
Published as a conference paper at ICLR 2024

List of Content in Appendix

A. Algorithm box as a complementary to Fig. 3.
B. Mathematical formulations of MP methods used for trajectory generation.
C. Experiment settings as a complementary to Section 5.
D. Additional evaluation and metrics to prove the effectiveness of TCE.
E. Hyper-parameters selection and sweeping.

A ALGORITHM BOX

Algorithm 1 Temporally-Correlated Episodic RL (TCE)

1: Initialize policy parameters θ and value function parameters ϕ
2: for iteration = 1, 2, ... do
3: Get the initial state s0
4: Predict the mean µw, covariance Σw, and sample w∗
5: Generate the trajectory y∗ using Eq. (2) and execute it in the environment
6: Collect step-based information through the execution
7: Update ϕ, use true return or GAE style return (Schulman et al., 2015b)
8:
9: Select K time-pairs, e.g. choose every 10 steps along the trajectory

10: Compute the segment-wise likelihood {pold
k }k=1:K using Eq. (6) and 7 under πold

11: for update epoch = 1, 2, ... do
12: Make prediction of the mean µnew

w , covariance Σnew
w under the latest policy πnew

13: Enforce Trust Region by projecting µnew
w and Σnew

w through TRPL using Eq. (5)
14: Get projected policy π̃new, represented by µ̃new

w and Σ̃new
w

15: Compute the segment-wise likelihood {pnew
k }k=1:K using Eq. (6) and 7 under π̃new

16: Update θ by taking a gradient step w.r.t. J(θ) in Eq. (9)
17: end for
18: end for

14

Published as a conference paper at ICLR 2024

B MATHEMATICAL FORMULATIONS OF MOVEMENT PRIMITIVES.

In this section, we provide a concise overview of the mathematical formulations of movement prim-
itives utilized in this paper. We begin with the fundamentals of DMPs and ProMPs, followed by a
detailed presentation of ProDMPs. This includes a focus on trajectory computation and the mapping
between parameter distributions and trajectory distributions. For clarity, we begin with a single DoF
system and then present the full trajectory distribution using a multi-DoF systems.

B.1 DYNAMIC MOVEMENT PRIMITIVES (DMPS)

Schaal (2006); Ijspeert et al. (2013) describe a single movement as a trajectory [yt]t=0:T , which
is governed by a second-order linear dynamical system with a non-linear forcing function f . The
mathematical representation is given by

τ2ÿ = α(β(g − y)− τ ẏ) + f(x), f(x) = x

∑
φi(x)wi∑
φi(x)

= xφ⊺
xw, (10)

where y = y(t), ẏ = dy/dt, ÿ = d2y/dt2 denote the position, velocity, and acceleration of
the system at a specific time t, respectively. Constants α and β are spring-damper parameters, g
signifies a goal attractor, and τ is a time constant that modulates the speed of trajectory execution. To
ensure convergence towards the goal, DMPs employ a forcing function governed by an exponentially
decaying phase variable x(t) = exp(−αx/τ ; t). Here, φi(x) represents the basis functions for the
forcing term. The trajectory’s shape as it approaches the goal is determined by the weight parameters
wi ∈ w, for i = 1, ..., N . The trajectory [yt]t=0:T is typically computed by numerically integrating
the dynamical system from the start to the end point (Pahič et al., 2020; Bahl et al., 2020). However,
this numerical process is computationally intensive, and complicates a directly translation between
a parameter distribution p(w) to its corresponding trajectory distribution p(y) (Amor et al., 2014;
Meier & Schaal, 2016). Previous method, such as GMM/GMR (Calinon et al., 2012; Calinon, 2016;
Yang et al., 2018) used Gaussian Mixture Models to cover the trajectories’ domain. However, this
neither captures temporal correlation nor provide a generative model for the trajectories.

B.2 PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

Paraschos et al. (2013) introduced a framework for modeling MPs using trajectory distributions,
capturing both temporal and inter-dimensional correlations. Unlike DMPs that use a forcing term,
ProMPs directly model the intended trajectory. The probability of observing a 1-DoF trajectory
[yt]t=0:T given a specific weight vector distribution p(w) ∼ N (w|µw,Σw) is represented as a
linear basis function model:

Linear basis function: [yt]t=0:T = Φ⊺
0:Tw + ϵy, (11)

Mapping distribution: p([yt]t=0:T ; µy,Σy) = N (Φ⊺
0:Tµw, Φ⊺

0:TΣwΦ0:T + σ2
yI). (12)

Here, ϵy is zero-mean white noise with variance σ2
y . The matrix Φ0:T houses the basis functions for

each time step t. Similar to DMPs, these basis functions can be defined in terms of a phase variable
instead of time. ProMPs allows for flexible manipulation of MP trajectories through probabilistic
operators applied to p(w), such as conditioning, combination, and blending (Maeda et al., 2014;
Gomez-Gonzalez et al., 2016; Shyam et al., 2019; Rozo & Dave, 2022; Zhou et al., 2019). However,
ProMPs lack an intrinsic dynamic system, which means they cannot guarantee a smooth transition
from the robot’s initial state or between different generated trajectories.

