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A AUTOMATIC FINE-GRAINED
HALLUCINATION ANNOTATION PIPLINE
(AFHA)

The existing multimodal hallucination research suffers from a lack
of large-scale datasets with fine-grained annotations specific to
hallucinations. To address this issue, we design an automatic fine-
grained hallucination annotation pipline featuring annotations for
four hallucination types and specific hallucination content. Data
Annotation. We annotated image-text paired data using the GPT-4
prompt method. We initially established a rigorous definition for
various types of hallucinations. Building upon this groundwork,
we engaged GPT-4 to rephrase the collated image-text pairs in line
with the diverse classifications of hallucinations. This step involved
inject distinctive hallucinatory elements into the original captions.
An example of a prompt designed to generate ’object’ annotations
is illustrated in Figure 8(b). The outcome of this procedure was a
collection of image descriptions enriched with specified hallucination
categories. Moreover, we delegated to GPT-4 the responsibility
of concocting specific hallucinatory content. Consequently, this
strategy yielded an extensively annotated dataset facilitated by GPT-
4, with samples of annotations across different types of hallucinations
displayed in Figure 8(c). For more details, please refer to the Appendix
C.2. Data Filtering. Following the initial annotation phase, we
identified that the quality of the labeled data remained unsatisfactory.
Random sampling revealed that approximately 30% of the annotated
dataset still harbored noise that failed to meet our stringent labeling
criteria. Hence, we proceeded to craft a tailored prompt to commission
GPT-4 for the task of purging and refining the noisy annotations,
a process thoroughly outlined in the Appendix C.3. Subsequent to
GPT-4’s meticulous cleanup operation, a manual verification process
ascertained that over 97% of the data accorded with the stipulated
annotation standards.

B DATASET ANALYSIS FOR HAL-DATA

Name COCO LCS ShareGPT4V

Hal-Data 130K 40% 40% 20%
Hal-Data 2M 0% 100 % 0%

Table 9: The proportion of data sources in Hal-Data 130K and
Hal-Data 2M.

B.1 Data source
For the compilation of the Hal-Data 130K dataset, data were sourced
from several established datasets, including: (1) COCO, (2) Con-
ceptual Captions (CC), (3) SBU, (4) LAION, and (5) Share-GPT4.
Table 9 and Table 10 provides the detailed distribution ratio of these
sources. In the scale-up process of Hal-Data to 2 million entries,
priority was given to incorporating 558,000 data points from the
LLaVA dataset, which constitutes a curated collection derived from
LAION, CC, and SBU. The remaining 1400K entries were likewise
obtained from this trio of datasets, ensuring a consistent and diverse
array of data for robust model training. As shown in Table 10, we also

compared with other hallucinatory datasets like M-HalDetect[15]
and HaELM [48].

C EXPERIMENTS SETTINGS
C.1 Training Setting for Hal-Evaluator and

Hal-VL
We followed the original approach of LLaVA 1.5 [29], we used the
complete pre-training dataset of LLaVA 1.5 during the first stage of
pre-training. We also keeping the same hyperparameter settings with
LLaVA 1.5 . Our experiments were conducted using 16 NVIDIA
A100 GPUs with 80G of memory. We used Deepspeed [39] for
Hal-Evaluator and Hal-VL, with a batch size of 64 on a single GPU.

C.2 Setting for GPT-4 Annotation of AFHA
As shown in the Figure 10, we present the prompts used during the
annotation phase for the Hal-Data-130K dataset. We employed a
unified prompt template for different types of hallucinations, only
modifying the definition of hallucination within it. This standardized
approach ensures consistency across the dataset annotations. Through
this methodology, each instance of potential hallucination—be it an
object, event, or relationship that does not exist within the image—is
flagged with a corresponding definition tailored to the type of
discrepancy encountered. This provides a structured framework for
subsequently evaluating the frequency and nature of hallucinations
produced by LVLMs when generating image descriptions.

C.3 Setting for GPT-4 Filtering of AFHA
Figure 11 provides a clear overview of the designed prompts that are
instrumental in discerning and eliminating aberrant data points clas-
sified as noise within the hallucination annotations. These prompts
are meticulously crafted to navigate through the complex nuances of
linguistic and contextual interpretations that the model may generate,
systematically identifying and separating those annotations that do
not adhere to the objective standards of our dataset. This filtration
process is crucial for maintaining the integrity and reliability of our
annotations, thereby ensuring that subsequent analyses are based on
high-quality, noise-free data.

