.g., precipitation, cloud cover, and temper-
ature [11, 17]) and relative satellite motion, LSN exhibits wildly

1Starlink’s coverage has not yet reached polar areas with its current orbit inclina-
tion of about 53◦ , but it is expected to cover these regions in the coming years.

2In this paper, uplink is the transmission path of sending data from a piece of user
equipment to a server while downlink is the opposite transmission path.
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Figure 1: An overview of LSN-enabled LVA.

fluctuated performance over time. This prevents upper-layer LVA
applications from delivering consistent quality of experience (QoE).

This paper closely examines LSN performance from an end-user
perspective and sheds light on building LVA services over the space.
We take Starlink as the testbed and discuss the key issues towards
designing StarStream, a high-performance and analytics-oriented
live video streaming framework over LSN. Our contributions can
be summarized as follows.

⋄ Based on commercial LSN and cloud computing offerings, we
conduct a large-scale measurement study to understand the ac-
cess network performance of LSN. In particular, we identify the
scarcity and dynamics of the available uplink resources.

⋄ We further carry out extensive in-the-wild measurements to ex-
amine the achievable LVA performance of the status quo stream-
ingmethod over today’s LSN. Our findings indicate that achieving
high-performance LVA streaming remains a challenge.

⋄ We propose StarStream, a novel LSN-adaptive LVA streaming
framework, to overcome the unique challenges brought by LSN.
Specifically, a transformed-based network performance predictor
is designed to adapt the encoding group of pictures (GOP) length
to throughput variations while offering throughput predictions
for GOP configuration selection. With the predictions, a content-
aware optimizer is further developed to strike a good balance
between accuracy and latency via configuration optimization.

⋄ Using fine-grained LSN uplink network traces from the real world,
we evaluate the performance of the predictor, verifying its advan-
tages over competitors. By integrating real-world collected video
streaming traces, we further examine StarStream’s performance,
and extensive experiments have validated the framework’s effec-
tiveness and superiority.

2 STARLINK NETWORK ACCESS:
PRELIMINARIES AND MEASUREMENT

Figure 1 shows a typical Starlink setup for end users, where a router
connects the user equipment (UE) to the LSN, and a dish (antenna)
is responsible for communicating with the satellites. Although Star-
link has embarked on the deployment of inter-satellite links [29],
single bent-pipe communication [11, 17] is still the dominant case.
For example, according to our thousands of traceroute records,
there is only one bent-pipe communication (one ground-space hop
and one space-ground hop) along the path to the destinations, and
Starlink tends to serve as an access network to the Internet.

Table 1: Starlink access network performance (mean ± stan-
dard deviation) between the UE and analytics servers.

Network performance metrics gc-server aws-server

Download throughput (Mbps) 83.4 ± 60.5 110.1 ± 57.5
Upload throughput (Mbps) 8.1 ± 3.3 8.3 ± 3.5
RTT (ms) 46.9 ± 14.4 40.5 ± 16.4

We emphasize that the key differences here, as compared to ter-
restrial network access, are that no terrestrial cabling or towers are
required, and satellites take on the role of relaying data between
user dishes and GSes, both of which act as interfaces between ter-
restrial and space networking. Given the stringent latency require-
ments of LVA, we are particularly interested in Starlink’s access
network performance, i.e., the performance of directly consuming
data from space in the proximity of GSes. This is in contrast to exist-
ing measurements on Starlink Internet access from different global
vantage points [11] or from a single vantage point to access globally
distributed servers [17, 18]. As such, we set up two servers near the
Starlink GS, one from Amazon Web Services, named aws-server,
and the other from Google Cloud Platform, named gc-server. We
tried to make the servers as close to the LSN (i.e., the Starlink GS)
as possible. Specifically, based on the network latency, servers are
rented from the cloud regions with the minimum mean round-trip
time (RTT) to the UE. Both servers have Gbps bandwidth for in-
bound and outbound traffic and will not be the bottleneck of the
network performance test. We use iPerf3 [10] utility to measure
the TCP throughput and Ping utility to measure the RTT, and the
test is executed every 30 minutes.

Table 1 shows the statistical results of 1,056 tests over 22 days.
As shown, the mean network latencies between the UE and the
servers are decent and comparable to recently reported LTE net-
work results (i.e., 47.6 ± 8.4 ms [9]) but with higher fluctuations.
Moreover, Starlink follows a download-centric design, where the
mean download throughput can be more than 10× higher than the
corresponding upload throughput for both servers. Unfortunately,
LVA differs from traditional human-oriented video streaming ap-
plications in that it uses the uplink rather than the downlink to
transmit heavy and bursty video data. Consequently, accommodat-
ing LVA can significantly challenge Starlink’s asymmetric network
link design. In addition, Starlink’s mean upload throughput (≤ 8.3
Mbps) is dramatically lower than that of LTE (53.4 Mbps), let alone
5G mmWave (52.8-131.8 Mbps) [9]. With the upload throughput, it
can be challenging for Starlink to live stream Ultra High-definition
(UHD, 4K or 8K) videos or multiple Full HD (FHD, 1080p) videos si-
multaneously. For example, YouTube’s recommended live streaming
bitrate for a 1080p (4K) video is 3-6 Mbps (13-34 Mbps) [36].

