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Additional notations and conventions The following conventions are used throughout appendix: the denotation of
constants (c1, c2, . . . , C1, C2, . . .) may change from line to line. ∥ · ∥2 denotes the Euclidean norm for vectors, or the L3(P

∗
x )

norm for functions of x. ⟨·, ·⟩2 denotes the respective inner product. ∥ · ∥F denotes the Frobenius norm. ϕz,Φz denote the
PDF and CDF of the standard Gaussian distribution. Recall the inequality 1− Φz(x) ≤ e−x2/2 for x > 0.

S1 PROOF FOR LEMMA 1 AND ADDITIONAL REMARKS

Proof for the lemma The first two claims in the lemma are implied by the following two lemmas:

Lemma S1. When α > 0,m ≪ max{1, σ−2
s τ2s }dspu, the classifier parameterized by θ̃ = (0, θ̃s) = (0, α

∑
e∈Etr

β̄e
spu)

satisfies
Re,01(fθ̃) ≤ c1 exp(−c2σ−2

s τ2s dspu/m+ op(1))→ 0, ∀e ∈ Etr. (S1)

Moreover, the same bound holds for the logistic loss, if in addition α ≤ O(poly(dspu/m)), ατ2s ≳ 1/σ2
sm.

Lemma S2. Denote by xi ∈ Rdinv ,xs ∈ Rdspu the invariant and spurious components of the input x. For any e1, e2 ∈ Etr,
let

KLij := KL(pmarg,e1 ∥ pmarg,e2) = KL(pe1(y, θ̃
⊤
s xs,xi) ∥ pe2(y, θ̃⊤s xs,xi))

denote the KL divergence between the marginal distributions. When α > 0,m < dspu/16, with probability ≥ 1− e−m/18

there exists an ℓ ∈ [m], determined by {β̄e
spu : e ∈ Etr} s.t.

KL
(⊗
e∈Etr

pmarg,e

∥∥∥ p⊗m
marg,eℓ

)
=

m∑
j=1

KLjℓ ≤
256m

σ2
sdspu

, (S2)

The last claim in the text, Eq. 2, follows by a standard argument following (S2): consider the scenario ne ≡ n for simplicity.
Denote by D⊤ := (((y

ej
k , θ̃⊤s x

ej
k,s, x

ej
k,i) : j ∈ [m]) : k ∈ [n]) the transposed dataset which contains the same information as

Dtr. Any test on Dtr for the null hypothesis “θ̃⊤s xs is an invariant feature” always provides a two-sample test for

H ′
0 : D⊤ ∼

(
(pmarg,eℓ)

⊗m
)⊗n

=: P0,n, H ′
1 : D⊤ ∼

(⊗
e∈Etr

pmarg,e

)⊗n

=: P1,n,

with the same size and power in the two scenarios. However, any such test must have its combined error lower bounded by

1−DTV (P0,n, P1,n) ≥ 1−
√
2KL(P1,n ∥P0,n) ≥ 1− n · 256m

σ2
sdspu

.

This completes the proof.
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Remark 1 (IRM and GDRO). From lemma S1 it is clear that θ̃ constitutes an approximate optima for ERM and GRDO, as
well as the variance-penalty based approaches such as Krueger et al. [2021]. It also shows that the predictor f = w ◦ Φ,
where Φ = id and w(h) = θ̃⊤h, approximately satisfies the hard constraints in (IRM) and constitutes an approximate
optima in this sense.1

Remark 2 (interpretations of the KL bound, additional error from feature learning). In addition to the testing-based
interpretation as in Eq. 2, (S2) can also be interpreted directly if we restrict to the family of tests based on a conditional KL
divergence, since we have, for all j ∈ [m],

KL(pej (y | θ̃⊤xs) ∥ peℓ(y | θ̃⊤xs)) ≤ KL(pej (y | xi, θ̃
⊤xs) ∥ peℓ(y | xi, θ̃

⊤xs)) ≤ KLjℓ ≤
256m

σ2
sdspu

.

