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A LEMMAS AND PROOFS

Lemma A.1.

TPRR ≥ TPRM(f)− Lip(f)
2

W 1(G, T ),

Proof. TPRR(f) = 1
2ET [f(x)] = 1

2 (EG [f(x)] + ET [f(x)] − EG [f(x)]) = 1
2 (TPRM(f) +

ET [f(x)] − EG [f(x)]) ≥ 1
2 (TPRM(f) − |ET [f(x)] − EG [f(x)])|) ≥ 1

2 (TPRM(f) −
1

Lip(f) supg:Lip(g)=1 |ET [f(x)]− EG [f(x)])|) = 1
2 (TPRM(f)− 1

Lip(f)W
1(G, T ).

Proof of Theorem 4.1

Proof. Let f : X → {0, 1} be an arbitrary MIA achieving FPR α, that is Ex∼D[f(x)] = α. Then the
TPR of f at distinguishing samples from G is Ex∼G[f(x)] = βEx∼T [f(x)] + (1− β)Ex∼D[f(x)],
since G = βT + (1− β)D. Substituting in the FPR of f , we have Ex∼G[f(x)] = βEx∼T [f(x)] +
(1 − β)α. But Ex∼T is just the TPR at detecting samples from T . We can take inff :FPR(f)=α

of both sides of the prior equation, which shows that the MIA attack achieving optimal TPR at a
fixed FPR α is exactly the optimal hypothesis test for distinguishing samples from G from samples
from D with a fixed FPR α. Next we note that the optimal hypothesis test in this latter scenario is
characterized by the Neyman-Pearson Lemma Neyman & Pearson (1933): There exists τα such that
f∗(x) = 1{G(x)

D(x) > τα} achieves the maximum achievable TPR at fixed FPR α, and so this is the
optimal MIA for detecting training samples from T at a fixed FPR α. It remains to be shown that we
recover f∗ of this form from minimizing the classification error on 1

2D+ 1
2G. Under our assumption

that we compute a classifier that exactly minimizes the loss on the distribution, it is a standard result
that the optimal classifier is the Bayes optimal classifier B(x) = G(x)

G(x)+D(x) . Then the result follows

from noting that B(x) > τ is equivalent to G(x)
D(x) >

1
1
τ −1

.

We first present pseduocode for the Robust Homer attack, Detector attack and ADIS.

B ROBUST HOMER ATTACK

The intuition behind the attack lies in Line 7 of Algorithm 1. Recall XG denotes synthetic samples
from the GAN, XR denotes reference data sampled from P , and τ ∈ E denotes a test point.

Let µg = 1
n

n∑
i=0

si where xg0, xg1, . . . xgn ∈ XG and µg ∈ [0, 1]
d. Similarly, let µr =

1
m

m∑
i=1

xi where x1, x2 . . . xm ∈ XR and µr ∈ [0, 1]
d. Then sample x ∼ D, and compute:

⟨τ − x, µg − µr⟩ = ⟨τ, µg − µr⟩ − ⟨x, µg − µr⟩ =
[
⟨τ, µg⟩ − ⟨x, µg⟩

]︸ ︷︷ ︸
(1)

+
[
⟨x, µr, ⟩ − ⟨τ, µr, ⟩

]︸ ︷︷ ︸
(2)

Part (1) above checks if τ is more correlated with µg than a random sample x from D, while (2)
checks if x is more correlated with µr than τ . Observe that this is similar to the intuition behind the
distance-based attack, but here we compute an average similarity measure to µg and µr, rather than a
distance to the closest point.

C DETECTOR ATTACK

The target GAN configurations for the genomic data setting is shown in Table 1:
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Algorithm 1 Robust Homer Attack

Require: (XR ∈ {0, 1}d, G, E , x)
1: µr = 1

m

m∑
i=1

xi where x1, x2 . . . xm ∈ XR

2: α← 1√
m

+ ϵ, η ← 2α ▷ ϵ ≥ 0

3: XG ∼ G ▷ XG ∈ {0, 1}d

4: µg = 1
n

n∑
i=0

si where xg0, xg1, . . . xgn ∈ XG and µg ∈ [0, 1]
d

5: Let ⌊µg − µr⌉η ∈ [−η,+η]
d

▷ entry-wise truncation of µg − µr to [−η, η]
6: for τ ∈ E do
7: ρ← ⟨τ − x, ⌊µg − µr⌉η⟩
8: if ρ > κ then ▷ κ is an hyperparameter
9: τ is in training set for G