We analyzed the variations in the upload throughput across dif-
ferent days and observed no significant daily patterns. We further
divided the measurement results into peak hours (7AM-11PM) and
off-peak hours (11PM-7AM) usage and found that, statistically, Star-
link provides better network service during off-peak hours than
during peak hours. For instance, the mean off-peak upload through-
put from the UE to the aws-server is 9.2Mbps, considerably higher
than that of peak hours (8.1 Mbps). When we took a closer look
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Table 2: The video dataset used in this paper

Name Source [Link] Description

hw1 YouTube [35] Highway traffic camera
hw2 YouTube [37] Highway traffic camera
street YouTube [38] Live street webcam in Tailand
beach YouTube [39] Ocean view from a beach camera

at the variations over the course of a day, we found that the up-
load throughput fluctuates wildly. For example, it can be as high as
16.5 Mbps (15.6 Mbps) and as low as 2.2 Mbps (1.9 Mbps) for the
gc-server (aws-server) within the same day. A finer examination
revealed that the upload throughput is highly volatile from second
to second. For example, the upload throughput for both servers
can vary from 0 to 18+ Mbps within a minute. LEO satellites move
faster relative to Earth due to their low orbit altitudes, which means
that the communication distance and communication link quality
between the UE (even a stationary one) and the serving satellite are
constantly changing, and frequent handovers from one satellite to
another are unavoidable [11, 17]. Hence, we hypothesize that the
observed wild performance fluctuations are inherent to the LSN.

3 WHEN LVA MEETS LSN: A REALITY CHECK
LVA is recognized as a key technical enabler for a wide range of
modern applications, from security surveillance and traffic control
to self-driving cars and augmented reality [2]. It relies on advanced
learning and computer vision algorithms, such as object detection,
semantic segmentation, and human key point detection, to analyze
live camera videos, enabling machines to locate, track, classify, and
segment video content of interest. The accuracy of LVA is typically
preserved by deep neural network (DNN)-based vision models,
which are known to be resource-intensive. This popularizes LVA
streaming, which involves transmitting live video content from the
capturing camera over networks to an analytics server. This is akin
to the first-mile ingestion phase of the canonical live video stream-
ing setup where the live content is transmitted from the capturing
device to a streaming server [45]. Real-time messaging protocol
(RTMP) is the state-of-the-practice ingestion protocol utilized by
mainstream commercial live streaming platforms such as Twitch
[26] and YouTube Live [36], as well as IP cameras [33] for real-time
video upload. Therefore, we use RTMP as the streaming protocol
to explore in-the-wild LVA performance over today’s LSN.

3.1 Measurement Setup
Video dataset: As we aim to investigate the influences of network
conditions on LVA performance, we use a fixed video dataset instead
of live camera footage for repeatable experiments. Due to the lack
of publicly available video datasets of high quality, high frame rate,
and long duration, we use four YouTube videos (details shown in
Table 2) as the source to create our video dataset. Specifically, for
each video source, we extract a 480-second video clip and configure
the client to read 1080p frames from the clip at a rate of 15 frames
per second (FPS), thereby simulating a scenario where the frames
are being captured in real time by a 1080p, 15 FPS camera.
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Figure 2: In-the-wild LVA performance over Starlink.

