
Combined Task and Motion Planning Via Sketch Decompositions
-Supplementary Material-

Primary Keywords: (3) Robotics

This supplementary material contains a Background sec-
tion and details of the extension of the available implementa-
tion of PDDLStream planners. Demonstration videos can be
downloaded in https://anonymfile.com/bXOa/videos-ctmp-
sketches.zip5

Background
We review the notions of width and sketches developed in
the setting of classical planning.

Classical Planning
A classical planning problem is a pair P = (D, I) where D10

is a first-order domain with action schemas defined over
predicates and I contains the objects in the instance and
two sets of ground literals, the initial and goal situations
Init and Goal respectively (Geffner and Bonet 2013; Ghal-
lab, Nau, and Traverso 2016). An instance P defines a state15

model S(P ) = (S, s0, G,Act , A(·), f(·, ·)) where the states
in S are the truth valuations over the ground atoms repre-
sented by the set of literals that they make true, the ini-
tial state s0 is Init , the set of goal states G are those that
make the goal literals in Goal true, and the actions Act are20

the ground actions obtained from the schemas and objects.
The ground actions in A(s) are the ones that are applicable
in a state s; namely, those whose preconditions are true
in s, and the state transition function f maps a state s and
an action a ∈ A(s) into the successor state s′ = f(a, s). A25

plan π for P is a sequence of actions a0, . . . , an that is ex-
ecutable in s0 and maps the initial state s0 into a goal state;
i.e., ai ∈A(si), si+1= f(ai, si), and sn+1 ∈G. A state s is
solvable if a plan exists starting at s, otherwise it is unsolv-
able (also called dead-end). The plan length is the number30

of actions, and a plan is optimal if no shorter one exists.

Width
IW(1) is a simple planning algorithm that makes use of a
set of atoms or Boolean features F to implement a breadth-
first search where a newly generated state is pruned if it does35

not make true an atom or feature in F for the first time in
the search (Lipovetzky and Geffner 2012). The procedure
IW(k) is like IW(1) but prunes a state instead when it does
not make true a collection of up to k atoms for the first
time in the search. Unlike breadth-first search, IW(k) runs in40

time and space that are exponential in k and not in the num-
ber of problem variables. It has been found effective in clas-
sical planning because IW(k) for k = 1 or k = 2 is complete
and optimal for many planning domains when goals are sin-
gle atoms. Serialized Iterated Width (SIW) uses IW(k) with 45

small values of k for problems with conjunctive goals, that
are tackled in sequence. SIW starts at the initial state s = s0
of P , and performs an IW(k) search from s to find a short-
est path to a state s′ such that #g(s′)<#g(s), where #g(s)
counts the number of unsatisfied top-level goals of P in s. 50

If s′ is not a goal state, s is set to s′ and the loop repeats.
These methods have been found effective in classical

planning, because many classes of problems have a small
width, over which polynomial IW(k) algorithms are very ef-
fective, and that many other problems can be easily split into 55

problems of small width (Lipovetzky and Geffner 2017).
This is the decomposition exploited by SIW.

The width w(P ) of a planning problem P is the mini-
mum k for which there exists a sequence t0, t1, . . . , tm of
atom tuples ti from P , each consisting of at most k atoms, 60

such that: 1) t0 is true in the initial state s0 of P , 2) any
optimal plan for ti can be extended into an optimal plan for
ti+1 by adding a single action, and 3) if π is an optimal plan
for tm, then π is an optimal plan for P . The algorithm IW
runs IW(k) sequentially for k = 1, 2, . . . until the problem 65

is solved or k is the number of problem variables. IW solves
a problem P in time and space that are exponential in w(P ).
For convenience, when a problem P is unsolvable, w(P ) is
set to the number of variables in P , and when P is solv-
able in at most one step, w(P ) = 0 (Lipovetzky and Geffner 70

2012; Bonet and Geffner 2021). The width of a conjunction
of atoms T (or set of goal states S′) is defined as the width
of a problem P ′ that is like P but with the goal T (resp. S′).

An important feature of width-based planning is that, un-
like other classical planning methods, it does not require 75

a declarative, PDDL-like, action model, and just requires
a set of Boolean state features F . This allows width-based
planning methods to be applied in domains for which a
black-box simulator computes the next states as in video
games (Lipovetzky, Ramirez, and Geffner 2015). 80

Sketches
The SIW algorithm decomposes problems into subproblems
which are solved by running IW. The decomposition is done



by exploiting the structure of conjunctive goals and requir-
ing to achieve one more top goal in each iteration. There are85

problems however that require more subtle forms of decom-
positions. The language of sketches has been introduced re-
cently for expressing such decompositions in a convenient,
compact way by means of simple rules over features.

A sketch R is a collection of rules of the form C 7→ E90

where the condition C and the effect expression E are de-
fined over a set of state features F that can be Boolean or nu-
merical, taking values over the non-negative integers (Bonet
and Geffner 2021; Drexler, Seipp, and Geffner 2021). The
condition C may contain expressions of the form p or ¬p, for95

a Boolean feature p in F or expressions n = 0 or n > 0, for
a numerical feature n in F . Likewise, the effects E may con-
tain expressions of the form p, ¬p, and p? for for a Boolean
feature p in F , and expressions of the form n↓, n↑, or n?, for
a numerical feature n in F . If F = {p, q, n,m}, the mean-100

ing of a rule {¬p, n > 0} 7→ {p, n↓,m?} is that in a state
s where p is false and n is positive, a subgoal state s′ needs
to be found from s where p is true, n decreases in value
relative to its value in s, and m can change arbitrarily. Fea-
tures like q ∈ F that are not mentioned in the effects cannot105

change, and its value in s and s′ must be the same.
More precisely, a sketch R made of rules r : C 7→E over

a set of features F , defines for each state s of a problem P , a
subproblem P [s,GR(s)] that is like P but with initial state
s and a set of subgoal states GR(s). This set is given by the110

states s′ such that the pairs [s, s′] satisfies a rule C 7→E in
R; namely s makes C true, and the pair [s, s′] makes the
effect expression E true1. For instance, if E={p, n↓,m?}
and the set of features is F = {p, q, n,m}, then [s, s′] makes
E true if p is true in s′, the value of n in s′ is lower115

than the value of n in s, and the value of the feature q, not
mentioned in E, is the same in s and s′.

The goal decomposition that underlies the SIWR algo-
rithm is given by a sketch R with a single rule {#g > 0} 7→
{#g↓}, where #g is a feature counting the number of un-120

achieved top goals, and which defines the set of subgoals
GR(s) from a state s as the states s′ when the number of
unachieved top goals has been decreased.

Sketch Width
By decomposing problems, sketches can be used more flesi-125

bly with IW search methods than SIW. In particular, SIWR

uses a given sketch R for solving a class Q of problems P in
the following way. Starting at the initial state s = s0 of P ,
an IW search is run to find a closest state s′ in GR(s). If s′
is not a goal state of P , s is set to s′, and the process repeats130

until a goal state is reached. The width of a sketch R over
a class of problems Q is given by the maximum width over
the subproblems P [s,GR(s)] that may be encountered in the
SIWR search. The SIWR algorithms thus solves problems P
in time and space exponential in the sketch width. The use135

of hand-made sketches in planning and ways for learning
sketches of bounded width are considered in (Drexler, Seipp,
and Geffner 2021, 2022). For these complexity bounds, the

1Usually GR(s) also contains the goal states of the problem P ,
but we do not need this extension in this work.

features are assumed to be linear in N ; namely, they must
have a linear number of values at most, computable in linear 140

time (Bonet and Geffner 2021).

PDDLStream Comparison Details
We compared our approach with PDDLStream (Garrett,
Lozano-Pérez, and Kaelbling 2020), and it is important to
remark that there exists a lack of work on cross-evaluation 145

within the TAMP community. Although the selected bench-
mark (Lagriffoul et al. 2018) aims to be a standard for the
community is not yet widely adopted. Thus, we decided to
contribute also by evaluating an important work as PDDL-
Stream in this benchmark. 150

PDDLStream is an AI planning framework with an action
language and algorithms tailored for planning in scenarios
involving sampling procedures. It enhances PDDL by in-
troducing declarative stream specifications and solves prob-
lems without requiring detailed sampler descriptions. Its pri- 155

mary use case was in general-purpose robot TAMP. This
planning framework comes with four different algorithms:
Incremental, Focused, Binding and Adaptive.