10: else
11: τ is not in training set for G
12: end if
13: end for

Table 1: Target GAN configurations for genomic Data

Data SNPs Dim. Train Data Size Ref. Data Size Test Size GAN Variant

1000 Genome
805 3000 2008 1000 vanilla & WGAN-GP

5000 3000 2008 1000 vanilla & WGAN-GP
1000 3000 2008 1000 vanilla & WGAN-GP

dbGaP
805 6500 5508 1000 vanilla & WGAN-GP

5000 6500 5508 1000 vanilla & WGAN-GP
10000 6500 5508 1000 vanilla & WGAN-GP

Algorithm 2 Detector

Require: {fθ, XR, G, E } ▷ fθ=multilayer perceptron , XR=reference data, G(·)= black box GAN,
E = test samples.

1: epoch := 150
2: batch_size := 100
3: lr := 1e-3 ▷ learning rate
4: Optimizer := Adam ▷ Optimizer for training
5: fs =EARLYSTOP() ▷ early stopping routine
6: flr =DECAYRATE(lr) ▷ decaying learning rate
7: for j = 0 to epoch− 1 do
8: if j mod 3 = 0 then
9: XG ∼ G ▷ sample synthetic data from GAN

10: yXR
← 0 ▷ label (reference sample)

11: yS ← 1 ▷ label (synthetic sample)
12: X = {(XG, yG) ∪ (XR, yXR

)} ▷ Combine data
13: XT ,XV = SPLIT(X) ▷ Split data into training & validation sets
14: end if
15: fθ ← fθ(XT ,XV , batch_size, flr, fs, Optimizer) ▷ model training and update
16: end for
17: output← fθ(T ) ▷ predict test samples

Detector Prediction Score. We might ask how well does the Detector performs in classifying
synthetic samples as a first step in checking how well-trained is. Table 2 shows that the Detector
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predictions are very high for synthetic samples as expected. However, the goal is for the Detector to
be able to distinguish training and non-training samples in the test set, given that both samples are
from the same underlying distribution.

Table 2: Detector Test Accuracy

Data GAN Variant SNPs Dim. Test Size Train Epochs Mean Accuracy

1000 Genome
vanilla 805 1000 159 0.974
vanilla 5000 3000 240 0.980
vanilla 1000 3000 360 0.999

dbGaP
WGAN-GP 805 1000 300 0.995
WGAN-GP 5000 1000 600 0.998
WGAN-GP 10000 6500 1500 0.930

D AUGMENTED DETECTOR(ADIS)

The ADIS builds on the Detector by augmenting the feature space with derived attack variables or
test statistics. The pipeline is similar to that outlined in Figure 3 with the following notable additional
steps:

1. Sample without replacement, N(≈ 200) data point from the reference and synthetic sample
data in figure( 3) respectively. The subsampled data are for the computation of the recon-
struction losses (see section 4.2) and are not included again in the downstream training
set.

2. We apply dimensionality reduction on the training data of figure( 3) - this step might be
omitted depending on the dimensionality of the data.

3. Augment the resulting feature space with test statistics - for example, the distance-based
test statistics (one-way and two distances computed using the held-out sample), and the
DOMIAS likelihood ratio statistic PG(x)

PR(x) (van Breugel et al., 2023b) where PG and PXR

are density models fitted on the synthetic and reference data respectively and x a test data
point.

The remaining training steps are exactly the same as that of the Detector pipeline - Figures 3, and
algorithm 2.

ADIS Training. The architecture for ADIS is the same as the Detector, but there are additional
preprocessing steps and fewer epochs (≈ 10-30 epochs). A fixed sample size of 300 from the
reference and synthetic sample was set aside for the computation of reconstruction losses ??. This
was followed by fitting principal component analysis (PCA) (Bro & Smilde, 2014; Ringnér, 2008) on
the training data (consisting of reference and synthetic data) and selecting the first 100-300 principal
components - the actual component selected depends on the dimension of the original feature space,
but typically 100 components were selected for 805 SNPs and 300 for 5000 SNPs. Subsequently, we
computed one-way and two-way hamming reconstruction losses ?? on the non-transformed training
data. Furthermore, as recommended in (Hilprecht et al., 2019), distance attacks also work well
on reduced feature space. Thus, we computed the two-way L2 reconstruction loss on the PCA-
transformed training data. Note that the 300 samples that was set aside had to be PCA-transformed
before being used for the computation of two-way L2 reconstruction loss. For the computation of
the test statistics of DOMIAS (van Breugel et al., 2023b), we first reduced the dimensionality of
the synthetic samples and reference data separately with the fitted PCA. Then we fitted a Gaussian
mixture model (Reynolds et al., 2009), PG, on the PCA-transformed synthetic samples and another
Gaussian mixture model, PXR

, on the PCA-transformed reference data. Finally, we computed the
test statistic PG(x)

PXR
(x) for each PCA-transformed training point x.