Client and Server:We choose the aws-server, a p3.2xlarge EC2
instance with an NVIDIA V100 GPU [3], as the analytics server and
an off-the-shelf desktop as the Starlink UE.
Server-side vision task and model: We consider one basic video
analytics task, object detection, as the server-side analytics task for
proof-of-concept. In particular, the task is executed by a pre-trained
DNN model, YOLOv8l, from the YOLOv8 family [27].
Methodology: By default, the H.264 codec is employed to compress
raw video frames using a constant bitrate (CBR) encoding scheme,
with a keyframe interval of 2 seconds. We explore target encoding
bitrates of 1.5, 3, 4.5, 6, 7.5, and 9 Mbps, denoted respectively as
B1.5, B3, etc. In addition to the encoding bitrate, LVA accuracy
can also be affected by other encoding parameters, such as resolu-
tion and frame rate. Therefore, we evaluate a series of candidate
frame rates {1, 3, 5, 15} and resolutions {1920 × 1080, 1280 × 720,
640 × 320} for each target bitrate. We then report the measurement
results of the (frame rate, resolution) combination that yields the
highest accuracy. For implementation, the client uses the FFmpeg
C++ libraries [7] to encode and stream frames at the target bitrate,
frame rate, and resolution. To further minimize the encoding and
streaming latency, we set the encoder to the ultrafast and zerola-
tency mode [8], and only I-frames and P-frames are encoded in this
mode. The server also uses the FFmpeg libraries to listen for stream
events, receive streams, and decode the compressed video packets
into uncompressed frames.
Metrics:We consider the following performance metrics.
⋄ Offloading delay (OL delay). This measures the time it takes for
frames to be encoded by the client, transmitted over the network,
and decoded by the server. Specifically, a frame’s offloading de-
lay is the elapsed time from when the client starts encoding the
frame to when it is prepared for analysis on the server. A GOP’s
offloading delay is the duration from when the client starts en-
coding its first frame to when the server completes the decoding
of its last frame. The average offloading delay of all GOPs within
a video is considered as the video’s offloading delay.

⋄ Response delay. A GOP’s response delay is the total time elapsed
from when the first frame of a GOP is captured to when the
analysis results of the last frame in the GOP become available. It
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Figure 3: In-depth examination of performance influencing factors.

includes delays caused by potential queuing, network delivery,
and server-side model inference. The average response delay
across all GOPs within a video is regarded as the overall response
delay of the video.

⋄ Normalized end-to-end throughput (E2E TP). Assume that the
entire capture-streaming-analysis pipeline transmits and analyzes
𝑛 frames in 𝑡 seconds, i.e., the time elapsed fromwhen the camera
captures the first frame to when the server completes the analysis
of the 𝑛𝑡ℎ frame is 𝑡 seconds. Then, the normalized E2E TP is
𝑛/(𝑡 · 𝑓 ), where 𝑓 is the frame rate of the stream.

⋄ Accuracy. Following the best practice in previous studies [14, 40],
we regard the detection results of the same model on raw frames
as ground truth to eliminate the inaccuracy caused by the object
detection model itself. Accuracy is then calculated as the F1 score
between the predicted and ground-truth results, as in [40]. A
true positive is accepted when the intersection over the union
between a predicted bounding box and a ground-truth bounding
box is greater than 0.5, and their object categories are the same.

3.2 Measurement Results and Insights
We stream the videos under each setting at different times of the
day for more than 10 days. For all settings, the mean frame en-
coding delay on the client is about 15.83 ms, and the mean frame
decoding delay on the server is about 3.73 ms. The server-side
model inference delay for the highest resolution (i.e., 1920 × 1080)
is about 62.01 ms on average. This means that the frame encoding,
decoding, and model inference can all run at a speed exceeding 15
FPS, i.e., the maximum streaming frame rate. Thus, if any delays
affect real-time analysis, it is reasonable to attribute them primarily
to network transmission.

Figure 2 presents the statistical results of 20 experimental runs
(or trials) conducted in the wild for each video-setting pair. As the
offloading delay subfigure suggests, the higher the streaming bitrate
is, the more delay is introduced during network transmission. With
the streaming bitrate increasing beyond the capacity of the LSN,
the offloading delay becomes the latency bottleneck in the entire
processing pipeline, rendering it struggle to keep up with the frame
arrival rate and leading to progressively accumulating lags. These
lags eventually result in exponentially increasing response delays.
Overall, it is still challenging for the LSN to support real-time LVA
streaming (i.e., normalized E2E TP is 1.0) at bitrates higher than 6
Mbps.While satisfying the real-time requirements of low tomedium
bitrates seems promising, the resulting analytics accuracy can be
significantly compromised. As a result, simultaneously achieving
the low latency and high accuracy goals of LVA remains an open
problem for today’s LSN.

Another observation from Figure 2 is that the delay-related met-
rics vary significantly across multiple trials under identical stream-
ing settings. For example, the response delay of video hw2 under
setting B6 can be 2.49 seconds in one trial and 48.10 seconds in an-
other, indicating a performance difference of 19.32×. Since the only
variable between the trials is the underlying network conditions,
this observation reveals the significant influence of the LSN perfor-
mance on LVA-perceived QoE. This calls for LSN-adaptive streaming
solutions for LVA applications to provide consistent QoE. Figure 3a
further details the GOP offloading delay variations observed in
these two trials. As shown, the offloading delay remains stable with
only occasional small fluctuations under the good network condi-
tions, suggesting that a coarse-grained adaptation strategy may be
adequate. In contrast, under the poor network conditions, the of-
floading delay fluctuates wildly and frequently, necessitating a more
nuanced, fine-grained adaptation approach. These findings uncover
the challenges inherent in application-level LSN adaptation and
motivate the design of granularity-variant adaptation strategies.