C.4 Experiment Setting of Chain-of-Thought for
Discriminative Evaluation.

In order to test the impact of Chain-of-Thought on discriminative
evaluation, we have made a simple modification to the discriminative
prompt template. The new prompt template is as follows:

<Image> I
Caption: 𝐶 ∈ {𝐶𝑇 ,𝐶𝑂 ,𝐶𝑅,𝐶𝐸 ,𝐶𝐴}.
Question: Does the description in the caption accurately reflect

the content of the image?
Please conduct a step-by-step analysis of the image and its

associated caption, thereafter providing an answer to the query.

D MORE EXPERIMENTS
D.1 More result of Hal-VL.
In this section, we provide detailed evaluations of Hal-VL on more
general benchmarks and Hal-Eval (Table ?? and Table 14). As
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Prompt: 
In the given content, hallucination refers to a scenario where the
Large Vision Language Model generates a response that incorporates
information not explicitly present or implied in the given image or
the preceding conversation. \n
The type of hallucination to consider is: 
Object Hallucination: the model 'hallucinates' or invents the existence 
 of an object  that isn't actually there. 
According to the decription of hallucination type, your task is to
 introduce the hallucination by revise the given image caption. 
Image Caption: A man driving on a red motorcycle wearing a silver
helmet in a street.
Modified Caption:
 
Response:
A man driving on a red bike wearing a silver helmet in a street.
Changed content:  motorcycle  --> bike

Original Caption: some zebra chillin in the wild with a bird flying over.
Object Hallucination: some zebra and elephent chillin in the wild with a
 bird flying over. (Changed content: and elephent)
Relationship Hallucination: Some zebra chillin in the wild with a bird 
standing on one's back. (Changed content: flying over --> tanding on one's b
ack)
Attribute Hallucination: some zebra chillin in the wild with a black bird 
flying over. (Changed content: a bird --> a black bird)
Event Hallucination: Some zebras are seen in the wild, playfully 
interacting with each other, while a bird gracefully flies over them. 
At the same time, a kangaroo is hopping near the zebras, seemingly 
foraging.(Changed content: At the same timea kangaroo is hopping near 
the zebras, seemingly foraging)

(a) Pipline of AFHA
Hallucinatory
Annotations

GPT-4Image
Captions

 Hallucinatory
Captions(Noisy)

GPT-4 Hallucinatory
Captions

1 Object

2 Attribute

3 Relation

4 Event

1. Annotating 2. Filtering

(b) Prompt to Generate Object Hallucination Annotation  (c) Example of Different Hallucination Annotations

Figure 8: The sub-figure (a) illustrates the pipeline of AFHA. The lower left sub-figure (b) visualizes the prompt used for generating
Object Hallucination Annotations (Please refer to Appendix C.2 for the prompt of other hallucination annotations.), while the lower
right sub-figure visualizes examples of annotations for four types of hallucinations.

Name Data Source Visible Annotated by Samples

M-HalDetect COCO ✓ Human 4K
HaELM COCO % Human,GPT3.5 15K

Hal-Data 130K LCS, COCO, ShareGPT4V ✓ GPT4 130K
Hal-Data 2M LCS ✓ Hal-Annotator 1958K

Table 10: Comparison of hallucinatory datasets and Hal-Data. ‘LCS’ abbreviates the LAION [41], CC [6], and SBU [37] datasets. The
‘Visible’ column denotes the image visibility during captioning, and the last column shows the average character number of the caption.

Method Overall Hallucination Score in Each Question Type ↑
Score ↑ Rate ↓ Attribute Adversarial Comparison Counting Relation Environment Holistic Other

LLaVA-RLHF7B [44] 2.05 0.68 2.92 1.83 2.42 1.92 2.25 2.25 1.75 1.08
LLaVA7B [31] 1.55 0.76 1.33 0.00 1.83 1.17 2.00 2.58 1.67 1.83
LLaVA7B-Hal-Evaluator 2.12 (↑ 0.56) 0.60 (↓ 0.16) 2.78 2.14 2.12 1.79 1.89 2.32 1.63 1.61
miniGPT-47B [31] 1.39 0.71 0.75 1.83 2.16 0.91 1.25 1.33 0.91 1.91
miniGPT-47B-Hal-Evaluator 1.89 (↑ 0.40) 0.56 (↓ 0.15) 1.23 2.05 2.43 1.84 2.21 2.38 1.13 1.88

Table 11: Evaluation results for different MLLMs on MMHal-Bench.