Large Reference Data for ADIS It should be noted that the Detector and ADIS attacks would
benefit from having a reference data sample of large size. In cases where the reference data size is
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Figure 3: The pipeline for training the Detector Dθ.

small, an effective strategy would be to train a secondary GAN on the reference data. Subsequently,
one can proceed to subsample synthetic reference data (from the trained secondary GAN) that
are closer or within an ϵ-ball of the reference data as measured by a distance metric - i.e., using
distance-based subsampling.

Results Table for GAN-Omics MIA Table 3 depicts the TPR at FPR of 0.01 , 0.1, 0.005 and 0.001
respectively (see Figures 1 and 1d) for genomic data setting.

Training DOMIAS Training DOMIAS involves 2 steps - dimensionality reduction and density
estimation. For genomic data setting, we use PCA for dimension reduction following the same steps
as described for ADIS. For density estimation, we fit density estimator using non-volume preserving
transformation(NVP)Dinh et al. (2016). Observe, that we fit the the estimator to the synthetic and
reference sample separately and then proceed to compute the likelihood ratio for any given test point.
For image data, we project the image onto a low dimensional space using the encoder of a variational
auto-encoderKingma & Welling (2022) trained on the reference and synthetic data. Subsequently, we
fit the density estimator using NVP to the transformed data.

E DISTANCE-BASED ATTACKS

Figure 3 illustrates the Detector pipeline. Figures 5 and 5 illustrates the intuition behind the one-way
and two-way distance-based attack.

F RESULTS FOR GENOMIC GANS

F.1 GENOMIC GAN CONVERGENCE PLOTS

For image data, visual inspection is a quick way to examine if the synthetic samples converge to
the underlying real training samples. Clearly, under the genomic tabular setting, such quick visual
convergence examination does not work. Recent work of Platzer (2013) proposed using both the
principal component analysis (PCA) and t-distributed stochastic neighbor embedding (T-SNE) plots
for the analysis of genomic data population structure. Consequently, we examine the convergence of
the synthetic samples using both PCA and T-SNE. In particular, the synthetic samples converge if the
population structure as captured by the PCA and T-SNE is similar to that of the corresponding real
genomic samples. Figures 6a - 6f depict the 6 principal components of both the training data and
synthetic samples for each configuration in table 1. This provides the first insight that the synthetic
samples are indeed representative of the underlying data
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Table 3: Table of Attack Results (Genomic Data)

GAN Variant Dataset Attack Method TPR
@0.01
FPR

TPR @ 0.1
FPR

TPR
@0.005
FPR

TPR
@0.001
FPR

vanilla 805 1000 genome one-way distance 1.02% 6.95% 0.51% 0.13%
vanilla 805 1000 genome two-way distance 7.79% 28.86% 5.14% 1.89%
vanilla 805 1000 Genome weighted distance 4.75% 21.76 % 2.85% 1.76%
vanilla 805 1000 Genome Robust Homer 2.46% 17.89% 1.26% 0.20%
vanilla 805 1000 Genome Detector 1.89% 13.72% 0.97% 0.19%
vanilla 805 1000 Genome ADIS 5.31% 26.89% 3.14% 1.16%
vanilla 5k 1000 genome one-way distance 0.88% 7.6% 0.37% 0.10%
vanilla 5k 1000 genome two-way distance 1.36% 13.89% 0.68% 0.25%
vanilla 5k 1000 Genome weighted distance 1.00% 12.6% 0 .56% 0.15%
vanilla 5k 1000 Genome Robust Homer 0.88% 7.62% 0.58% 0.25%
vanilla 5k 1000 Genome Detector 1.52% 12.70% 0.82% 0.33%
vanilla 5k 1000 Genome ADIS 2.00% 13.40% 0.99% 0.26%