Given the self-contained structure, GOP is the natural encoding
unit for bitrate control and network adaptation. We thus fix all
the other variables and vary only the GOP length to investigate
its impacts on the accuracy. Figure 3b shows that with the same
target encoding bitrate, increasing GOP length can improve the
analytics accuracy, and the improvements are particularly obvious
at low target bitrates. We identify the reason is that at a given
encoding bitrate, shorter GOPs result in a higher frequency of I-
frames. This reduces the average frame size and increases the mean
quantization parameter, leading to diminished overall image quality
that adversely affects accuracy. Additionally, since a P-frame has
to wait for its reference frame to arrive before it can be decoded
at the server, the large size of an I-frame affects not only its own
offloading delay but also the offloading delay of its subsequent
P-frames as shown in Figure 3c. This observation encourages the
adoption of longer GOP lengths, when network conditions permit,
to benefit both analytics accuracy and delay stability.

4 TOWARDS LSN-ADAPTIVE LVA STREAMING
Inspired by our measurement insights, we propose StarStream,
a novel adaptive LVA streaming framework specifically designed
for LSNs. Figure 4 presents an overview of StarStream where
the client continually streams captured frames over LSN to an
analytics server. The client adapts video encoding and streaming
GOP lengths and other configurations, such as bitrate, to the dy-
namic uplink network conditions for both accuracy and latency
optimization. The core adaptation component is the shift-guided
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Figure 4: Framework overview of StarStream.

configuration optimizer, which decides how to encode and stream in-
coming video content according to predicted network throughputs
and their shifts, up-to-date configuration performance, and camera
buffer status, to strike a balance between accuracy and latency.

Specifically, the future network conditions are derived from the
throughput and shift predictor, which predicts not only the future
upload throughputs but also the timing of significant changes in
throughput. The up-to-date configuration performance is estimated
based on the information provided by the video profiler, which esti-
mates the reference configuration performance by offline profiling
representative frames and captures recent content characteristics
by online compact model inference. The camera buffer status is ob-
tained by querying the camera buffer, which caches captured video
frames that cannot be promptly transmitted due to poor network
conditions. After the shift-guided configuration optimizer makes the
encoding configuration decision, the streaming controller compo-
nent will encode and stream corresponding frames according to
the chosen GOP length and configuration.

4.1 LSN Uplink Performance Prediction
Network throughput prediction serves as a foundational step in
building network-adaptive multimedia applications. A multitude
of throughput predictors based on historical observations (e.g.,
harmonic mean [34] and moving average [15]), classical machine
learning models (e.g., decision tree [16] and random forest [1]),
or deep learning models (e.g., fully connected network [32], long
short-term memory [12], and Seq2seq [19]), have been developed
for various terrestrial networks.

Compared to terrestrial networks, throughput prediction for LSN
is much more challenging due to its inherent characteristics, e.g.,
vulnerabilities to exogenous factors. Recent years have witnessed
the success of time series prediction models based on transformer
[28], which have outperformed other time series predictionmethods
in various domains [30]. Their strengths in capturing long-term
dependencies, modeling complex temporal interactions, and easily
incorporating external information align well with the properties
of an ideal uplink performance predictor for LSN. As a result, we
propose a transformer-based throughput and shift predictor to fully
utilize the uplink resources of LSN while mitigating its challenges.
In particular, the predictor’s design is based on Informer [44], an
efficient transformer-based time series forecasting model, but with
unique designs tailored to the characteristics of LSN.

Given the notable instability in LSN uplink performance, un-
derstanding the timing of significant throughput changes can help

make judicious decisions. For instance, if the throughput is pre-
dicted to remain stable in a future time horizon, we can choose a
long GOP length to enhance accuracy. Conversely, if the through-
put is expected to experience frequent variations, we can choose a
short GOP length to allow for flexible configuration adjustments
at GOP boundaries, thereby accommodating fine-grained through-
put variations. As such, apart from a throughput prediction head,
the proposed predictor also integrates a throughput shift prediction
head, as shown in Figure 5. Formally, let 𝑏𝑡 denote the throughput
at time step 𝑡 . We define that a throughput shift occurs at time step
𝑡 if the difference between 𝑏𝑡 and 𝑏𝑡−1 is greater than a predefined
threshold 𝛿 . The throughput shift prediction head then outputs a
binary shift indicator for each future time step, indicating whether
a throughput shift is expected to occur. Both prediction heads are
attached directly to the output layer of the Informer decoder.