Such tests can be viewed as restricting to the validation of the definition of invariant features, which concerns such
conditionals; they should reject H0 if the estimated KL divergence becomes larger than a threshold δn = on(1), which at
least needs to cover the estimation error for the KL divergence. It is thus clear that in the feature learning scenario we must
use a threshold δ′n ≫ δn, since even for the truly invariant part of the model, we can only learn approximately invariant
features which will inevitably violate the KL bound by an extra margin. This makes for a larger threshold than (2): for
example, if the feature learning process is such that δ′n ≳ dspu/n, we would have the indistinguishability result as long as
dspu/n≫ m/σ2

sdspu, i.e.,

max
e∈Etr

ne ≪
σ2
sd

2
spu

m
.

Another issue that exists for any possible test is that in the feature learning scenario, we need to apply to a collection of
feature extractors; we thus needs more stringent requirements on the power of the test, rather than merely requiring them to
be 1− o(1). For |M| feature extractors with independent failure probabilities, we would require n ≳ |M|σ2

sdspu/m for
reliable learning of invariant features. Note how these regimes allow for successful fitting of an in-distribution predictor.

S1.1 PROOF FOR AUXILIARY LEMMAS

We first introduce the following notations: Etr =: {e1, . . . , em}, 1⃗ := {1, . . . , 1} ∈ Rm, and define the m ×m matrix
(ΣS)ij = (β̄ei

spu)
⊤(β̄

ej
spu), so that ∥θ̃s∥22 = α21⃗⊤ΣS 1⃗. Define Σ̄S := E{β̄e

spu}ΣS = τ2s dspuI. Note that by covariance
concentration [Wainwright, 2019, Ch. 6], we have, when m ≤ dspu,

P{β̄e
spu}

(
1

τs
√
dspu
∥Σ̄S − ΣS∥ ≤ 3

√
m

dspu
+ δ

)
≥ 1− e−dspuδ

2/18. (S3)

Proof for lemma S1. We first derive the 0-1 loss for θ̃. Note that in the setting of the example, we have, for any θ = (θi, θs),

Re,01(fθ) := Exe,ye1{sgn(θ⊤xe) = ye} = Φz

(
− θ⊤E(xe | ye = 1)√

θ⊤Cove(xe(xe)⊤)θ

)
= Φz

(
−

θ⊤i β̄inv + θ⊤s β̄
e
spu√

σ2
i ∥θi∥22 + σ2

s∥θs∥22

)
.

Thus when m < dspu, we have, by central limit theorem and (S3),

∥θ̃s∥2 = α

√
1⃗⊤ΣS 1⃗ ≤ α

√
m(∥Σ̄S∥+ ∥Σ̄S − ΣS∥) = ατs

√
mdspu(1 +Op((m/dspu)

1/4)), (S4)

θ̃⊤s β̄
e
spu = α

(
∥β̄e

spu∥22 +
∑

e′∈Etr,e′ ̸=e

⟨β̄e′

spu, β̄
e
spu⟩2

)
= ατ2s (dspu +Op(

√
mdspu)). (S5)

Thus, when m≪ min{1, σ−2
s τ2s }dspu, we have

Re,01(fθ̃) = Φz(−σ−1
s τs(

√
dspu/m+ op(1))) ≤ exp(−2σ−2

s τ2s dspu/m+ op(1))
p→ 1, ∀e ∈ Etr.

1In practice, soft constraints based on gradient penalty are used for IRM. But it is easy to adapt our proof to show that the gradient
norm ∥∇wRe,log(w ◦ Φ)∥2 = ∥∇θ̃Re,logfθ̃∥2 vanishes at a similar exponential rate. Thus, such a (w,Φ) pair is also an approximate
optima for the soft constraint-based formulation.