vanilla 10k 1000 genome one-way distance 1.10% 9.97% 0.62% 0.23%
vanilla 10k 1000 genome two-way distance 1.07% 10.52% 0.42% 0.17%
vanilla 10k 1000 Genome weighted distance 0.90% 10.4% 0.49% 0.15%
vanilla 10k 1000 Genome Robust Homer 1.11% 10.56% 0.58% 0.36%
vanilla 10k 1000 Genome Detector 1.38% 11.56% 0.68% 0.17%
vanilla 10k 1000 Genome ADIS 1.72% 12.56% 1.03% 0.25%

wgan-gp 805 dbGaP one-way distance 0.91% 7.69% 0.54% 0.23%
wgan-gp 805 dbGaP two-way distance 1.52% 11.91% 0.63% 0.23%
wgan-gp 805 dbGaP weighted distance 1.41% 11.75% 0.91% 0.38%
wgan-gp 805 dbGaP Robust Homer 1.37% 11.22% 0.67% 0.25%
wgan-gp 805 dbGaP Detector 2.59% 16.01% 1.14% 0.22%
wgan-gp 805 dbGaP ADIS 2.40% 15.15% 1.04% 0.35%
wgan-gp 5k dbGaP one-way distance 0.93% 9.17% 0.23% 0.16%
wgan-gp 5k dbGaP two-way distance 1.62% 12.81% 0.77% 0.29%
wgan-gp 5k dbGaP weighted distance 1.90% 12.90% 1.90% 0.35%
wgan-gp 5k dbGaP Robust Homer 2.13% 14.03% 1.48% 0.62%
wgan-gp 5k dbGaP Detector 2.95% 20.10% 1.64% 0.37%
wgan-gp 5k dbGaP ADIS 6.40% 28.70% 3.98% 1.32%
wgan-gp 10k dbGaP one-way distance 1.42% 9.38% 0.55% 0.09%
wgan-gp 10k dbGaP two-way distance 2.07% 12.45% 1.20% 0.47%
wgan-gp 10k dbGaP weighted distance 1.96% 11.80% 0.98% 0.45%
wgan-gp 10k dbGaP Robust Homer 2.71% 13.95% 1.35% 0.65%
wgan-gp 10k dbGaP Detector 3.26% 24.23% 2.11% 0.67%
wgan-gp 10k dbGaP ADIS 6.07% 24.49% 4.24% 1.6%
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(a) R(τ |x′) < Rref (τ |x) (b) Rref (τ |x′) < R(τ |x)

Figure 4: The diagram illustrates how the distance-based attack can be used to classify a test
point τ . PDref

is exactly the reference distribution, P , while PDG
is exactly G, the distribution

of synthetic samples from GAN. XR ∼ P and x ∈ XR, x
′ ∈ XG where XG ∼ G. For (a), since

R(τ |x′) < Rref (τ |x), τ is closer to the synthetic samples and is most likely to be categorized as
being from the underlying training set- being closer to synthetic samples implies being closer to
the training data since synthetic samples are approximations of the training data. For (b), since
Rref (τ |x) < R(τ |x′), τ is closer to XR and more likely to be classified as not being in the training
set for the GAN i.e τ ∈ Dref .

(a) Rref (τ |x) = R(τ |x′) (b) Only R(τ |x′) is known

Figure 5: Similar to figure 4,x ∈ XR, x
′ ∈ XG where XR, XG are reference and synthetic samples

respectively and τ a test point. Figure (a) above shows the situation where Rref (τ |x) = R(τ |x′),
and we can conclude that the test point τ has an equal likelihood to be in D and Dref , thus the
reconstruction loss is inconclusive in this case. Fig (b) depicts the case where we only measure
R(τ |x′), and disregard Rref (τ |x). In this situation, information regarding how close the test point,
τ , is to the reference sample is unknown. The reference sample point, x′, might be closer to the test
point τ than any synthetic sample or farther; this additional information is lost if we compute only
R(τ |x′).
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Figure 6: PCA Plots for all data configurations. The plot could be read row-wise or column-wise. The
first row depicts PCA plots for synthetic samples from Vanilla GAN trained on 1000 Genome data for
805, 5k, and 10k SNPS respectively. The second row depicts PCA plots for synthetic samples from
WGAN trained on dbGaP data for 805, 5k, and 10k SNPs respectively. Each column corresponds to
805,5k and 10k SNPS configurations.
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Figure 7: The first row shows scree and TSNE plots for synthetic samples from Vanilla GAN trained
on 1000 Genome data for 5k, and 10k SNPS respectively. The second row shows scree and TSNE
plots for synthetic samples from WGAN trained on dbGaP data for 5k, and 10k SNPS respectively.
The distance metric for the reconstruction loss is the hamming distance.
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F.2 OVERFITTING AND MEMORIZATION IN GENOMIC GANS