As Figure 5 shows, the proposed predictor takes a sequence of
network observations and their corresponding timestamps from
time step 𝑡 −𝑚 + 1 to 𝑡 as input, to predict the future network
performance from time step 𝑡 + 1 to 𝑡 +𝑛. Specifically, the Informer
encoder receives the entire input sequence, while the decoder’s
input is crafted by concatenating two sequences: One is a subse-
quence of the input sequence, starting from time step 𝑡 − 𝑝 + 1 to
time step 𝑡 (where 𝑝 ≤ 𝑚), and the other is the target sequence to be
predicted, where unknown values are padded with zeros. Note that
unlike traditional encoder-decoder style models that recursively
generate the output for each time step one at a time, the decoder
generates outputs for all time steps at once in a generative way.

Apart from the positional embedding that encodes the relative
position information within the input sequence, the input to the
predictor also integrates the outputs of the following three em-
bedding layers. 1) Observable variables (OV) embedding layer: This
layer embeds observable variables for network performance pre-
diction. In addition to the historical observations of throughput
and its shifts, we also consider variables related to the underly-
ing TCP connection, such as the retransmit times, the sending
congestion window size, the smoothed RTT estimate, and the RTT
variation, given their proven effectiveness on throughput prediction
[16, 32]. 2) Date embedding layer: Our measurements confirm that
the wall-clock time can have certain influences on the LSN network
performance (recall the peak and off-peak hours performance in §2).
Consequently, the date embedding layer is introduced to encode
the global time information. 3) Handover embedding layer: Starlink
schedules satellite-UE associations every 15 seconds, suggesting
that handovers may occur as frequently as every 15 seconds [5, 24].
To account for the potential influence of handovers on network
performance, a handover embedding layer is used to encode the
current second’s position in the 15-second scheduling window.

4.2 Shift-Guided Configuration Optimization
GOP Length Selection: In our problem, the GOP length determines
the encoding and decision-making granularity. Instead of setting the
GOP length to a fixed value, StarStream’s configuration optimizer
dynamically adjusts the GOP length under the guidance of the
predicted throughput shift indicators. For instance, assume that
the interval between two consecutive time steps is one second, and
the lookahead window size 𝑛 is 3. If the predicted throughputs and
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shift indicators are [𝑏𝑡+1, 𝑏𝑡+2, 𝑏𝑡+3] and [0, 0, 1], respectively, the
chosen GOP length for the next GOP will be 2 seconds and the
corresponding predicted throughput for the GOP will be calculated
as (𝑏𝑡+1 +𝑏𝑡+2)/2. Then, with the chosen GOP length and the mean
predicted throughput, the optimizer further chooses the encoding
configuration (e.g., bitrate) for the GOP.
Problem Formulation: The performance goals of configuration se-
lection are to maximize the analytics accuracy and minimize the lag,
where lag is defined by the amount of queued-up frames that wait
to be processed [41]. Without loss of generality, we assume that
for the entire “capture-encoding-transmission-decoding-inference”
processing pipeline, the primary cause of lag is network trans-
mission. In continuous streaming scenarios, if the system’s E2E
processing speed can keep up with the frame capture speed, there
will be no lags; otherwise, the newly captured frames will queue
up at the camera buffer, resulting in an accumulation of lag. For ex-
ample, if the frame capture speed is 10 FPS and the E2E processing
speed is always 10 FPS, there will be no lags. However, if the E2E
processing speed is always 5 FPS, the lag for the 1st, 2nd, and 3rd
seconds will be 0.5 seconds, 1 second, and 1.5 seconds, respectively.

We quantify the lag using the camera buffer queue length and
formulate the performance optimization problem from GOP 𝑘1 to
GOP 𝑘2 (𝑘1 ≤ 𝑘2) as follows:

argmax
𝑐𝑘1,· · · ,𝑐𝑘2

∑︁𝑘2
𝑘=𝑘1

𝛼𝐴𝑘 (𝑐𝑘 ) + 𝛽𝑄𝑘

𝑠 .𝑡 .



𝑏𝑘 = 1
𝑡𝑘−𝑡𝑘−1

∫ 𝑡𝑘
𝑡𝑘−1

𝑏𝑡 𝑑𝑡

𝑡𝑘 = 𝑡𝑘−1 +
∑

𝑗 𝑒 𝑗 (𝑐𝑘 ) +
∑

𝑗 𝑑 𝑗 (𝑐𝑘 )
𝑏𝑘

+ Δ𝑡𝑘

𝑄𝑘 = 𝑄𝑘−1 + (𝑡𝑘 − 𝑡𝑘−1) − 𝐿𝑘

𝑐𝑘 ∈ C, ∀𝑘 = 𝑘1, · · · , 𝑘2

(1)