The Incremental algorithm, iteratively increases the num-
ber of stream evaluations that are required to certify a fact. 160

Furthermore, it eagerly and blindly evaluates all stream in-
stances (required in a certain iteration) producing many facts
that are irrelevant to the task. The other three algorithms be-
long to the category of Optimistic Algorithms, which means
that they lazily explore candidate plans before checking 165

their validity. Note that, in our work, we also propose lazy-
evaluation of the geometric constrains until a plan candidate
is found (refer to the main part of the paper for a complete
description of this procedure). Focused is the starting point
of the other two optimistic algorithms. It evaluates streams 170

instances that have satisfied domain facts and adds new certi-
fied facts until a all plan actions are certified and a solution is
found. Binding algorithm propagates stream outputs that are
inputs to subsequent streams to evaluate more of the stream
plan at once. Finally, Adaptive balances the time spent in 175

searching versus processing the streams, often reducing the
number of search calls required to find a solution.

We extended the available PDDLStream software2 to run
the different algorithms in the multiple problem instances
and variations of the benchmark (Lagriffoul et al. 2018). In 180

particular, we modeled the different scenarios in the simula-
tor Pybullet (Coumans and Bai 2016–2021). It is important
to mention that we have not been able to incorporate the
fence that surrounds the scenario in the defined benchmark
in these experiments. Nevertheless, this benefits the PDDL- 185

Streams methods since with this modification the robot is
less restricted and have more opportunities to interact with
the environment objects. Thus, it has a little advantage par-
ticularly in cluttered environments. Furthermore we defined
and implemented the goal regions and conditions and solved 190

multiple integration issues.
In the Experimentation section, the evaluation results are

reported. The more complex benchmark instances are not
solved by any of the algorithms given the 30 min and 16 GB

2Find the repository in https://github.com/caelan/pddlstream.



RAM budgets. In the case of the Incremental algorithm, the195

timeout was exceeded and on the other cases the memory
capacity was exceeded approximately when the 60% of the
time budget was reached.

References
Bonet, B.; and Geffner, H. 2021. General Policies, Repre- 200

sentations, and Planning Width. In Proc. AAAI Conf. Artif.
Intell., 11764–11773.
Coumans, E.; and Bai, Y. 2016–2021. PyBullet, a Python
module for physics simulation for games, robotics and ma-
chine learning. http://pybullet.org. 205

Drexler, D.; Seipp, J.; and Geffner, H. 2021. Expressing
and Exploiting the Common Subgoal Structure of Classical
Planning Domains Using Sketches. In Proc. Int. Conf. Prin-
ciples of Knowledge Representation and Reasoning, 258–
268. 210

Drexler, D.; Seipp, J.; and Geffner, H. 2022. Learning
Sketches for Decomposing Planning Problems into Sub-
problems of Bounded Width. In Proc. Int. Conf. Automated
Planning and Scheduling, 62–70.
Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2020. 215

PDDLStream: Integrating Symbolic Planners and Blackbox
Samplers via Optimistic Adaptive Planning. In Proc. Int.
Conf. Automat. Plan. and Scheduling, volume 30, 440–448.
Geffner, H.; and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Springer. 220

Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
planning and acting. Cambridge University Press.
Lagriffoul, F.; Dantam, N. T.; Garrett, C. R.; Akbari,
A. A.; Srivastava, S.; and Kavraki, L. E. 2018. Platform-
Independent Benchmarks for Task and Motion Planning. 225

IEEE Robotics and Automation Letters, 3: 3765–3772.
Lipovetzky, N.; and Geffner, H. 2012. Width and Serializa-
tion of Classical Planning Problems. In Frontiers in Artif.
Intell. and Applications, volume 242, 540–545.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width 230

Search: Exploration and Exploitation in Classical Planning.
In Proc. AAAI Conf. Artif. Intell.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Clas-
sical Planning with Simulators: Results on the Atari Video
Games. In Proc. Int. Joint Conf. Artif. Intell. 235