B.3 PROBABILISTIC DYNAMIC MOVEMENT PRIMITIVES (PRODMPS)

Solving the ODE underlying DMPs Li et al. (2023) noted that the governing equation of DMPs,
as specified in Eq. (10), admits an analytical solution. This is because it is a second-order linear non-
homogeneous ODE with constant coefficients. The original ODE and its homogeneous counterpart
can be expressed in standard form as follows:

Non-homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y =

f(x)

τ2
+

αβ

τ2
g ≡ F (x, g), (13)

Homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y = 0. (14)

15

Published as a conference paper at ICLR 2024

The solution to this ODE is essentially the position trajectory, and its time derivative yields the
velocity trajectory. These are formulated as:

y = [y2p2 − y1p1 y2q2 − y1q1]

[
w
g

]
+ c1y1 + c2y2 (15)

ẏ = [ẏ2p2 − ẏ1p1 ẏ2q2 − ẏ1q1]

[
w
g

]
+ c1ẏ1 + c2ẏ2. (16)

Here, the learnable parameters w and g which control the shape of the trajectory, are separable from
the remaining terms. Time-dependent functions y1, y2,p1, p2, q1, q2 in the remaining terms offer
the basic support to generate the trajectory. The functions y1, y2 are the complementary solutions to
the homogeneous ODE presented in Eq. (14), and ẏ1, ẏ2 their time derivatives respectively. These
time-dependent functions take the form as:

y1(t) = exp
(
− α

2τ
t
)
, y2(t) = t exp

(
− α

2τ
t
)
, (17)

p1(t) =
1

τ2

∫ t

0

t′ exp
(α

2τ
t′
)
x(t′)φ⊺

xdt
′, p2(t) =

1

τ2

∫ t

0

exp
(α

2τ
t′
)
x(t′)φ⊺

xdt
′, (18)

q1(t) =
(α

2τ
t− 1

)
exp

(α

2τ
t
)
+ 1, q2(t) =

α

2τ

[
exp

(α

2τ
t
)
− 1

]
. (19)

It’s worth noting that the p1 and p2 cannot be analytically derived due to the complex nature of the
forcing basis terms φx. As a result, they need to be computed numerically. Despite this, isolating
the learnable parameters, namely w and g, allows for the reuse of the remaining terms across all
generated trajectories. These residual terms can be more specifically identified as the position and
velocity basis functions, denoted as Φ(t) and Φ̇(t), respectively. When both w and g are included
in a concatenated vector, represented as wg , the expressions for position and velocity trajectories
can be formulated in a manner akin to that employed by ProMPs:

Position: y(t) = Φ(t)⊺wg + c1y1(t) + c2y2(t), (20)

Velocity: ẏ(t) = Φ̇(t)⊺wg + c1ẏ1(t) + c2ẏ2(t). (21)

In the main paper, for simplicity and notation convenience, we use w instead of wg to describe
the parameters and goal of ProDMPs.

Smooth trajectory transition The coefficients c1 and c2 serve as solutions to the initial value
problem delineated by the Eq.(20)(21). Li et al. propose utilizing the robot’s initial state or the
replanning state, characterized by the robot’s position and velocity (yb, ẏb) to ensure a smooth com-
mencement or transition from a previously generated trajectory. Denote the values of the comple-
mentary functions and their derivatives at the condition time tb as y1b , y2b , ẏ1b and ẏ2b . Similarly,
denote the values of the position and velocity basis functions at this time as Φb and Φ̇b respectively.
Using these notations, c1 and c2 can be calculated as follows:

[
c1
c2

]
=

 ẏ2b
yb−y2b

ẏb

y1b
ẏ2b

−y2b
ẏ1b

+
y2b

Φ̇⊺
b−ẏ2b

Φ⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

y1b
ẏb−ẏ1b

yb

y1b
ẏ2b

−y2b
ẏ1b

+
ẏ1b

Φ⊺
b−y1b

Φ̇⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

 . (22)

Substituting Eq. (22) into Eq. (20) and Eq. (21), the position and velocity trajectories take the form
as

y = ξ1yb + ξ2ẏb + [ξ3Φb + ξ4Φ̇b +Φ]⊺wg, (23)

ẏ = ξ̇1yb + ξ̇2ẏb + [ξ̇3Φb + ξ̇4Φ̇b + Φ̇]⊺wg (24)

Here, ξk for k ∈ {1, 2, 3, 4} serve as intermediate terms that are derived from the complementary
functions and the initial conditions. The formations of these terms are elaborated below. To find
their derivatives ξ̇k, one can simply replace y1, y2 with their time derivatives ẏ1, ẏ2 in the equations.

ξ1(t) =
ẏ2by1 − ẏ1by2
y1b ẏ2b − y2b ẏ1b

, ξ2(t) =
y1by2 − y2by1
y1b ẏ2b − y2b ẏ1b

,

ξ3(t) =
ẏ1by2 − ẏ2by1
y1b ẏ2b − y2b ẏ1b

, ξ4(t) =
y2by1 − y1by2
y1b ẏ2b − y2b ẏ1b

.

16

Published as a conference paper at ICLR 2024

Extend to a High DoF system Both ProMPs and ProDMPs can be generalized to accommodate
high-DoF systems. This allows for the capture of both temporal correlations and interactions among
various DoF. Such generalization is implemented through modifications to matrix structures and
vector concatenations, as illustrated in Paraschos et al. (2013); Li et al. (2023). To be specific, the
basis functions Φ, Φ̇, along with their values at the condition time Φb, Φ̇b, are extended to block-
diagonal matrices Ψ, Ψ̇, Ψb and Ψ̇b respectively. This extension is executed by tiling the existing
basis function matrices D times along their diagonal, where D is the number of DoF. Additionally,
the robot initial conditions for each DoF are concatenated into one vectors. For instance, the initial
positions y1b , ..., y

D
b are unified into a single vector yb = [y1b , ..., y

D
b]⊺. In this way, the position

and velocity trajectories are extended as

y = ξ1yb + ξ2ẏb + [ξ3Ψb + ξ4Ψ̇b +Ψ]⊺wg, (25)

ẏ = ξ̇1yb + ξ̇2ẏb + [ξ̇3Ψb + ξ̇4Ψ̇b + Ψ̇]⊺wg. (26)