where 𝐴𝑘 (𝑐𝑘 ) is the server-side analytics accuracy for GOP 𝑘 en-
coded with configuration 𝑐𝑘 . 𝑄𝑘 is the camera buffer queue length
(in seconds) when the client finishes transmitting the last frame in
GOP 𝑘 . 𝛼 and 𝛽 are positive weighting parameters used to trade off
accuracy against lag. 𝑡𝑘 denotes the time when the client finishes
transmitting the last frame of GOP 𝑘 . 𝑒 𝑗 (𝑐𝑘 ) and 𝑑 𝑗 (𝑐𝑘 ) are the
encoding delay and the compressed frame size of the 𝑗𝑡ℎ frame in
GOP 𝑘 encoded with configuration 𝑐𝑘 , respectively. Note that in
live streaming scenarios, frames are compressed and transmitted
sequentially as they are captured. This means that the frame com-
pression cannot be completed in advance; instead, compression
and transmission occur in an interleaved manner. 𝑏𝑘 is the aver-
age upload throughput between 𝑡𝑘−1 and 𝑡𝑘 . Δ𝑡𝑘 denotes the total
wait time between 𝑡𝑘−1 and 𝑡𝑘 . A wait can happen when the frame
upload speed is faster than the frame capture speed, and the client
has to wait for the next frame to arrive to resume processing. 𝐿𝑘 is
the chosen GOP length, and C is the candidate configuration set.
Content-Aware Configuration Performance Estimation: Since
we follow the common practice in live streaming video uploading
and use CBR to encode videos [36], the data sizes and encoding
delays of GOPs with the same length and configuration will not
have significant differences. Thus, the video profiler component
estimates 𝑒 𝑗 (𝑐𝑘 ) and𝑑 𝑗 (𝑐𝑘 ) by offline profiling representative video
content. The key challenge here is estimating 𝐴𝑘 (𝑐𝑘 ), which is
known to be related to video content dynamics. Existing solutions
tend to combine offline and online profiling to adapt to changing
video content [40]. However, online profiling requires sending raw
frames to the server to acquire the ground truth analytics results
for accuracy calculation. This can place a heavy burden on network
transmission, especially when the video content is highly dynamic
and online profiling needs to be conducted frequently. For networks
like LSNs with very scarce uplink resources, the prohibitively high
costs of online profiling can prevent it from being used in practice.

Let 𝐴(𝑐) denote the accuracy of configuration 𝑐 on the offline
profiled video content. As the video content varies, using 𝐴(𝑐) to
estimate the actual configuration accuracy may result in either an
overestimate or an underestimate, depending on the relative analy-
sis difficulty of the current content to the offline profiled content.
Instead of directly updating the configuration’s accuracy estimate,
our workaround is to scale 𝐴(𝑐) by a factor of 𝛾 , which represents
the relative analysis difficulty of the content being analyzed to the
profiled video content.

To be specific, the video profiler runs a compact model (YOLOv8n
by default) online to analyze newly captured frames for periodic
estimate updates. The analysis difficulty of new content is inferred
from the confidence scores output by the compact model. Intuitively,
if the content is harder to analyze, there will be more detections
with low confidence scores, indicating that the model is uncertain
about these detections and more information is needed to ensure
high accuracy. In particular, a detection is considered uncertain
if its confidence score is lower than 0.5. We then define an uncer-
tainty metric 𝑢, calculated as the ratio of the number of uncertain
detections to the total number of detections. Let 𝑢𝑛 denote the
uncertainty of new content and 𝑢𝑝 denote the uncertainty of the
profiled content. With new content analyzed by the compact model,
𝛾 is accordingly updated as 𝑢𝑛/𝑢𝑝 .
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Configuration Optimization to Balance Accuracy and Lag:
Since the camera captures frames at a constant frame rate, the
future frame capture time can be known in advance. Consequently,
once the future upload throughputs and video-related variables are
determined, Δ𝑡𝑘 can also be determined. This makes us ready for
solving Problem (1). However, as relatively accurate prediction can
only be guaranteed for a short future time horizon, the optimizer
solves the problem over a finite time horizon (3 GOPs by default),
following the model predictive control (MPC) [32, 34] paradigm.

In practice, evaluating every possible combination of frame rate,
resolution, and bitrate can significantly prolong the online config-
uration optimization time. Fortunately, we analyzed the accuracy
variations of all configurations and found that for all given bitrates,
the best-performing (frame rate, resolution) combination is always
one of three candidates, and their overall accuracies are very simi-
lar for a given bitrate. Considering the additional communication
cost of changing the frame rate and resolution in the middle of
the stream, we propose a profiling-based configuration pruning
method. With the offline profiling results provided by the video
profiler, it simply selects the (frame rate, resolution) combination
that most frequently hits the top-3 performance under all candidate
bitrates as the frame rate and resolution for online streaming. As
such, the optimizer only needs to choose the bitrate for each GOP
online. We further design an efficient dynamic programming (DP)
algorithm to solve the optimization problem.

5 EVALUATION
5.1 Evaluation of Network Predictor
Network Traces:We use iPerf3 to collect real-world LSN upload
traces with the same client and server setup introduced in §3.1. The
collected dataset comprises 504 network traces measured at differ-
ent times of 17 days. Each trace has a duration of 10 minutes with a
granularity of 1 second, including timestamps, upload throughput,
and underlying TCP connection information. We also add a shift
column to indicate whether a shift occurs, and the shift threshold 𝛿
is set to 2.5 Mbps. The dataset is further randomly divided into a
training set (70%) for predictor training, a validation set (10%) for
model selection, and a testing set (20%) for model evaluation.
Baselines: We compare the proposed predictor with the follow-
ing popular throughput prediction methods: harmonic mean (HM),
moving average (MA), random forest (RF), fully connected network
(FCN), long short-term memory (LSTM), and sequence-to-sequence
(Seq2seq). Since these methods are designed to only predict the
throughput, we calculate the throughput shift indicators by differ-
encing the predicted throughputs and then comparing the differ-
ences to the shift threshold.
Evaluation metrics: Throughput prediction is a regression prob-
lem, so we consider the following metrics: Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Mean Absolute Per-
centage Error (MAPE). Smaller values are better for these metrics.
Since throughput shift prediction is essentially a binary classifi-
cation problem, we use Accuracy and F1 score as the evaluation
metrics. For both metrics, larger values are better.
Result Analysis: Table 3 presents the performance of different
predictors, where the context sequence length 𝑝 of our method is
15. As shown, there exists a large performance gap between the

Table 3: Comparison of different network predictors (look-
back window size𝑚 = 60; lookeahead window size 𝑛 = 15) .

Methods
Throughput ↓ Shift indicator ↑

MAE RMSE MAPE Accuracy F1

HM [34] 4.019 5.275 57.095 0.670 0.074
MA [15] 3.166 4.045 52.173 0.671 0.065
RF [1] 2.577 3.388 42.695 0.682 0.025
FCN [32] 2.493 3.302 41.042 0.684 0.040
LSTM [12] 2.472 3.281 40.513 0.684 0.041
Seq2seq [19] 2.463 3.274 40.383 0.685 0.053
Ours 2.435 3.248 39.244 0.706 0.467

two naive prediction methods (i.e., HM and MA) and other methods.
This implies that simple models relying on historical throughput in-
formation can hardly capture the complex variations in LSN upload
throughput. RF, FCN, and LSTM are able to capture the complex re-
lationships between input features and hit competent performance.
However, they treat the throughput at different future time steps
equally as output features to be predicted and may not fully exploit
the temporal relationships between multi-step outputs. Seq2seq
overcomes this deficiency by using a decoder to recursively predict
the output at each time step and achieves better performance.

Our predictor achieves the best performance on all evaluation
metrics. This can be attributed to the introduction of the attention
mechanism and embeddings of exogenous information. Addition-
ally, the performance of using predicted throughputs to estimate
the throughput shifts is notably worse. We find the reason is that
prediction models tend to generate smoothed multi-step throughput
forecasts, which renders the shift indicator rarely equal to 1. This
also verifies our design advantages of allowing the model to directly
predict the shift indicators.

5.2 Evaluation of StarStream
Methodology:Weuse the video dataset shown in Table 2 for perfor-
mance evaluation. We consider the same frame rate, resolution, and
bitrate candidates as in §3.1, and 5 GOP length candidates, i.e., {1, 2,
3, 4, 5} seconds. In the offline stage, the video profiler profiles the first
20-second of each video to obtain each configuration’s performance
and processing costs (including encoding/decoding/inference de-
lays and compressed frame sizes). Then, it selects the streaming
frame rate and resolution for each video based on the proposed
pruning method. The update of configuration accuracy estimates is
conducted every 30 seconds online to profile 5 seconds of newly
captured video content. For a fair comparison of different solutions,
we implement a trace-driven simulator based on the test network
traces introduced in §5.1 and video processing traces collected of-
fline. Specifically, we encode and stream each video with different
configurations and GOP lengths from the client to the server (same
as that in §3.1), while recording the corresponding compressed
frame sizes, encoding delays, and decoding/inference delays, to
construct the video processing traces dataset. The traces for the
same video are well aligned to facilitate flexible GOP and config-
uration switching during the online simulation stage. 𝛼 and 𝛽 in
Problem (1) are set to 1 and 0.02 by default, respectively.
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Figure 6: Overall performance of different solutions. CDF figures are statistics on all video-trace pairs.

Baselines: All of the baselines use a fixed GOP length of 2 seconds.
⋄ Fixed: This non-adaptive solution streams videos at a fixed
bitrate, selected as the highest bitrate that is below the mean
throughput observed 1 minute before the streaming begins.