Model In-domain Out-of-domain LengthObject Ratio Relation Ratio Attribute Ratio Event Ratio Acc Object Ratio Relation Ratio Attribute Ratio Event Ratio Acc
LLaVA1.5 23.7 58.8 10.6 7.0 55.7 30.0 48.4 11.6 10.2 49.5 10.3
LLaVA1.5 42.2 13.0 3.6 41.4 44.6 34.6 8.8 2.7 54.3 46.4 84.5
Hal-VL 35.0 37.5 21.5 6.2 70.9 29.4 30.4 20.4 10.1 60.4 10.5
Hal-VL 31.3 22.9 23.8 22.2 64.1 27.8 17.7 22.2 32.5 56.9 85.5

Table 12: Generative Hallucination Evaluation for Hal-VL and LLaVA 1.5.
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Method MME MMBench MM-Vet SEED-Bench
BLIP-2 [22] 1293.84 - 22.4 46.4
mPLUG-Owl [50] 967.34 46.6 - 34.0
InstructBLIP [10] 1212.82 36.0 26.2 53.4
Otter [21] 1292.26 48.3 24.6 32.9
Qwen-VL-Chat [4] 1487.58 60.6 - 58.2
LLaVA [30] 502.82 36.2 28.1 33.5
MiniGPT-4 [53] 581.67 23.0 22.1 42.8
LLaVA-1.5 [28] 1510.70 64.3 30.5 58.6
Hal-VL 1620.10 66.3 31.3 59.4

Table 13: Zero-shot multi-modal evaluation on multi-modal benchmarks including MME [12], MMBench [33], MM-Vet [51], SEED-
Bench [20]. The overall scores are reported for evaluation. For MMBench, we report test results.

Model In-domain Out-of-domain LengthObject Ratio Relation Ratio Attribute Ratio Event Ratio Acc Object Ratio Relation Ratio Attribute Ratio Event Ratio Acc
LLaVA1.5 23.7 58.8 10.6 7.0 55.7 30.0 48.4 11.6 10.2 49.5 10.3
LLaVA1.5 42.2 13.0 3.6 41.4 44.6 34.6 8.8 2.7 54.3 46.4 84.5
Hal-VL 35.0 37.5 21.5 6.2 70.9 29.4 30.4 20.4 10.1 60.4 10.5
Hal-VL 31.3 22.9 23.8 22.2 64.1 27.8 17.7 22.2 32.5 56.9 85.5

Table 14: Generative Hallucination Evaluation for Hal-VL and LLaVA 1.5.
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Figure 9: Evaluation results on Hal-Eval-Dis after fine-tuning
Hal-Evaluator using SFT data of varying sizes. We have calcu-
lated the average F1 value across all types of hallucinations.

indicated in the Table 8, we found that Hal-VL achieved signif-
icant advantages on the vast majority of these benchmarks. This
demonstrates its robustness and generalizability across different tasks
and datasets, underlining its effectiveness in handling hallucination
problems in LVLMs.

D.2 Analysis of Different Types of Hallucinations
Based on GPT-4

We further investigated the proportion of different types of hallucina-
tions present within the output of LVLMs. As illustrated in Figure
2, we collected 5,000 image-caption pairs from COCO [26]. These
were described by mPLUG-owl [50] and LLaVA [30], respectively.
Subsequently, we provided both the ground truth image descriptions
and the model-generated descriptions to GPT-4 [35]. We prompted it
to evaluate whether these descriptions included hallucinations and to
categorize them based on Object, Attribute, Relationship, and Event
hallucinations.

Using the definitions of different types of hallucinations given in
Section 2, we asked GPT-4 to first determine whether the model’s
output contained hallucinations. If hallucinations were present, GPT-
4 was instructed to classify them according to the definitions of
different types of hallucinations. We tabulated the proportions of
different types of hallucinations at varying description lengths. We
found a significant increase in the proportion of event hallucinations
as the length of the description extended.

D.3 Impact of SFT Data Scales for Hal-Evaluator
To investigate the effect of different data scales on the efficacy of
Hal-Evaluator, we enlarged the scale of the SFT fine-tuning data
from 130K to 2M and evaluated Hal-Evaluator on Hal-Eval-Dis. The
experimental outcomes reveal that the application of 2M-scale data
resulted in the highest accuracy in identifying hallucinations. This
highlights the importance of data scale in enhancing the performance
of such evaluators.