Parameter distribution to trajectory distribution In a manner analogous to the description pro-
vided for ProMPs from Equation Eq. (2) to Equation Eq. (3), ProDMPs also exhibits a comparable
architecture framework. This similarity is particularly evident in the structure of the learnable pa-
rameters, denoted as wg , which follow a linear basis function format. Consequently, it is reasonable
to delineate the trajectory distribution for ProDMPs in fashion akin to that of ProMPs. Given that the
parameter distribution wg follows a Gaussian distribution wg ∼ N (wg|µwg ,Σwg) and adhering to
the probabilistic formulation analogous to ProMPs as indicated in Eq. (3), the trajectory distribution
for ProDMPs can be expressed as:

p([yt]t=0:T ; µy,Σy) = N ([yt]t=0:T | µy,Σy), (27)

where

µy = ξ1yb + ξ2ẏb +H⊺
0:Tµwg

, Σy = H⊺
0:TΣwg

H0:T + σ2
nI,

H0:T = ξ3Ψb + ξ4Ψ̇b +Ψ0:T , ξk = [ξk(t)]t=0:T .

In this context, the trajectory mean, denoted as µy constitutes a vector of dimension DT , whereas
the trajectory covariance, represented by Σy is a DT × DT dimensional matrix. These quantities
serve to integrate the trajectory values across all degrees of freedom (DoF) and temporal steps,
encapsulating them within a single distribution. This multi-DoF ProDMPs representation can be
seen as an enhancement of the ProMPs framework, augmented by the inclusion of initial condition
terms. This ensures that the trajectories sampled under this distribution start from the specified
initial state. Additionally, the time range t = 0 : T is flexible and can be replaced by any
set of discrete time points. For instance, in the TCE method, a pair of time points tk and t′k
can define a trajectory segment, allowing for down-sampling of the trajectory distribution to
specific trajectroy segment.

17

Published as a conference paper at ICLR 2024

C EXPERIMENT DETAILS

C.1 DETAILS OF METHODS IMPLEMENTATION

PPO Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a prominent on-policy step-
based RL algorithm that refines the policy gradient objective, ensuring policy updates remain close
to the behavior policy. PPO branches into two main variants: PPO-Penalty, which incorporates a
KL-divergence term into the objective for regularization, and PPO-Clip, which employs a clipped
surrogate objective. In this study, we focus our comparisons on PPO-Clip due to its prevalent use in
the field. Our implementation of PPO is based on the implementation of Raffin et al. (2021).

SAC Soft Actor-Critic (SAC) (Haarnoja et al., 2018a;b) employs a stochastic step-based policy
in an off-policy setting and utilizes double Q-networks to mitigate the overestimation of Q-values
for stable updates. By integrating entropy regularization into the learning objective, SAC balances
between expected returns and policy entropy, preventing the policy from premature convergence.
Our implementation of SAC is based on the implementation of Raffin et al. (2021).

TRPL Trust Region Projection Layers (TRPL) (Otto et al., 2021), akin to PPO, addresses the
problem of stabilizing the on-policy policy gradient by constraining the learning policy staying
close to the behavior policy. TRPL formulates the constrained optimization problem as a projection
problem, providing a mathematically rigorous and scalable technique that precisely enforces trust
regions on each state, leading to stable and efficient on-policy updates. We evaluated its performance
based on the implementation of the original work.

gSDE Generalized State Dependent Exploration (gSDE) (Raffin et al., 2022; Rückstieß et al.,
2008; Rückstiess et al., 2010) is an exploration method designed to address issues with traditional
step-based exploration techniques and aims to provide smoother and more efficient exploration in
the context of robotic reinforcement learning, reducing jerky motion patterns and potential damage
to robot motors while maintaining competitive performance in learning tasks.

To achieve this, gSDE replaces the traditional approach of independently sampling from a Gaussian
noise at each time step with a more structured exploration strategy, that samples in a state-dependent
manner. The generated samples not only depend on parameter of the Gaussian distribution µ & Σ,
but also on the activations of the policy network’s last hidden layer (s). We generate disturbances ϵt
using the equation

ϵt = θϵs, where θϵ ∼ N d (0,Σ) .

The exploration matrix θϵ is composed of vectors of length Dim(a) that were drawn from the Gaus-
sian distribution we want gSDE to follow. The vector s describes how this set of pre-computed
exploration vectors are mixed. The exploration matrix is resampled at regular intervals, as guided
by the ’sde sampling frequency’ (ssf), occurring every n-th step if n is our ssf.

gSDE is versatile, applicable as a substitute for the Gaussian Noise source in numerous on- and
off-policy algorithms. We evaluated its performance in an on-policy setting using PPO by utilizing
the reference implementation for gSDE from Raffin et al. (2022). In order for training with gSDE to
remain stable and reach high performance the usage of a linear schedule over the clip range had to
be used for some environments.

PINK We utilize SAC to evaluate the effectiveness of pink noise for efficient exploration. Eber-
hard et al. (2022) propose to replace the independent action noise ϵt of

at = µt + σt · ϵt
with correlated noise from particular random processes, whose power spectral density fol-
low a power law. In particular, the use of pink noise, with the exponent β = 1 in
S(f) = |F [ϵ](f)|2 ∝ f−β , should be considered (Eberhard et al., 2022).

We follow the reference implementation and sample chunks of Gaussian pink noise using the in-
verse Fast Fourier Transform method proposed by Timmer & Koenig (1995). These noise variables
are used for SAC’s exploration but the the actor and critic updates sample the independent action
distribution without pink noise. Each action dimension uses an independent noise process which

18

Published as a conference paper at ICLR 2024

causes temporal correlation within each dimension but not across dimensions. Furthermore, we fix
the chunk size and maximum period to 10000 which avoids frequent jumps of chunk borders and
increases relative power of low frequencies.