⋄ AdaRate: This is a pure rate-based adaptive streaming solution. It
employs the same network predictor as StarStream but simply
chooses the maximum bitrate below the predicted throughput.

⋄ MPC: This solution uses MPC [32, 34] to optimize the objective
of Problem (1) over 3 future GOPs. The future throughputs are
estimated using harmonic means of past 5 GOPs. The video-
related variables are estimated by offline profiling the first 20-
second video content.

Performance Metrics: We consider the accuracy, normalized E2E
TP, OL delay and response delay defined in §3.1 as the metrics. Note
that since different videos can be streamed at different frame rates
and the GOP length can also change within a stream, the OL delay
and response delay in this evaluation are uniformly defined for
per-second video content, rather than for per frame or GOP.
Performance Improvement: Figure 6 shows the overall perfor-
mance of different methods. As shown, Fixed cannot achieve real-
time E2E processing (i.e., normalized E2E TP is 1.0) for most video-
trace pairs because this rigid method cannot adapt to the ever-
changing network conditions. In comparison, AdaRate improves
the overall normalized E2E TP, OL delay, and response delay by
dynamically adjusting each GOP’s bitrate based on the predicted
network throughput. However, it inevitably suffers from perfor-
mance degradation due to imperfect predictions. In addition, it has
no mechanism to automatically recover from the previously made
bad decisions, which can lead to accumulated lags that eventually
reduce the normalized E2E TP and increase the response delay.

By integrating the network predictions along with the camera
buffer queue status, both MPC and StarStream achieve near real-
time E2E processing for almost all video-trace pairs. By strategically
optimizing over multiple future GOPs to trade-off between accuracy
and lag, these methods can timely recover from previously made
bad decisions and control the response delays in a reasonable range
(i.e., < 10 seconds). StarStream further benefits from the more
flexible GOP length configuration and more accurate configuration
accuracy estimation, achieving noticeable accuracy improvements
over the MPC solution.
Ablation Study:We consider two variants: One disables the online
configuration accuracy updates, named V1, and the other replaces
the network predictor with a Seq2seq predictor, named V2. We
find that, compared to StarStream, the mean response delay of
V1 increases by 8.6% while the accuracy remains almost the same,
and the mean response delay of V2 increases by 10.1% while the

mean accuracy decreases from 0.867 to 0.864. This confirms the
effectiveness of the key components of StarStream.
System Overheads: The system overhead of StarStream stems
from three primary sources: the predictor, the DP algorithm, and the
online content profiling. We benchmark these overheads using our
measurement client, equipped with a 6-core Intel i7-6850K CPU and
an Nvidia GeForce GTX 1080 Ti GPU. Notably, the DP algorithm is
highly efficient, solving the problem in just 0.63 ± 0.35 ms on the
CPU. It takes about 1.44 seconds to profile 5-second raw frames on
the GPU, and the fast profiling speed can ensure that the profiled
video content is fresh. The inference delay of the predictor is about
13.0± 5.1 ms on the GPU, and 20.0± 1.4 ms on the CPU. In practice,
we can schedule online video profiling and network prediction to
run in parallel with video streaming so that they do not introduce
additional delays to the streaming pipeline.

6 RELATEDWORK
Efficiently streaming videos over networks for online analytics
has been a hot research topic in recent years [13–15, 20, 40, 42].
Shipping massive video data over networks in real time requires
tremendous bandwidth resources, which places a heavy burden
on existing network infrastructures. Hence, various techniques
have been proposed to reduce the amount of offloaded data with-
out significantly compromising accuracy, such as controlling video
encoding knobs (e.g., resolution) [40], frame filtering [14], frame
masking [15], and frame partitioning [42]. These are all valuable
attempts to build high-performance LVA systems but are discussed
in the context of terrestrial networks. Terrestrial network condi-
tions between cameras and servers are relatively stable. Even with
the scarce and dynamic wide area network links, simple network
probing and bandwidth estimation methods can be effective for
adaptation [40]. To the best of our knowledge, we are the first to
discuss building high-performance LVA applications over LSN.

7 CONCLUSION
LVA enables machines to glean information from the physical world
in real time. It is poised to become the driving force behind advanced
intelligence. This paper closely investigated the performance of
the emerging LSN in supporting LVA applications. Through ex-
tensive measurements, we found that the uplink resources of the
LSN are still scarce, and the wild fluctuations in network condi-
tions can prevent upper-level applications from providing consis-
tently satisfactory QoE. We further proposed a novel adaptive LVA
streaming framework, StarStream, to improve the performance of
LSN-enabled LVA applications. Extensive trace-driven experiments
verified the effectiveness and superiority of our proposed solution.
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