D.4 Effectiveness of Hall-evaluator for Mitigating
Generative Hallucination.

The evaluation model Hal-Evaluator, utilized for generative hallucina-
tion assessment, can not only detect and evaluate model hallucinations
but also modify the hallucinatory content within model outputs to
aid in hallucination elimination. To validate the effectiveness of Hal-
Evaluator in eliminating hallucinations, we conducted the following
experiment: we used the output from MiniGPT-4 and LLaVA as
the input for Hal-Evaluator, allowing Hal-Evaluator to detect and
rectify any hallucinatory content. Subsequently, we re-evaluated the
corrected output with MMHal-Bench [43] as shown in Table 7. Our
findings indicate that Hal-Evaluator can effectively eliminate model
hallucinations.
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D.5 Compared with Other Hallucination
Benchmarks

As illustrated in the Table 1, we have compared current mainstream
LVLMs hallucination evaluation methods, highlighting that our
approach ensures the most extensive coverage of hallucination.

D.6 Demo for Hal-Evaluator
As shown in Figure 13, through this visualization, we aim to provide
a more intuitive understanding of the model’s behavior and its ability
to appropriately respond to different types of hallucinations.

E ANNOTATION PORTAL
The annotators are provided with an image, LM-generated detailed
description of the image. For each description, the annotators mark
parts of the sentence into appropriate cateogies: object, attribute, re-
lation, event hallucination. We provide the explanation and examples
for those annotators with Figure 13 and Figure 10

E.1 Annotation Agreement
The annotators involved in this research are internal members of
our organization, with a good understanding of natural language
processing and multimodal field studies. They have all consented to
the use of their annotation information for this research and for it to
be made public.
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(1) Object Hallucination Annotatoin Prompt to GPT-4:

In the given content, hallucination refers to a scenario where the Large Vision Language
Model generates a response that incorporates information not explicitly
present or implied in the given image or the preceding conversation. \n
The type of hallucination to consider is:
Object Hallucination: the model 'hallucinates' or invents the existence of an object
that isn't actually there.
According to the decription of hallucination type, your task is to introduce the
hallucination by revise the given image caption.

(2) Attribute Hallucination Annotatoin Prompt to GPT-4:

In the given content, hallucination refers to a scenario where the Large Vision Language
Model generates a response that incorporates information not explicitly
present or implied in the given image or the preceding conversation. \n
The type of hallucination to consider is:
Attribute Hallucination: This happens when the object in the image is correctly identified, but 
its attributes, states, or behaviors are incorrectly described. 
According to the decription of hallucination type, your task is to introduce the
hallucination by revise the given image caption.

(3) Relation Hallucination Annotatoin Prompt to GPT-4:

             
        

           
      

             
                 

               
           

      

      

In the given content, hallucination refers to a scenario where the Large Vision Language
Model generates a response that incorporates information not explicitly
present or implied in the given image or the preceding conversation. \n
The type of hallucination to consider is:
Event Hallucination:This type of hallucination occurs when a LVLM not only describe a non-
existent target but also construct complete events around the non-existent target, including its 
attributes, relations, and actions. 
According to the decription of hallucination type, your task is to introduce the
hallucination by revise the given image caption

In the given content, hallucination refers to a scenario where the Large Vision Language
Model generates a response that incorporates information not explicitly
present or implied in the given image or the preceding conversation. \n
The type of hallucination to consider is:
Relation Hallucination: This type of hallucination occurs when a LVLM incorrectly describes the
relationship between objects. For example, if an image depicts a lamp on a desk and the system
captions it as \'a lamp behind the desk,\' it has created a relationship hallucination. According
to the decription of hallucination type, your task is to introduce the
hallucination by revise the given image caption.

(4) Event Hallucination Annotatoin Prompt to GPT-4:

.

Figure 10: The image shows the prompt we used to elicit hallucination annotations from GPT-4.
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I have a task that involves check the annotation of different types of hallucinations in image 
captions.

The types of hallucinations to consider are:
Relationship Hallucination: This type of hallucination occurs when an AI model incorrectly 

describes the spatial relationship between objects. For example, if an image depicts a lamp on a 
desk and the system captions it as "a lamp behind the desk," it has created a relationship 
hallucination because it inaccurately described the position of the lamp in relation to the desk.