BBRL-Cov/Std Black-Box Reinforcement Learning (BBRL) (Otto et al., 2022; 2023) is a recent
developed episodic reinforcement learning method. By utilizing ProMPs (Paraschos et al., 2013) as
the trajectory generator, BBRL learns a policy that explores at the trajectory level. The method can
effectively handle sparse and non-Markovian rewards by perceiving an entire trajectory as a unified
data point, neglecting the temporal structure within sampled trajectories. However, on the other
hand, BBRL suffers from relatively low sample efficiency due to its black-box nature. Moreover,
the original BBRL employs a degenerate Gaussian policy with diagonal covariance. In this study,
we extend BBRL to learn Gaussian policy with full covariance to build a more competitive baseline.
For clarity, we refer to the original method as BBRL-Std and the full covariance version as BBRL-
Cov. We integrate BBRL with ProDMPs (Li et al., 2023), aiming to isolate the effects attributable
to different MP approaches.

C.2 METAWORLD PERFORMANCE PROFILE ANALYSIS

The distribution of success rates, reported in the performance profile in Fig. 5b, may seem to contra-
dict the nearly perfect IQM of TCE but in reality provide insight into the consistency of TCE. Nearly
two thirds of runs exceed 99% success rate and are therefore able to perfectly solve the task with
this seed. The individual performances reported in Appendix C.3 show that only very few tasks,
e.g., Disassemble and Hammer, have a significant fraction of unsuccessful seeds. This consistency
per task is also visible in the profile, as only two percent of runs fall between zero and sixty percent
success rate which is visible by the near zero slope in this range. All methods are entirely unable to
solve a small set of tasks and therefore show a gap in the profile. This does not contradict the very
high IQM success rate of TCE, as the IQM trims the upper and lower 25% of results. The commonly
reported median effectively trims 50% and would result in even higher values. Due to the smaller
and later decline in the profile compared to the other methods, the intersection between 75% of runs
and the profile is located at a success rate of 90%. Therefore, only a small fraction of runs, roughly
ten percent, fall within the 25% trim but only slightly decrease the value of the IQM due their high
success rate. Other methods have a larger fraction of imperfect runs with lower success rate within
the quartiles.

19

Published as a conference paper at ICLR 2024

C.3 PERFORMANCE ON INDIVIDUAL METAWORLD TASKS

We report the Interquartile Mean (IQM) of success rates for each Metaworld task. The plots clearly
illustrate the varying levels of difficulty across different tasks.

TCE (ours) BBRL PPO TRPL SAC gSDE PINK

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Assembly

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
ra

te
 IQ

M

PickOutOfHole

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PlateSlide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PlateSlideBack

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PlateSlideSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PlateSlideBackSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

BinPicking

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Hammer

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

SweepInto

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

BoxClose

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ButtonPress

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ButtonPressWall

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ButtonPressTopdown

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ButtonPressTopdownWall

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

CoffeeButton

Figure 8: Success Rate IQM of each individual Metaworld tasks.

20

Published as a conference paper at ICLR 2024

TCE (ours) BBRL PPO TRPL SAC gSDE PINK

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
ra

te
 IQ

M
CoffeePull

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

CoffeePush

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DialTurn

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Disassemble

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DoorClose

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DoorLock

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DoorOpen

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DoorUnlock

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

HandInsert

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DrawerClose

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

DrawerOpen

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

FaucetOpen

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

FaucetClose

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

HandlePressSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

HandlePress

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

HandlePullSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

HandlePull

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

LeverPull

Figure 9: Success Rate IQM of each individual Metaworld tasks.

21

Published as a conference paper at ICLR 2024

TCE (ours) BBRL PPO TRPL SAC gSDE PINK

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
ra

te
 IQ

M
PegInsertSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PickPlaceWall

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Reach

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PushBack

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Push

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PickPlace

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PegUnplugSide

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Soccer

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

StickPush

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

StickPull

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

PushWall

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ReachWall

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

ShelfPlace

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Sweep

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

WindowOpen

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

WindowClose

0 1 2 3 4
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

 IQ
M

Basketball

Figure 10: Success Rate IQM of each individual Metaworld tasks.

22

Published as a conference paper at ICLR 2024

C.4 HOPPER JUMP

TCE (ours) BBRL Cov. BBRL PPO TRPL SAC gSDE PINK

0 0.2 0.4 0.6 0.8 1

·107

1.5

1.6

1.7

1.8

1.9

Iteration

M
ax

Ju
m

p
H

ei
gh

t,
IQ

M
[m

]

(a) Max Jump Height

0 0.2 0.4 0.6 0.8 1

·107

0

0.2

0.4

0.6

0.8

1

Iteration

D
is

ta
nc

e
to

G
oa

l,
IQ

M
[m

]

(b) Distance to Goal

0 0.2 0.4 0.6 0.8 1

·107

5

10

15

Iteration

E
pi

so
de

R
ew

ar
d,

IQ
M

(c) Overall, Height + Dist.

Figure 11: Hopper Jump

As an addition to the main paper, we provide more details on the Hopper
Jump task. We look at both the main goal of maximizing jump height and the
secondary goal of landing on a desired position. These are shown along with
the overall episode reward in Fig. 11. Our method shows quick learning and
does well in achieving high jump height, consistent with what we reported
earlier. While it’s not as strong in landing accuracy, it still ranks high in
overall performance. Both versions of BBRL have similar results. However,
they train more slowly compared to TCE, highlighting the speed advantage of
our method due to the use of intermediate states for policy updates. Looking at other methods, step-
based ones like PPO and TRPL focus too much on landing distance and miss out on jump height,
leading to less effective policies. On the other hand, gSDE performs well but is sensitive to the
initial setup, as shown by the wide confidence ranges in the results. Lastly, SAC and PINK shows
inconsistent results in jump height, indicating the limitations of using pink noise for exploration,
especially when compared to gSDE.

C.5 BOX PUSHING

The goal of the box-pushing task is to move a box to a specified goal location
and orientation using the 7-DoFs Franka Emika Panda (Otto et al., 2022). To
make the environment more challenging, we extend the environment from a
fixed initial box position and orientation to a randomized initial position and
orientation. The range of both initial and target box pose varies from x ∈
[0.3, 0.6], y ∈ [−0.45, 0.45], θz ∈ [0, 2π]. Success is defined as a positional
distance error of less than 5 cm and a z-axis orientation error of less than
0.5 rad. We refer to the original paper for the observation and action spaces
definition and the reward function.

C.6 TABLE TENNIS

The goal of table tennis environment to use the 7-DoFs robotic arm to hit
the incoming ball and return it as close as possible to the specified goal
location. We adapt the table tennis environment from Celik et al. (2022);
Otto et al. (2022) and extend it to a randomized initial robot joint configura-
tion. As context space we consider the initial ball position x ∈ [−1,−0.2],
y ∈ [−0.65, 0.65] and the goal position x ∈ [−1.2,−0.2], y ∈ [−0.6, 0.6].
The task is considered successful if the returned ball lands on the opponent’s
side of the table and within ≤ 0.2m to the goal location. We refer to the
original paper for the observation and action spaces definition and the reward function.

23

Published as a conference paper at ICLR 2024

TCE (ours) BBRL Cov. BBRL PPO TRPL SAC gSDE PINK

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×108)

Su
cc

es
s

R
at

e

(a) Success Rate

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×108)

H
it

R
at

e

(b) Hit Rate

0 0.5 1 1.5 2

0

2

4

6

8

Number Environment Interactions (×108)

E
pi

so
de

To
ta

lR
ew

ar
d

(c) Episode Reward

Figure 14: Robot Table Tennis Rand2Rand

D ADDITIONAL EVALUATION AND ABLATION STUDY

D.1 TRAJECTORY SMOOTHNESS METRIC

We compared the trajectory smoothness of all methods in Table 1. To ensure a fair comparison, all
methods were trained using the fixed start box pushing dense reward setting as originally reported
in Otto et al. (2022), where each method achieved a minimum 50% success rate. Trajectories for
evaluation were generated using the mean prediction of the policy. The smoothness was assessed
using three metrics: maximum jerk, mean squared jerk (Wininger et al., 2009), and dimensionless
jerk (Hogan & Sternad, 2009). The first two metrics are standard in robot trajectory generation
(Berscheid & Kröger, 2021; Lange & Suppa, 2015), while the last is proposed as a more equitable
measure of smoothness, eliminating the effects of motion magnitude and time scaling. TCE and
BBRL Cov outperformed all other methods in smoothness, followed by the original BBRL. This
performance disparity likely stems from the original BBRL’s inability to model inter-DoF movement
correlations. In contrast, all step-based methods exhibited lower smoothness, attributable to their
inherent per-step action selection approach.

Table 1: Trajectory Smoothness, Mean (Std) of Three Metrics over 400 Trajectories.

Metric TCE BBRL Cov BBRL PPO TRPL gSDE SAC PINK

Maximum Jerk, ×103rad/s3 3.4 (1.9) 3.5 (1.5) 4.3 (1.4) 9.1 (3.3) 12.9 (4.8) 6.9 (2.2) 9.3 (4.2) 6.5 (1.7)

Mean Sq. Jerk, ×106rad2/s6 0.2 (0.2) 0.2 (0.3) 0.6 (0.6) 1.3 (0.9) 5.5 (8.6) 0.8 (0.6) 3.9 (1.1) 1.7 (0.7)

Dimensionless Jerk, ×106 61 (73) 64 (56) 128 (49) 141 (67) 555 (472) 122 (83) 506 (262) 311 (127)

24

Published as a conference paper at ICLR 2024

D.2 ACTION CORRELATIONS PREDICTED BY TRAINED POLICIES

We plot the action correlation coupling DoF and time steps in Fig. 16. All policies were trained
under the box-pushing task with a dense reward setting. The action outputs for TCE, BBRL,
and BBRL Cov are the positions of the robot joints, while step-based methods, such as PPO,
predict actions in the torque space. TCE and BBRL Cov demonstrate the ability to predict actions
correlated both temporally and across DoF, as indicated by the non-zero off-diagonal elements in
their correlation matrices. In contrast, the original BBRL translates a factorized weight distribution
into a block-diagonal action correlation matrix, capturing variance within individual DoF but not
between them. Similarly, PINK is constrained to modeling intra-DoF correlations, which depend
solely on the time difference. This limitation arises from the wide-sense stationarity of the noise,
resulting in a constant value along each diagonal. gSDE, however, models temporal correlation but
only over a few consecutive time steps, observable along the diagonal elements. Actions predicted
by PPO, TRPL, and SAC lack both temporal and DoF correlation, resulting in correlation matrices
resembling identity matrices. Interestingly, for methods that only capture intra-DoF correlations,
these correlations are uniformly positive. This trend may relate to the control cost in the reward
function, promoting consistent movement within each DoF over time. On the other hand, TCE and
BBRL Cov are unique in their ability to capture negative correlations, both between and within
DoF, enhancing their flexibility in trajectory sampling.

(a) TCE (b) BBRL Cov (c) BBRL (Original, Std)

(d) PINK (e) gSDE (f) PPO / TRPL / SAC

Figure 16: This figure presents predicted actions’ correlation across 7 DoF and 100 time steps, visualized in
a 700x700 correlation matrix. Each 100 × 100 square tile demonstrates the movement correlation between
two DoF during these steps. Correlation values range from -1 (negative correlation, depicted in blue) to 1
(positive correlation, depicted in red), with white areas indicating no correlation. The action outputs for TCE,
BBRL, and BBRL Cov are the positions of the robot joints, whereas step-based methods predict actions in the
torque space. TCE and BBRL Cov exhibit to a higher capacity of movement correlations. The original BBRL
and PINK only model correlations within each DoF. gSDE models correlations over a few consecutive time
steps. We show only one representative matrix for PPO, TRPL, and SAC, as their results are visually identical,
typically resulting in matrices resembling the identity matrix.