Now we consider the logistic loss. Fix any e ∈ Etr, and recall θ̄e := β̄e
spu/2σ

2
s defines the Bayes classifier given the spurious

features xe
spu ∈ Rdspu . Introduce the random variables

x ∼ N (β̄e
spu, σ

2
sI), z1 = θ̄⊤e x, z2 = θ̃⊤s x,

so that

Re,log(θ̃) = Exe
spu

∑
y∈{±1}

p(ye = y | xe
spu) log(1 + e−yθ̃⊤xe

spu)

= Ez1,z21{z1 ≥ 0} log(1 + e−z2) + 1{z1 < 0} log(1 + ez2)

≤ E log(1 + e−z2) + E(1{z1 < 0}max{1, 2z2})
≤ E log(1 + e−z2)︸ ︷︷ ︸

(I)

+E1{z1 < 0}︸ ︷︷ ︸
(II)

+E1{z1 < 0, z2 > 1/2}2z2︸ ︷︷ ︸
(III)

.

We will bound the three terms in turn. Before that, we first derive the joint distribution of (z1, z2). By (S4)-(S5), we have

µ2 := Ez2 = ατ2s dspu(1 + op(1)), σ
2
2 := Var(z2) = σ2

sα
2τ2smdspu(1 + op(1)), Cov(z1, z2) =

1 + op(1)

2σ2
s

ατ2s dspu.

Moreover, we have

µ1 := Ez1 =
∥β̄e

spu∥22
2σ2

s

=
τ2s (dspu +Op(

√
dspu))

2σ2
s

, σ2
1 := Var(z1) =

1

2
µ1.

We now return to the three terms for Re,log. For (I), consider the decomposition

(I) = E log(1 + e−z2)1{z2 < −1/2}+ E log(1 + e−z2)1{−1/2 < z2 < A}+ E log(1 + e−z2)1{z2 > A}
≤ E(−2z2 | z2 < −1/2)P(z2 < −1/2) + 1{−1/2 < z2 < A}+ log(1 + e−A)

(i)

≲ e−µ2
2/2σ

2
2 ·
(
1 +

σ2
2

µ2

)
+ e−(µ2−A)2/2σ2

2 + log(1 + e−A)

(ii)

≲ e−µ2
2/3σ

2
2 + e−(µ2−A)2/2σ2

2 + e−A
(iii)

≲ e−µ2
2/3σ

2
2 .

In the above, (i) follows by the Gaussian CDF bound and lemma S3 below, (ii) follows since µ2
2 ≫ σ2

2 ≫ 1, α =
O(poly(dspu/m)), and (iii) sets A = µ2/10. Now,

(II) ≤ e−µ2
2/2σ

2
2 ,

(III) =

∫ ∞

1/2

2tP(z1 < 0 | z2 = t)Pz2(dt) ≤ P(z1 < 0)E(2z2 | z2 > 1/2) ≲ e−µ2
1/2σ

2
1 (µ2 + 2σ2e

−µ2
2/2σ

2
2 ),

where the first inequality follows because z1 and z2 are positively correlated, and µ2 > 0, and the second follows by an
application of lemma S3. Combining, we can see that in the regime m≪ σ−2

s τ2s dspu, there exists c1, c2 > 0 s.t.

Re,log(θ̃) ≤ (I) + (II) + (III) ≤ c1e
−c2τ

2
s dspu/mσ2

s .

This proves (S1).

Proof for lemma S2. For any e1, e2 ∈ Etr and fixed realizations of {β̄e1
spu, β̄

e2
spu} (i.e., the following display implicitly

conditions on the two), we have

KLij = KL(pe1(y, θ̃
⊤
s xs,xi) ∥ pe2(y, θ̃⊤s xs,xi)) = Epe1

log
pe1(y, θ̃

⊤
s xs,xi)

pe2(y, θ̃
⊤
s xs,xi)

= Epe1
log

pe1(θ̃
⊤
s xs | y,��xi)pe1(y,xi)

pe2(θ̃
⊤
s xs | y,��xi)pe2(y,xi)

= Epe1
log

pe1(θ̃
⊤
s xs | y)

pe2(θ̃
⊤
s xs | y)

= KL(N (µ21, σ
2
2) ∥N (µ22, σ

2
2))



where µ2j := ⟨β̄
ej
spu, θ̃s⟩2 ∀j ∈ [m], and σ2

2 := σ2
s∥θ̃s∥22. Plugging in the expression for KL divergence between Gaussian

distributions, we find, for all i, j ∈ [m],

KLij =
(µ2i − µ2j)