Objective Hallucination: the LVLMs invents the existence of an object that isn't actually there.
Attributive Hallucination: This occurs when the system correctly identifies the objects in an 

image but inaccurately describes their attributes, states, or actions. The model might recognize an 
object (like a car or a cat) but then attribute to it colors, actions, or qualities that aren't actually 
present or true. 

Event Hallucination: This type of hallucination occurs when a LVLM not only describe a non-
existent target but also construct complete events around the non-existent target, including its 
attributes, relations, and actions.  

Detailed Task Description: Below are two captions ("Original Caption" and "Hallucination 
Caption") that describe the same image, along with an annotation indicating a potential hallucination.
You are an assistant, and your task is to compare the provided "Original Caption" with the 
"Hallucination Caption" and check for the following:

(1) Determine if the "Hallucination Caption" truly contains one of the four types of 
hallucinations listed above. 

(2) Accuracy of Hallucination Type: Ensure that the type of hallucination annotated in the 
"Hallucination Annotation" is correct.

(3)Accuracy of Context in Hallucination: Confirm that the context mentioned in the 
"Hallucination Annotation" accurately reflects a discrepancy from the actual context of the 
original image or caption.

If the Hallucination Caption is same with Original Caption or does not contain hallucinations, 
please respond with "Bad Caption." 

If the Hallucination Type or Context in Hallucination is wrong and need to revise, please answer: 
Wrong and give the revised annotation.

Otherwise, please just answer: Good annotation.

Figure 11: The figure illustrates the tailored prompt designed to guide GPT-4 in distinguishing and discarding labels that are inconsistent
with the predefined criteria of hallucination types or are marked inaccurately.
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An Examples of Instruction Finetuning Data for Hal- Evaluator 

System Prompt: A chat between a curious user and an artificial intelligence 
assistant. The assistant gives helpful, detailed, and polite answers to the 
user\'s questions. 

#Step1:
USER: 

<image>.
      Caption: The kitchen has a dishwasher, blender, and coffee maker.  

 Is the content of the image matching the caption description? 
ASSISTANT:

No, the content of the image does not match the caption description.

#Step2:
USER: 

What types of hallucinatory information are present? 
ASSISTANT: 

The types of hallucinations contained in the description are as follows: 
Hallucination Type: Objective Hallucination.
Hallucination Context: "refrigerator, toaster, and microwaves" ->  
" dishwasher, blender, and coffee maker"

#Step3:
USER: 

Please modify the hallucinatory information and generate a new
description without hallucinations. 

ASSISTANT: 
The kitchen has a refrigerator, toaster, and microwaves.

Figure 12: The provided image displays an example utilized in the construction of the instruction tuning dataset, which we refer to as
Hal-Data-SFT. The highlighted portions in green represent the elements that the model needs to predict and compute loss during
training.
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HAL-Evaluator

Summarize the visual content of the image.

LVLM

a large wooden file organizer with six magazines in each section

HAL-Evaluator

Hallucination: 
Relation Hallucination: each section -> the first section 
Attribute Hallucination: six -> many
Modified Caption: 
a large wooden file organizer with many magazines in the first 
section

HAL-Evaluator

Explain the visual content of the image in detail.

LVLM

a group of people on an inflatable raft, in a rapid white water with a 
wave breaking. A fish suddenly leaped out of the water. 

HAL-Evaluator

Hallucination: 
Event Hallucination: A fish suddenly leaped out of the water. 
Modified Caption: 
a group of people on an inflatable raft, in a rapid white water river 
with a wave breaking

HAL-Evaluator

Render a clear and concise summary of the photo.

LVLM

a pen and a clipboard with the words public health emergency next 
to it on a white table

HAL-Evaluator

Hallucination type: 
Objective Hallucination: a pen -> several medicine
Relationship Hallucination: next to it  -> on it
Modified Caption: 
a pen and a clipboard with the words public health emergency on it 
on a white table

HAL-Evaluator

Summarize the visual content of the image.

LVLM

the kitchen features an marble counter, a built in dishwasher and a 
small fridge, as well as a hidden doorway leading to a secret garden 
filled with exotic plants and mystical creatures.

HAL-Evaluator

Hallucination: 
Object Hallucination: small fridge 
Attribute Hallucination: marble -> wooden
Event Hallucination: as well as a hidden doorway leading to a secret 
garden filled with exotic plants and mystical creatures. 
Modified Caption: 
the kitchen features an wooden counter, a built in dishwasher and 
a microwave

Figure 13: This figure presents the responses of the Hal-Evaluator when confronted with various descriptions of hallucinations.
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