25

Published as a conference paper at ICLR 2024

D.3 ABLATION: SAC + MOTION PRIMITIVES-BASED METHOD

Training movement primitive-based methods using standard RL techniques, such as PPO and SAC,
generally poses challenges due to the complex, higher-dimensional trajectory parameter space. In
the study by Otto et al. (2022), an ablation study employing a PPO-style trust region (likelihood clip-
ping) for training BBRL demonstrated inferior performance compared to the use of a differentiable
trust region projection layer.

In Figure 17, we present an additional ablation study where SAC is used to learn the trajectory
parameters of movement primitives. This study compares the performance of SAC with that of the
original BBRL and BBRL Cov, leading to relatively poorer performance. The SAC model selected
for reporting was the best performer among 40 different combinations of hyperparameters. The
hyperparameters adjusted include the output action scaling factor (necessary because the SAC action
space is bounded by [−1, 1]), policy/critic learning rate, batch size, and the size of the policy/critic
network. The relatively shorter training curve of SAC can be attributed to its higher computational
cost in policy update (Haarnoja et al., 2018b).

BBRL Cov. BBRL SAC + MP

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

Figure 17: By employing the standard SAC method to learn trajectory parameters w, we compared its perfor-
mance with that of the original BBRL and BBRL Cov methods under the box pushing dense reward setting.
The ablated method, using SAC, showed relatively poorer performance.

D.4 ABLATION: USING PPO STYLE TRUST REGIONS FOR TCE METHOD

We developed an ablated version of our method, incorporating the PPO-style trust region via likeli-
hood clipping. We tuned the clipping ratio ϵ between 0.05 and 0.2. As illustrated in Figure 18, this
version’s performance falls between the original TCE and the standard PPO. The movement primi-
tives’ high-dimensional parameter space limits the effectiveness of likelihood clipping in precisely
maintaining the trust region during policy updates. This limitation likely accounts for the perfor-
mance gap between TCE and its PPO variant. Nonetheless, the ablated model still demonstrates a
notable advantage over standard PPO, further substantiating our model’s effectiveness in temporally
correlated trajectory prediction.

TCE (ours) TCE (PPO) PPO

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

Figure 18: Training TCE with a PPO-style trust region, employing likelihood clipping with ϵ = 0.1, yields
suboptimal performance in the box pushing dense reward setting. Nevertheless, its superior performance com-
pared to standard PPO underscores our method’s effectiveness in episodic trajectory modeling.

26

Published as a conference paper at ICLR 2024

D.5 ABLATION: SELECTION OF THE AMOUNT OF SEGMENTS K

We conducted an ablation study to evaluate the effect of varying the number of segments (k) on
model performance. The number of segments tested ranged from 2 to 100. Our experiments in-
volved training in both dense and sparse box-pushing environments. The results revealed a greater
sensitivity to the number of segments in the sparse reward environment compared to the dense envi-
ronment. We attribute this to the challenges associated with the value function approximation under
sparse reward settings. However, within an optimal range, such as 10-25 segments, this parameter is
not overly sensitive compared to other hyper-parameters. Consequently, we have adopted k=25 for
all experiments in this paper.

segments=2 segments=5 segments=10 segments=25 segments=50 segments=100

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(a) Box Pushing, Dense

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M
(b) Box Pushing, Sparse

Figure 19: Study of the number of segment per trajectory.

D.6 TCE COV VS. STD

We conducted an ablation study to assess the impact of employing a full covariance policy in the
TCE framework. This involved comparing the standard TCE with its variant, TCE Std, which
utilizes a factorized Gaussian policy N (w|µw,σ2

w). The comparison was conducted in scenarios
involving both dense and sparse reward settings in box pushing tasks. The findings revealed that
the ablated version, TCE Std, consistently underperformed compared to the full covariance version.
This underperformance is attributed to the limited correlation capacity of the factorized Gaussian
policy.

Furthermore, it is important to note that while the factorized Gaussian distribution results in a rela-
tively lower computational load in the parameter space, it does not offer a marked advantage when
translated into trajectory space. As illustrated in Fig. 16(c) of Section D.2, a factorized parame-
ter distribution ultimately converts into a blocked diagonal trajectory distribution. Although this
format is visually simpler compared to a full trajectory covariance matrix, both share same time
complexity in terms of likelihood computation. This computational process is significantly more
resource-intensive than that for a purely diagonal matrix. Therefore, we utilize the techniques in Li
et al. (2023) to apply a likelihood estimation and reduce the computational cost.

TCE Cov (ours) TCE Std (ablation)

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(a) Box Pushing, Dense

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(b) Box Pushing, Sparse

Figure 20: Study of the TCE Cov vs. TCE Std.

27

Published as a conference paper at ICLR 2024

E HYPER PARAMETERS

We executed a large-scale grid search to fine-tune key hyperparameters for each baseline method.
For other hyperparameters, we relied on the values specified in their respective original papers.
Below is a list summarizing the parameters we swept through during this process.

BBRL: Policy net size, critic net size, policy learning rate, critic learning rate, samples per itera-
tion, trust region dissimilarity bounds, number of parameters per movement DoF.

TCE: Same types of hyper-parameters listed in BBRL, plus the number of segments per trajectory.
A learning rate decaying scheduler is applied to stabilize the training in the end.

PPO: Policy network size, critic network size, policy learning rate, critic learning rate, batch size,
samples per iteration.

TRPL: Policy network size, critic network size, policy learning rate, critic learning rate, batch
size, samples per iteration, trust region dissimilarity bounds.

gSDE: Same types of hyper-parameters listed in PPO, together with the state dependent explo-
ration sampling frequency (Raffin et al., 2022).

SAC: Policy network size, critic network size, policy learning rate, critic learning rate, alpha learn-
ing rate, batch size, Update-To-Data (UTD) ratio.

PINK: Same types of hyper-parameters listed in SAC.

The detailed hyper parameters used are listed in the following tables. Unless stated other-
wise, the notation lin x refers to a linear schedule. It interpolates linearly from x to 0 during
training. The ERL methods (TCE, BBRL) take an entire trajectory as a sample where the SRL
methods take one time step as a sample. In this way, one sample in ERL is equivlent to T sample of
SRL, where T is the length of one task episode.

28

Published as a conference paper at ICLR 2024

Table 2: Hyperparameters for the Meta-World experiments. Episode Length T = 500

PPO gSDE TRPL SAC PINK TCE BBRL

number samples 16000 16000 16000 1000 4 16 16

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a.

discount factor 0.99 0.99 0.99 0.99 0.99 1 1

ϵµ n.a. n.a. 0.005 n.a. n.a. 0.005 0.005

ϵΣ n.a. n.a. 0.0005 n.a. n.a. 0.0005 0.0005

trust region loss coef. n.a. n.a. 10 n.a. n.a. 1 10

optimizer adam adam adam adam adam adam adam

epochs 10 10 20 1000 1 50 100

learning rate 3e-4 1e-3 5e-5 3e-4 3e-4 3e-4 3e-4

use critic True True True True True True True

epochs critic 10 10 10 1000 1 50 100

learning rate critic 3e-4 1e-3 3e-4 3e-4 3e-4 3e-4 3e-4

number minibatches 32 n.a. 64 n.a. n.a. n.a. n.a.

batch size n.a. 500 n.a. 256 512 n.a. n.a.

buffer size n.a. n.a. n.a. 1e6 2e6 n.a. n.a.

learning starts 0 0 0 10000 1e5 0 0

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a.

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0 0 auto auto 0 0

normalized observations True True True False False True False

normalized rewards True True False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 lin 0.31 n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 lin 0.31 n.a. n.a. n.a. n.a. n.a.

hidden layers [128, 128] [128, 128] [128, 128] [256, 256] [256, 256] [128, 128] [32, 32]

hidden layers critic [128, 128] [128, 128] [128, 128] [256, 256] [256, 256] [128, 128] [32, 32]

hidden activation tanh tanh tanh relu relu relu relu

orthogonal initialization Yes No Yes fanin fanin Yes Yes

initial std 1.0 0.5 1.0 1.0 1.0 1.0 1.0

Movement Primitive (MP) type n.a. n.a. n.a. n.a. n.a. ProDMPs ProDMPs

number basis functions n.a. n.a. n.a. n.a. n.a. 8 5

weight scale n.a. n.a. n.a. n.a. n.a. 0.1 0.1

goal scale n.a. n.a. n.a. n.a. n.a. 0.1 0.1

1Linear Schedule from 0.3 to 0.01 during the first 25% of the training. Then continued with 0.01.

29

Published as a conference paper at ICLR 2024

Table 3: Hyperparameters for the Box Pushing Dense, Episode Length T = 100

PPO gSDE TRPL SAC PINK TCE BBRL BBRL Cov.

number samples 48000 80000 48000 8 8 152 152 152

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. 0.005 n.a. n.a. 0.05 0.1 0.05

ϵΣ n.a. n.a. 0.00005 n.a. n.a. 0.0005 0.00025 0.0005

trust region loss coef. n.a. n.a. 10 n.a. n.a. 1 10 10

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 20 1 1 50 20 20

learning rate 5e-5 1e-4 5e-5 3e-4 3e-4 3e-4 3e-4 3e-4

use critic True True True True True True True True

epochs critic 10 10 10 1 1 50 10 10

learning rate critic 1e-4 1e-4 1e-4 3e-4 3e-4 1e-3 3e-4 3e-4

number minibatches 40 n.a. 40 n.a. n.a. n.a. n.a. n.a.

batch size n.a. 2000 n.a. 512 512 n.a. n.a. n.a.

buffer size n.a. n.a. n.a. 2e6 2e6 n.a. n.a. n.a.

learning starts 0 0 0 1e5 1e5 0 0 0

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. n.a.

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.01 0 auto auto 0 0 0

normalized observations True True True False False True False False

normalized rewards True True False False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] [512, 512] [256, 256] [256, 256] [128, 128] [128, 128] [128, 128]

hidden layers critic [512, 512] [256, 256] [512, 512] [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]

hidden activation tanh tanh tanh tanh tanh leaky relu leaky relu leaky relu

orthogonal initialization Yes No Yes fanin fanin Yes Yes Yes

initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. n.a. n.a. n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. n.a. n.a. n.a. 8 8 8

weight scale n.a. n.a. n.a. n.a. n.a. 0.3 0.3 0.3

goal scale n.a. n.a. n.a. n.a. n.a. 0.3 0.3 0.3

30

Published as a conference paper at ICLR 2024

Table 4: Hyperparameters for the Box Pushing Sparse, Episode Length T = 100

PPO gSDE TRPL SAC PINK TCE BBRL BBRL Cov.

number samples 48000 80000 48000 8 8 76 76 76

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. 0.005 n.a. n.a. 0.05 0.1 0.05

ϵΣ n.a. n.a. 0.00005 n.a. n.a. 0.0005 0.00025 0.001

trust region loss coef. n.a. n.a. 10 n.a. n.a. 1 10 10

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 20 1 1 50 20 20

learning rate 5e-4 1e-4 5e-5 3e-4 3e-4 3e-4 3e-4 3e-4

use critic True True True True True True True True

epochs critic 10 10 10 1 1 50 10 10

learning rate critic 1e-4 1e-4 1e-4 3e-4 3e-4 3e-4 3e-4 3e-4

number minibatches 40 n.a. 40 n.a. n.a. n.a. n.a. n.a.

batch size n.a. 2000 n.a. 512 512 n.a. n.a. n.a.

buffer size n.a. n.a. n.a. 2e6 2e6 n.a. n.a. n.a.

learning starts 0 0 0 1e5 1e5 0 0 0

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. n.a.

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.01 0 auto auto 0 0 0

normalized observations True True True False False True False False

normalized rewards True True False False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] [512, 512] [256, 256] [256, 256] [128, 128] [128, 128] [128, 128]

hidden layers critic [512, 512] [256, 256] [512, 512] [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]

hidden activation tanh tanh tanh tanh tanh leaky relu leaky relu leaky relu

orthogonal initialization Yes No Yes fanin fanin Yes Yes Yes

initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. n.a. n.a. n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. n.a. n.a. n.a. 8 8 8

weight scale n.a. n.a. n.a. n.a. n.a. 0.3 0.3 0.3

goal scale n.a. n.a. n.a. n.a. n.a. 0.3 0.3 0.3

31

Published as a conference paper at ICLR 2024

Table 5: Hyperparameters for the Hopper Jump, Episode Length T = 250

PPO gSDE TRPL SAC PINK TCE BBRL BBRL Cov.

number samples 8000 8192 8000 1000 1 64 64 64

GAE λ 0.95 0.99 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 0.999 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. 0.05 n.a. n.a. 0.1 n.a. 0.005

ϵΣ n.a. n.a. 0.0005 n.a. n.a. 0.02 n.a. 0.00005

trust region loss coef. n.a. n.a. 10 n.a. n.a. 1 n.a. 10

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 20 1000 1 50 100 100

learning rate 3e-4 9.5e-5 3e-4 1e-4 2e-4 1e-4 1e-4 1e-4

use critic True True True True True True True True

epochs critic 10 10 10 1000 1 50 100 100

learning rate critic 3e-4 9.5e-5 3e-4 1e-4 2e-4 1e-4 1e-4 1e-4

number minibatches 40 n.a. 40 n.a. n.a. n.a. n.a. n.a.

batch size n.a. 128 n.a. 256 256 n.a. n.a. n.a.

buffer size n.a. n.a. n.a. 1e6 1e6 n.a. n.a. n.a.

learning starts 0 0 0 10000 1e5 0 0 0

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. n.a.

SDE sampling frequency n.a. 8 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.0025 0 auto auto 0 0 0

normalized observations True False True False False True False False

normalized rewards True False False False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 lin 0.4 n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 lin 0.4 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [32, 32] [256, 256] [32, 32] [256, 256] [32, 32] [128, 128] [32, 32] [32, 32]

hidden layers critic [32, 32] [256, 256] [32, 32] [256, 256] [32, 32] [128, 128] [32, 32] [32, 32]

hidden activation tanh tanh tanh relu relu leaky relu tanh tanh

orthogonal initialization Yes No Yes fanin fanin Yes Yes Yes

initial std 1.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. n.a. n.a. n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. n.a. n.a. n.a. 3 3 3

weight scale n.a. n.a. n.a. n.a. n.a. 1 1 1

goal scale n.a. n.a. n.a. n.a. n.a. 1 1 1

32

Published as a conference paper at ICLR 2024

Table 6: Hyperparameters for the Table Tennis, Episode Length T = 300

PPO gSDE TRPL SAC PINK TCE BBRL BBRL Cov.

number samples 48000 24000 48000 8 8 76 76 76

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.

discount factor 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. 0.005 n.a. n.a. 0.005 0.004 0.005

ϵΣ n.a. n.a. 0.0005 n.a. n.a. 0.00025 0.000025 0.001

trust region loss coef. n.a. n.a. 10 n.a. n.a. 1 25 25

optimizer adam adam adam adam adam adam adam adam

epochs 10 10 20 1 1 50 100 100

learning rate 5e-5 1e-4 5e-5 3e-4 3e-4 3e-4 3e-4 3e-4

use critic True True True True True True True True

epochs critic 10 10 10 1 1 50 100 100

learning rate critic 1e-4 1e-4 1e-4 3e-4 3e-4 3e-4 3e-4 3e-4

number minibatches 40 n.a. 40 n.a. n.a. n.a. n.a. n.a.

batch size n.a. 4000 n.a. 512 512 n.a. n.a. n.a.

buffer size n.a. n.a. n.a. 4e6 4e6 n.a. n.a. n.a.

learning starts 0 0 0 1e5 1e5 0 0 0

polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. n.a.

SDE sampling frequency n.a. 8 n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0 0 auto auto 0 0 0

normalized observations True True True False False True False False

normalized rewards True True False False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] [256, 256] [256, 256] [256, 256] [256] [256] [256]

hidden layers critic [512, 512] [256, 256] [512, 512] [256, 256] [256, 256] [256, 256] [256] [256]

hidden activation tanh tanh tanh tanh tanh tanh tanh tanh

orthogonal initialization Yes Yes Yes fanin fanin Yes Yes Yes

initial std 1.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. n.a. n.a. n.a. n.a. ProDMPs ProDMPs ProDMPs

number basis functions n.a. n.a. n.a. n.a. n.a. 3 3 3

weight scale n.a. n.a. n.a. n.a. n.a. 0.7 0.7 0.7

goal scale n.a. n.a. n.a. n.a. n.a. 0.1 0.1 0.1

33