2

2σ2
2

=
α2

2σ2
2

( m∑
k=1

(ΣS)ik − (ΣS)jk

)2
=

α2

2σ2
2

( m∑
k=1

(ΣS)ik − (Σ̄S)ik +

m∑
k=1

(Σ̄S)jk − (ΣS)jk +
���������m∑
k=1

(Σ̄S)ik − (Σ̄S)jk

)2
≤ 4α2

2σ2
2

(( m∑
k=1

(ΣS)ik − (Σ̄S)ik

)2
+
( m∑
k=1

(ΣS)jk − (Σ̄S)jk

)2)
=

2α2

σ2
2

(
(1⃗⊤(ΣS − Σ̄S)ei)

2 + (1⃗⊤(ΣS − Σ̄S)ej)
2
)
, (S6)

where ei = ( . . . , 0︸ ︷︷ ︸
(i−1) zeros

, 1, 0, . . .) denotes the i-th Euclidean basis. We thus have, by symmetry and the trace formula,

m∑
i=1

m∑
j=1

KLij ≤ 2m ·
m∑
l=1

2α2

σ2
2

(1⃗⊤(ΣS − Σ̄S)el)
2 = 2m ·

m∑
l=1

2α2

σ2
2

1⃗⊤(ΣS − Σ̄S)
21⃗.

Plugging in (S3) with δ ←
√
m/dspu we find, when d ≥ 64m, on that event we have

m∑
i=1

m∑
j=1

KLij ≤
4α2m∥1⃗∥22∥ΣS − Σ̄S∥2

σ2
2

(S3)
≤ 4α2m2 · (4τs

√
m)2

σ2
2

=
64α2τ2sm

3

σ2
s∥θ̃s∥22

(S4)
≤ 64α2τ2sm

3

σ2
sα

2τ2smdspu/4
=

256m2

σ2
sdspu

,

where we note that (S4) holds on the same event. Therefore, on that event there always exist some ℓ ∈ [m] which is
determined by {β̄e

spu} s.t.
m∑
j=1

KLℓj ≤
256m

σ2
sdspu

.

This completes the proof.

Lemma S3. Let z ∼ N (µ, σ2), b < µ. Then we have

E(z | z < b)
(i)
= µ− σ

ϕz((b− µ)/σ)

Φz((b− µ)/σ)

(ii)

≥ b− σ2

µ− b
, E(z | z < b)

(i)
= µ+ σ

ϕz((b− µ)/σ)

1− Φz((b− µ)/σ)
≤ µ+ σϕz((b− µ)/σ).

Proof. (i) is a known property of truncated normal distribution [Greene, 2003]. (ii) follows by the bound Φz(−x) ≥
x

x2+1ϕz(−x) [Abramowitz et al., 1988].

S2 PROOF FOR PROPOSITION 2

Throughout the proof we will work with the transformed data and parameters: xe ←M−1xe, θ ←M⊤θ. This allows us to
ignore the presence of M , as long as we replace U with U ′ := ∥M∥U . We also introduce the following notations:

d := dinv + dspu, X := {x∗
1, . . . , x

∗
n∗
} ∈ Rn∗×d, Y := {y∗1 , . . . , y∗n∗

} ∈ Rn∗×1,

θ̄espu := (β̄inv, β̄
e
spu), Str := {β̄e

spu : e ∈ Etr}.

Note that given the above transformation, θ̄espu now parameterizes the Bayes predictor for environment e. And across all
environment e, we will also have

Re(θ) = Exe,ye(θ⊤xe − ye)2 = ∥θ − θ̄espu∥22 + σ2,



and the constraint set, for which we have fixed ρ+ εn = 0, reduces to

Ctr = {θ ∈ Rd : ∥θ − θ̄espu∥22 ≤ ∥θ̄inv − θ̄espu∥22 ∀e ∈ Etr}
= {θ = (βi, βs) ∈ Rd : ∥βi − β̄inv∥22 + ∥βs − β̄e

spu∥22 ≤ ∥β̄e
spu∥22 ∀e ∈ Etr}

⊂
{
θ = (βi, βs) ∈ Rd : ