
Under review as submission to TMLR

Appendix

A Extended Related Work

Network utility. Network utility refers to the system’s quality to provide a specific service, for example,
transmitting electricity in power networks and transmitting packages in routing networks. A popular metric
for network utility is the network efficiency Latora & Marchiori (2003). In many previous work, despite
that network resilience could be improved, the utility may dramatically drop at the same time Carchiolo
et al. (2019); Schneider et al. (2011); Chan & Akoglu (2016); Buesser et al. (2011). This contradicts the idea
behind improving network resilience and will be infeasible in real-world applications. Our goal is to enhance
network resilience with moderate loss of network utility via edge rewiring.

Graph structure learning. Unlike the graph generation task which focuses on the quality of the generated
graph, graph structure learning (GSL) aims to jointly learn an optimized graph structure and corresponding
graph representations only for better performance on downstream tasks. Although conceptually related,
GSL differs from graph generation since GSL mostly cares for the downstream task while graph generation
focuses on the generated graphs Jin et al. (2020); Zhu et al. (2021). Currently, GSL relies on the existence of
rich features to construct a graph, while there are generally no rich features in graph generation. Moreover,
GSL cannot control the graph’s node degree during graph optimization. We refer the interested readers to
a survey of GSL Zhu et al. (2021) since our work is a constrained graph generation task unrelated to GSL.

Multi-views graph augmentation for GNNs. Multi-views graph augmentation is one efficient way to
improve the expressive power of GNNs or combine domain knowledge, which is adapted based on the task’s
prior Hu et al. (2020). For example, GCC generates multiple subgraphs from the same ego network Qiu et al.
(2020). GCA adaptively incorporates various priors for topological and semantic aspects of the graph You
et al. (2020). Hassani & Khasahmadi (2020) contrasts representations from first-order neighbors and a
graph diffusion. DeGNN Jin et al. (2020) was proposed as an automatic graph decomposition algorithm to
improve the performance of deeper GNNs. These techniques rely on the existence of rich graph feature and
the resultant GNNs cannot work well on graphs without rich features. In the resilience task, only the graph
topological structure is available. Motivated by the calculation process of persistent homology Edelsbrunner
& Harer (2008), we apply the filtration process to enhance the expressive power of GNNs for handling graphs
without rich features.

Deep graph generation. Deep graph generation models learn the distribution of given graphs and gen-
erate more novel graphs. Some work use the encoder-decoder framework by learning latent representation of
the input graph through the encoder and then generating the target graph through the decoder. For example,
GCPN You et al. (2018) incorporates chemistry domain rules on molecular graph generation. GT-GAN Guo
et al. (2018) proposes a GAN-based model on malware cyber-network synthesis. GraphOpt Trivedi et al.
(2020) learns an implicit model to discover an underlying optimization mechanism of the graph generation
using inverse reinforcement learning. GFlowNet learns a stochastic policy for generating molecules with the
probability proportional to a given reward based on flow networks and local flow-matching conditions Bengio
et al. (2021). Boosting network resilience in a degree-preserving way can be viewed as a constrained graph
generation task. However, none of existing graph generation methods can generate desired graphs with the
exact node degree preserving constraint, which is required by the resilience task.

B Implementation Details

This section provides the implementation details, including dataset and baseline setup.

B.1 Dataset

We first present the data generation strategies. Table 3 summarizes the statistics of each dataset. Syn-
thetic datasets are generated using the Barabasi-Albert (BA) model (known as scale-free graphs) (Albert &

17

Under review as submission to TMLR

Table 3: Statistics of graphs used for resilience maximization. Both transductive and inductive settings (⋆) are
included. Consistent with our implementation, we report the number of edges by transforming undirected graphs to
directed graphs. The edge rewiring has a fixed execution order. For the inductive setting, we report the maximum
number of edges. The action space size of the edge rewiring is measured by 2|E|2.

Dataset Node Edge Action Space Size Train/Test Setting
BA-15 15 54 5832 ✗ Transductive
BA-50 50 192 73728 ✗ Transductive
BA-100 100 392 307328 ✗ Transductive
BA-500 500 996 1984032 ✗ Transductive
BA-1000 1000 999 1996002 ✗ Transductive
EU 217 640 819200 ✗ Transductive
p2p-Gnutella05 400 814 1325192 ✗ Transductive
p2p-Gnutella09 300 740 1095200 ✗ Transductive
BA-10-30 (⋆) 10-30 112 25088 1000/500 Inductive
BA-20-200 (⋆) 20-200 792 1254528 4500/360 Inductive

Barabási, 2002), with the graph size varying from |N |=10 to |N |=1000. During the data generation process,
each node is connected to two existing nodes for graphs with no more than 500 nodes, and each node is con-
nected to one existing node for graphs with near 1000 nodes. BA graphs are chosen since they are vulnerable
to malicious attacks and are commonly used to test network resilience optimization algorithms (Bollobás &
Riordan, 2004). We test the performance of ResiNet on both transductive and inductive settings.

• Transductive setting. The algorithm is trained and tested on the same network.

– Randomly generated synthetic BA networks, denoted by BA-m, are adopted to test the perfor-
mance of ResiNet on networks of various sizes, where m ∈ {15, 50, 100, 500, 1000} is the graph
size.

– The Gnutella peer-to-peer network file sharing network from August 2002 (Leskovec et al., 2007;
Ripeanu et al., 2002) and the real EU power network (Zhou & Bialek, 2005) are used to validate
the performance of ResiNet on real networks. The random walk sampling strategy is used to
derive a representative sample subgraph with hundreds of nodes from the Gnutella peer-to-peer
network (Leskovec & Faloutsos, 2006).

• Inductive setting. Two groups of synthetic BA networks denoted by BA-m-n are randomly
generated to test ResiNet’s inductivity, where m is the minimal graph size, and n indicates the
maximal graph size. We first randomly generate the fixed number of BA networks as the training
data to train ResiNet and then evaluate ResiNet’s performance directly on the test dataset without
any additional optimization.

B.2 Baseline Setup

All baselines share the same action space with ResiNet and use the same action masking strategy to block
invalid actions as ResiNet does. The maximal objective evaluation is consistent for all algorithms. Other
settings of baselines are consistent with the default values in their paper. The early-stopping strategy is used
for baselines, which means that the search process terminates if no improvement is obtained in successive
1000 objective function calling trials. All algorithms are repeated for 3 random seeds using default hyper-
parameters.

C Extended Experimental Results

In this section, we present additional experimental results to show that ResiNet generalizes to unseen graphs,
different utility and resilience metrics.

18

Under review as submission to TMLR

25 50 75 100 125 150 175 200
Graph size N

0.1

0.2

0.3

0.4

0.5

R
es

ilie
nc

e
ga

in

0.1
0.2
0.3
0.4
0.5

(a) Inductivity on resilience

25 50 75 100 125 150 175 200
Graph size N

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
ei

gh
te

d
su

m
 o

f r
es

ilie
nc

e
an

d
ut

ilit
y

ga
in

0.15
0.00
0.15
0.30
0.45

(b) Inductivity on resilience and utility

Figure 9: The inductive ability of ResiNet on the test dataset (BA-20-200) when optimizing (a) network resilience
and (b) the combination of resilience and utility.

C.1 The Effect of Filtration Order K on FireGNN

0 50 100 150 200 250 300 350 400

Number of removed nodes

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f r
em

ai
ni

ng
 e

dg
es

 in
 s

ub
gr

ap
h

BA-15
BA-50
BA-100
BA-500
BA-1000
EU
P2P05
P2P09

Figure 8: Ratio of the remaining edges in subgraphs
versus different filtration order K.

In this section, we report the ratio of the remaining edges
in subgraphs versus different filtration order K in Table 5
and visualize it in Figure 8. The maximum filtration order
K of FireGNN of each dataset is summarized in Table 6.
Table 6 demonstrates that the maximum filtration order
K is nearly around the half size of the graph since we
gradually remove the node with the largest degree in the
filtration process.

C.2 Inductivity on Larger Datasets

To demonstrate that ResiNet can learn from networks to
accommodate different utility and resilience metrics, we
conduct experiments based on BA-15 using multiple re-
silience and utility metrics. The Pareto points shown in
Figure 7 denote the optimum under different objectives
on BA-15, implying that ResiNet can obtain the approx-
imate Pareto frontier. Surprisingly, the initial gain of
resilience (from around 0.21 to around 0.24) is obtained without loss of the utility, which incentivizes almost
every network to conduct such optimization to some extent when feasible. More results are included in
Appendix C.3 and the optimized network structures are visualized in Figure 10 and Figure 11.

Even with limited computational resources, armed with the autoregressive action space and the power
of FireGNN, ResiNet can be trained fully end-to-end on graphs with thousands of nodes using RL. We
demonstrate the inductivity of ResiNet on graphs of different sizes by training ResiNet on the BA-20-200
dataset, which consists of graphs with the size ranging from 20 to 200, and then report its performance
on directly guiding the edges selections on unseen test graphs. The filtration order K is set to 1 for the
computational limitation. As shown in Figure 9, we can see that ResiNet has the best performance for
N ∈ [70, 100]. The degrading performance with the graph size may be explained by the fact that larger
graphs require a larger filtration order for ResiNet to work well. A more stable performance improvement of
ResiNet is observed with the increment of graph size when trained to optimize network resilience and utility
simultaneously, and ResiNet possibly finds a strategy to balance these two metrics.

19

Under review as submission to TMLR

Table 4: The effect of the filtration order K on ResiNet in improving network resilience (percentage).

K BA-15 BA-50 BA-100 EU
0 11.8 ± 2.7 0 ± 0 0 ± 0 6.1 ± 4.2
1 17.6 ± 0 49.6 ± 2.3 74.9 ± 0.8 54.5 ± 0.4
2 17.6 ± 0 51.0 ± 0.1 76.3 ± 1.2 57.4 ± 1.6
3 17.6 ± 0 55.7±2.3 73.1 ± 0.9 54.9 ± 0.9

Table 5: The ratio of remaining edges in subgraphs versus the filtration order K.

K BA-15 BA-50 BA-100 BA-500 BA-1000 EU P2P-Gnutella05 P2P-Gnutella09
1 0.6667 0.7708 0.8571 0.9538 0.9479 0.9625 0.9779 0.9608
2 0.4815 0.6667 0.7602 0.9096 0.9139 0.9313 0.957 0.927
3 0.3333 0.5938 0.6837 0.8665 0.8809 0.9031 0.9361 0.8973
4 0.2222 0.5208 0.6224 0.8313 0.8559 0.8781 0.9152 0.8703
5 0.1481 0.4583 0.5663 0.8002 0.8348 0.8562 0.8956 0.8446
6 0.0370 0.4062 0.5255 0.7741 0.8158 0.8344 0.8771 0.8189
7 0 0.3646 0.4847 0.754 0.7998 0.8125 0.8587 0.7959
8 0 0.3229 0.4439 0.7359 0.7848 0.7906 0.8403 0.773
9 0 0.2917 0.4031 0.7199 0.7698 0.7719 0.8231 0.75

Table 6: Maximum filtration order K of each dataset.

Dataset BA-15 BA-50 BA-100 BA-500 BA-1000 EU P2P-Gnutella05 P2P-Gnutella09
Size (node) 15 50 100 500 1000 217 400 300
Maximum of K 7 23 42 226 306 103 216 160

C.3 Learning to Balance Different Utility and Resilience Metrics

As shown in Figure 10, we conduct extensive experiments on the BA-15 network to demonstrate that ResiNet
can learn to optimize graphs with different resilience and utility metrics and to defend against other types
of attacks besides the node degree-based attack, such as the node betweenness-based attack.

Table 7 records the improvements in percentage of ResiNet for varying objectives on the BA-15 dataset. As
visualized in Figure 10, ResiNet is not limited to defend against the node degree-based attack (Figure 10 (b)-
(j)) and also learns to defend against the betweenness-based attack (Figure 10 (k)-(s)). Total three resilience
metrics are used, with R denoting the graph connectivity-based resilience metric, SR being the spectral
radius and SR representing the algebraic connectivity. Total two utility metrics are adopted, including the
global efficiency Eglobal and the local efficiency Elocal. Not surprisingly, the optimized network with an
improvement of about 3.6% for defending the betweenness-based attack also has a higher resilience (around
7.8%) against the node-degree attack. This may be explained as the similarity between node degree and
betweenness for a small network.

C.4 Performance Comparisons Under a Large Rewiring Budget

In this section, we present the resilience improvement and the required number of edge rewiring of each
algorithm under a large rewiring budget of 200. The running speed is presented to compare the running
time efficiency of each algorithm.

As shown in Table 8, traditional methods improve the network resilience significantly compared to ResiNet
under a large rewiring budget of 200. However, traditional methods are still undesired in such a case since a
solution with a large rewiring budget is not applicable in practice due to the vast cost of adding many new
edges into a real system. For example, the actual number of rewiring budget for EA is hard to calculate
since it is a population-based algorithm, so it is omitted in Table 8. All baselines adopt the early-stopping
strategy that they will terminate if there is no positive resilience gain in a successive 1000 steps.

20

Under review as submission to TMLR

(a) Original (b) RD (c) SRD (d) ACD (e) RD + Eglobal

(f) SRD + Eglobal (g) ACD + Eglobal (h) RD + Elocal (i) SRD + Elocal (j) ACD + Elocal

(k) RB (l) SRB (m) ACB (n) RB + Eglobal (o) SRB+Eglobal

(p) ACB + Eglobal (q) RB + Elocal (r) SRB+Elocal (s) ACB + Elocal

Figure 10: The resilience maximization on the BA-15 dataset with 15 nodes and 27 edges with (a) original network,
(b)-(j) results of defending the node degree-based attack with different combinations of resilience and utility, and
(k)-(s) results of defending against the node betweenness-based attack with varying combinations of resilience and
utility. For three resilience metrics, R denotes the graph connectivity-based resilience metric; SR is the spectral
radius; SR represents the algebraic connectivity. For two utility metrics, Eglobal denotes the global efficiency, and
Elocal is the local efficiency.

(a) Original EU network (b) R (c) Eglobal

Figure 11: Visualizations of the original EU network and optimized networks using ResiNet with different objectives:
R means the connectivity-based resilience measurement and Eglobal is the global efficiency.

21

Under review as submission to TMLR

Table 7: Performance gain (in percentage) of ResiNet in optimizing varying objectives on the BA-15 network. All
objectives are optimized with the same hyper-parameters, which means that we did not tune hyper-parameters for
objectives except for RD.

Objective Gain (%) Objective Gain(%)
RD 35.3 RB 14.6
SRD 15.3 SRB 15.3
ACD 48.2 ACB 43.2

Table 8: Resilience optimization algorithm under the fixed maximal rewiring number budget of 200. Entries are in
the format of X(Y), where 1) X: weighted sum of the graph connectivity-based resilience and the network efficiency
improvement (in percentage); 2) Y : required rewiring number. Results are averaged over 3 runs and best performance
is in bold.

Method α BA-15 BA-50 BA-100 BA-500 BA-1000 EU P2P-Gnutella05 P2P-Gnutella09

HC 0 26.8 (10.0) 52.1 (47.0) 76.9 (97.3) 45.8 (200) 302.5 (200) 71.9 (152.7) 37.5 (193.3) 40.2 (137.7)
0.5 18.6 (11.3) 43.1 (62.7) 56.9 (121) 30.0 (200) 66.3 (200) 63.2 (200) 27.7 (200) 34.7 (196.3)

SA 0 26.8 (20) 49.7 (59.0) 84.5 (119.7) 43.2 (200) 271.8 (200) 73.5(160.3) 37.1 (200) 37.2 (134)
0.5 17.8 (21) 41.1 (79.7) 57.7 (127.7) 31.4 (200) 64.9 (200) 62.8 (200) 37.1 (200) 35.2 (200)

Greedy 0 23.5 (6) 48.6 (13) 64.3 (20) ✗ ✗ 0.5 (3) ✗ ✗
0.5 5.3 (15) 34.7 (13) 42.7 (20) ✗ ✗ 0.3 (3) ✗ ✗

EA 0 35.3 (✗) 50.2 (✗) 61.9 (✗) 9.9 (200) 174.1 (200) 66.2 (✗) 2.3 (200) 0 (200)
0.5 27.1 (✗) 38.3 (✗) 46.6 (✗) 6.8 (200) 18.7 (200) 58.4 (✗) 3.2 (200) 0 (200)

DE-
GNN-RL

0 13.7 (2) 0 (1) 0 (1) 1.6 (20) 41.7 (20) 9.0 (20) 2.2 (20) 0 (1)
0.5 10.9 (2) 0 (1) 0 (1) 2.7 (20) 20.1 (14) 2.1 (20) 0 (1) 1.0 (20)

k-GNN-
RL

0 13.7 (2) 0 (1) 0 (1) 0 (1) 8.8 (20) 4.5 (20) -0.2 (20) 0 (1)
0.5 6.3 (2) 0 (1) 0 (1) 0 (20) -24.9 (20) 4.8 (20) -0.1 (20) 0 (1)

ResiNet 0 35.3 (6) 61.5 (20) 70.0 (20) 10.2 (20) 172.8 (20) 54.2 (20) 14.0 (20) 18.6 (20)
0.5 26.9 (20) 53.9 (20) 53.1 (20) 15.7 (20) 43.7 (20) 51.8 (20) 12.4 (20) 15.1 (20)

Table 9 indicates that the time it takes for the benchmark algorithm to solve the problem usually increases
as the test data set size increases. In contrast, our proposed ResiNet is suitable for testing on a large dataset
once trained.

Table 9: Running speed (in second) of the resilience optimization algorithm under the fixed maximal rewiring number
budget. Entries are in the format of X(Y), where 1) X: speed under the budget of 20; 2) Y : speed under the budget
of 200 . ✗ means that the result is not available at a reasonable time. Results are averaged over 3 runs and best
performance is in bold.

Method α BA-15 BA-50 BA-100 BA-500 BA-1000 EU P2P-Gnutella05 P2P-Gnutella09

HC 0 1.0 (1.0) 1.1 (6.4) 1.3 (22.2) 21.9 (354.1) 80.3 (1288.3) 3.1 (94.2) 15.3 (358.1) 4.5 (89.1)
0.5 1.5 (11.5) 1.1 (12.8) 2.0 (49.0) 40.9 (589.5) 148.7 (2603.7) 5.3 (193.7) 24.7 (462.8) 7.0 (190.6)

SA 0 0.5 (0.5) 0.3 (6.6) 0.6 (22.6) 12.2 (313.0) 45.7 (1051.8) 2.4 (91.2) 10.8 (286.4) 2.6 (89.4)
0.5 0.7 (1.7) 0.7 (13.2) 1.7 (47.5) 33.9 (568.9) 99.8 (2166.3) 5.0 (193.5) 23.9 (454.5) 6.3 (188.5)

Greedy 0 0.2 (6.0) 34.1 (34.5) 766.3 (✗) ✗ ✗ 3061.7 (✗) ✗ ✗
0.5 0.7 (0.7) 64.1 (65.4) 1478.9 (✗) ✗ ✗ 6192.6 (✗) ✗ ✗

EA 0 0.01 (✗) 0.1 (✗) 1.6 (✗) 2.5 (✗) 10.3 (✗) 0.2 (✗) 1.6 (✗) 0.4 (✗)
0.5 0.01 (✗) 0.1 (✗) 0.8 (✗) 4.7 (✗) 15.0 (✗) 0.4 (✗) 3.0 (✗) 0.8 (✗)

DE-
GNN-RL

0 0.1 (✗) 0.1 (✗) 0.1 (✗) 14.9 (✗) 70.3 (✗) 3.6 (✗) 8.7 (✗) 0.5 (✗)
0.5 0.1 (✗) 0.1 (✗) 0.2 (✗) 13.7 (✗) 60.9 (✗) 4.5 (✗) 1.0 (✗) 6.7 (✗)

k-GNN-
RL

0 0.02 (✗) 0.03 (✗) 0.07 (✗) 1.3 (✗) 56.5 (✗) 2.6 (✗) 8.2 (✗) 0.5 (✗)
0.5 0.02 (✗) 0.04 (✗) 0.08 (✗) 18.3 (✗) 76.1 (✗) 3.6 (✗) 11.5 (✗) 0.6 (✗)

ResiNet 0 0.5 (✗) 1.8 (✗) 2.2 (✗) 17.5 (✗) 66.8 (✗) 4.5 (✗) 14.7 (✗) 9.3 (✗)
0.5 0.5 (✗) 1.9 (✗) 2.4 (✗) 18.0 (✗) 67.5 (✗) 5.2 (✗) 15.0 (✗) 10.3 (✗)

22

Under review as submission to TMLR

C.5 Inspection of Optimized Networks

Moreover, to provide a deeper inspection into the optimized network structure, we take the EU power
network as an example to visualize its network structure and the optimized networks given by ResiNet with
different objectives. Compared to the original EU network, Figure 11 (b) is the network structure obtained
by only optimizing the graph connectivity-based resilience. We can observe a more crowded region on the
left, consistent with the “onion-like” structure concluded in previous studies. If we consider the combination
gain of both resilience and utility, we observe a more compact clustering “crescent moon”-like structure as
shown in Figure 11 (c).

D Deep analysis of why regular GNNs fail in the resilience task

It is well-known that GNNs generally work well for graphs with rich features. Unluckily, the graph network
in the resilience task has no node/edge/graph feature, with only the topological structure available. No rich
feature means that the output of the GNNs is not distinguishable, and then it is difficult for the RL agent
to distinguish different vertices/edges, causing large randomness in the output of the policy. This may cause
the rewiring process to alternate between two graphs, forming an infinite loop. And we suspect that this
infinite loop failure may explain the poor empirical performance of optimizing network resilience by selecting
edges using existing GNNs and reinforcement learning (RL). The infinite loop failure is presented as follows.

Consider the graph Gt with N nodes and containing two edges AB and CD. The agent selects AB and CD
for rewiring, leading to Gt+1 with news edges AC and BD. A frequent empirical failure of regular GNNs
for the robustness task is the infinite action backtracking phenomenon. The agent would select AC and BD
at step t + 1, returning back to Gt and forming a cycled loop between Gt and Gt+1. Formally, the infinite
loop is formulated as

((A, B), (C, D)) = argmax
i,j,m,n∈1:N

SIM
(

((hi
t, hj

t), (hm
t , hn

t)), hGt

)
((A, C), (B, D)) = argmax

i,j,m,n∈1:N
SIM

(
((hi

t+1, hj
t+1), (hm

t+1, hn
t+1)), hGt+1

)
,

where SIM is a similarity metric, hi
t and hGt

are embeddings of node i and graph Gt at step t, and (A,B) is
one edge.

Table 10 compares and summarizes different graph related tasks’ characteristics. We can see that the
resilience task is more challenging from many aspects. No prior rule like action masking or negative penalty
can be used to avoid selecting visited nodes as in TSP. For the resilience task, all previously visited edges
are also possibly valid to be selected again, resulting in insufficient training signals.

The desired GNN model should not depend on rules like action masking to distinguish edge and graph
representations for graphs with little node features. Our proposed FireGNN fulfills these requirements to
obtain proper training signals. FireGNN has a distinct expressive power and learns to create more meaningful
and distinguishable features for each edge. FireGNN is not a simple aggregation of higher-order information
of a static graph. It was inspired by homology filtration and the multi-view graph augmentation. Persistence
homology motivates us to aggregate more distinct node features by observing how the graph evolves towards
being empty, leading to more distinct and meaningful features for each node/edge, thus avoiding the infinite
loop. Extensive experimental results in Table 1 validate the necessity and effectiveness of FireGNN. Existing
GNNs perform worse while FireGNN performs well.

23

Under review as submission to TMLR

Table 10: Characteristics of different graph related tasks.

Approach Task RL component Problem Training & Inference
State Action Reward Complexity Size Extrapolate Encoder Action Masking Scalability

S2V-DQN Khalil et al. (2017)
MVC node level add node to subset -1 O(N) ✗ S2V ✓ 500
Max-Cut node level add node to subset change in cut weight O(N) ✗ S2V ✓ 300
TSP node level add node to tour change in tour cost O(N) ✗ S2V ✓ 300

Local search Hudson et al. (2022) TSP edge level relocate node in tour global regret O(N2) ✓ GNN ✓ 100
RNN-RL Bello et al. (2016) TSP node level add node to tour change in tour cost O(N) ✗ RNN ✓ 100
GNN-RL Joshi et al. (2022) TSP node level add node to tour change in tour cost O(N) ✓ GNN ✓ 50

Attention-RL Kool et al. (2018) TSP node level add node to tour change in tour cost O(N) ✗ Attention ✓ 100
VRP node level add node to tour change in tour cost O(N) ✗ Attention ✓ 100

Local search Böther et al. (2022) MIS node level add node to subset change in IS size O(N) ✓ GNN ✓ 800
ResiNet Resilience graph level edge rewiring change in resilience and utility O(N4) ✓ FireGNN ✗ 1000

24