The section is aimed at performing some preliminary analyses on genomic data to ensure it is not
overfitting or memorizing the whole training dataset. It is important to check the effect of these
factors are kept to the minimum otherwise they could potentially increase the success margin of the
attack schemes.

Whole sequence memorization. We iteratively sample batches of 3000-4000 synthetic samples,
SB , from the GAN until the sample size is of order ≥ 106. For each sample point in the i-th batch,
sb ∈ SBi

, we compute its minimum hamming distance to D, the training data. Observe that a
hamming distance of zero would indicate whole sequence memorization - since it implies that an
exact copy of a training data sample is being synthesized by the GAN. The results of the whole
presented in Figures 9 and 8 memorization showed that the GAN models did not memorize the
training data, since no reconstruction loss of zero was encountered- a reconstruction loss of zero
reflects that an exact training sample was found.
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Figure 8: The plots show the frequency distribution of reconstruction error for whole sequence
memorization test for 3 batches of synthetic samples from vanilla GAN trained. The label train-syn
(in seafoam green) indicates that we are measuring reconstruction loss for each batch of the synthetic
samples with respect to the training data. For reference purposes, we also plot, ref-syn, which is the
reconstruction loss of the synthetic samples given the reference samples (in purple). The distance
metric for the reconstruction loss is the hamming distance.
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Figure 9: The plots show the frequency distribution of reconstruction error for 3 batches of synthetic
samples from WGAN-GP. The label train-syn (in seafoam green) indicates that we are measuring
reconstruction loss for each batch of the synthetic samples with respect to the training data . For
reference purposes, we plot ref-syn, which is the reconstruction loss of the synthetic samples given
the reference samples (in purple). The distance metric for the reconstruction loss is the hamming
distance.

F.2.1 OVERFITTING.

Overfitting is helpful for a successful MI attack Yeom et al. (2018). To measure and detect the extent
to which GAN overfits the underlying training data we compute the normalized median recovery
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Table 4: Results for test to detect Overfitting

Data Bank GAN Variant SNPS Dim. MRE-gap §p-value Train p-value Ref. *MMD Train MMD Ref

1000 genome Vanilla GAN

815 0.0045 0.0001 0.0001 0.0107 0.0137

5k 0.0300 6.6e-05 6.6e-05 0.0094 0.0105

10k 0.0108 5e-05 5e-05 0.0139 0.0151

dbGaP WGAN-GP

815 0.0055 0.0001 0.0001 0.0194 0.0207

5k 0.0143 6.6e-05 6.6e-05 0.1079 0.1106

10k 0.002 5e-5 5e-5 0.0989 0.1018
* MMD = Maximum mean discrepancy. The values reported here are the unbiased estimate of MMD2 Gretton
et al. (2012b)
§ p-values computed using kernel 2 sample test.

error gap (MRE-gap) Webster et al. (2019). The median recovery errors (MRE) for the training data
XT , and subsamples of the reference data, XR ∼ D, are defined as:

MREG(XT ) = median
{
min
si∈G

∥xi − si∥2
}
xi∈XT

MREG(XR) = median
{
min
si∈G

∥zi − si∥2
}
zi∈Xref

The normalized MRE-gapG is then defined as:

MRE-gapG =
MREG(XR))−MREG(XT )

MREG(XR))

Two-kernel Test We carried out kernel 2 sample testGretton et al. (2012a) to quantify the similarity
between the distribution of the synthetic samples and the distribution of the training data. The result
of this test provides valuable insight regarding overfitting.

Specifically, let XT be of size n and XS be synthetic samples from the GAN of size N > n. Then
for each x ∈ XT , let xs be the synthetic data sample satisfying the relation:

argmin
xs∈Xs

δ(x, xs)

where δ is the distance metric. Thus xs is the closest synthetic sample to the training data entry x.
Let S∗ contain the xs for each entry x ∈ XT . Observe that S∗ and XT are of the same size, n. We
run the two kernel sample tests on the data samples XT and S∗ as described in Gretton et al. (2012a).

In table 4, we present the normalized MRE-gapG for different target configurations. The figures seem
to support that model seems not to be overfitting . Table 4 also reports the p-values and the unbiased
estimate of the squared maximum discrepancy test from the kernel 2 samples test across different
target configurations.

F.3 DETECTOR ARCHITECTURE FOR GENOMIC DATA SETTING

Figure 10 is the Detector model architecture as implemented in Keras Chollet et al. (2015) and
Tensorflow Abadi et al. (2015) for the MI attack against genomic data. The exact architecture differs
depending on the size of the reference data data that is available to the adversary. The data size of
dbGaP is larger than 1KG, thus the Detector architecture for all GANs trained on dbGaP has more
layers than the corresponding architecture for target GAN trained on 1KG.
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(a) Architecture for 805 SNPs (b) Architecture for 5000 SNPs (c) Architecture for 10000 SNPs

Figure 10: Detector Architecture for MIA against Vanilla GAN trained on 1000 genome database for
805,5000 and 10000 SNPS configurations. The Detector architecture varies depending on the SNPs
configurations.

Table 5: Target GAN Configurations for image data

Data Train Data Size Ref. Data Size Test Data Size GAN Variant

CIFAR10

40000 9000 2000 BigGAN
40000 9000 2000 Prog. GAN
40000 9000 2000 DCGAN
4000 9000 2000 Contra GAN

G RESULTS FOR IMAGE GANS

Distance Metric and Distance-based attack. The choice of metric for the distance-based attack
on image GANs requires some careful consideration. Though L2 distance was suggested in (Chen
et al., 2020), it should be noted that L2 distance suffers one major limitation when used as a metric
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(a) Architecture for 805 SNPs (b) Architecture for 5000 SNPs (c) Architecture for 10000 SNPs

Figure 11: Detector Architecture for MIA against Vanilla GAN trained on 1000 genome database
for 805,5000 and 10000 SNP dimension. The Detector architecture varies depending on the SNPs
configurations.
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for distance-based attack: it can’t capture joint image statistics since it uses point-wise difference to
measure image similarity (Fu* et al., 2023).

More recently, with the widespread adoption of deep neural networks, learning-based metrics have
enjoyed wide popularity and acceptance (Dosovitskiy & Brox, 2016; Gatys et al., 2015; Johnson
et al., 2016). These metrics leverage pre-trained deep neural networks to extract features and use
these features as the basis for metric computation (Fu* et al., 2023). LPIPs (Zhang et al., 2018)
(Learned Perceptual Image Patch Similarity) is the most common of such learning-based metrics and
was also proposed in (Chen et al., 2020) for carrying out distance-based attacks.

Our distance-based attack was conducted using both L2 distance and LPIPs. Both attack schemes
were not very successful, though the LPIPS seemed to be slightly better than L2 for the distance
attack.
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(c) Progressive GAN, CIFAR10
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(d) ContraGAN, CiFAR10

Figure 12: The figures show the distance-based attack and the detector-based attacks against image
GANs. Observe that the distance based attack are not particularly effective.

H ADDITIONAL RELATED WORK

Hilprecht et al. (2019) propose a black-box attack on GANs trained on CIFAR-10 that is very similar
to a distance-based attack. Their statistic samples from the GAN and counts the proportion of
generated samples that fall within a given distance ϵ of the candidate point. In order to set ϵ, they
estimate the 1% or .1% quantiles of distances to the generated GAN via sampling. Note that this
assumes access to a set of candidate points xi rather than a single candidate point that may or may not
be a training point, although a similar idea could be implemented using reference data. While their
attacks were quite effective against VAEs and on the simpler MNIST dataset, the best accuracy one
of their distance-based attacks achieves on CIFAR-10 is a TPR that is barely above 50%, at a massive
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Table 6: Table of Attack Results (Image Data)

GAN Variant Dataset Attack Method TPR
@0.01
FPR

TPR @0.1
FPR

TPR
@0.005
FPR

TPR
@0.001
FPR

BigGAN CIFAR10 two-way distance (L2) 1.0% 10.8% 0.6% 0.6%
BigGAN CIFAR10 one-way distance (L2) 0.6% 8.7% 0.2% 0.0%
BigGAN CIFAR10 two-way distance (LPIPS) 0.4% 11.0% 0.1% 0.1%
BigGAN CIFAR10 one-way distance (LPIPS) 1.2% 10.8% 0.7% 0.1%
BigGAN CIFAR10 Detector (Conv. net) 0.8% 7.7% 0.3% 0.0%
BigGAN CIFAR10 Detector (syn-syn) 1.4% 11.8% 0.7% 0.2%
BigGAN CIFAR10 Detector(Incept.-MLP) 2.2% 9.3% 1.6% 0.2%
DCGAN CIFAR10 two-way distance (L2) 1.0% 10.8% 0.6% 0.6%
DCGAN CIFAR10 one-way distance (L2) 1.0% 11.1% 0.6% 0.6%
DCGAN CIFAR10 two-way distance (LPIPS) 1.2% 13.0% 0.7% 0.3%
DCGAN CIFAR10 one-way distance (LPIPS) 1.7% 9.0% 0.6% 0.2%
DCGAN CIFAR10 Detector (Conv. net) 1.4% 9.7% 1.1% 0.3%
DCGAN CIFAR10 Detector (syn-syn) 1.2% 9.6% 0.6% 0.1%
DCGAN CIFAR10 Detector (Incept.-MLP) 0.8% 11.4% 0.4% 0.2%
ProjGAN CIFAR10 two-way distance (L2) 1.0% 10.7% 0.6% 0.6%
ProjGAN CIFAR10 one-way distance (L2) 0.6% 8.4% 0.3% 0.1%
ProjGAN CIFAR10 two-way distance (LPIPS) 0.7% 10.7% 0.6% 0.1%
ProjGAN CIFAR10 one-way distance (LPIPS) 1.0% 10.9% 0.8% 0.6%
ProjGAN CIFAR10 Detector (Conv. net) 1.5% 9.9% 0.7% 0.1%
ProjGAN CIFAR10 Detector (syn-syn) 2.0% 11.8% 1.4% 0.1%
ProjGAN CIFAR10 Detector (Incept.-MLP) 0.9% 11.6% 0.2% 0.0%

ContraGAN CIFAR10 two-way distance (L2) 1.0% 10.8% 0.6% 0.6%
ContraGAN CIFAR10 one-way distance (L2) 0.3% 8.7% 0.3% 0.0%
ContraGAN CIFAR10 two-way distance (LPIPS) 1.7% 12.3% 1.0% 0.3%
ContraGAN CIFAR10 one-way distance (LPIPS) 1.3% 10.4% 0.4% 0.3%
ContraGAN CIFAR10 Detector (Conv. net) 1.2% 9.6% 0.7% 0.1%
ContraGAN CIFAR10 Detector (syn-syn) 0.9% 10.0% 0.5% 0.01%
ContraGAN CIFAR10 Detector (Incept.-MLP) 0.9% 10.4% 0.3% 0.2%
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FPR that is also close to 50% (Figure 4(c)) with their other distance-based method performing worse
than random guessing. Relatedly, (Chen et al., 2020) proposed a distance-based attack scheme
based on minimum distance to a test sample. In Chen et al. (2020) the adversary has access to
synthetic samples from the target GAN and synthetic samples from a GAN trained on reference data
(Gref ). We follow this approach for distance-based attacks, which we discuss further in Section 4.2.
The most closely related work to our detector methods is (van Breugel et al., 2023b) who propose
a density-based model called DOMIAS (Detecting Overfitting for Membership Inference Attacks
against Synthetic Data), which infers membership by targeting local overfitting of the generative
models. Rather than train a detector network to classify whether samples are generated from the target
GAN or the reference data, DOMIAS performs dimension reduction in order to directly estimate both
densities, and then uses the ratio of the densities as a statistic for membership inference.

Related to our study of tabular GANs trained on genomic data, (Yelmen et al., 2021) proposed the
use of GANs for the synthesis of realistic artificial genomes with the promise of none to little privacy
loss. The absence of privacy loss in the proposed model was investigated by measuring the extent
of overfitting using the nearest neighbor adversarial accuracy (AATTS) and privacy score metrics
discussed in (Yale et al., 2019). It should be noted that while overfitting is sufficient to allow an
adversary to perform MI (and hence constitute a privacy loss), it is not a necessary prerequisite for
the attack to succeed, as shown in the formal analysis presented in (Yeom et al., 2018).
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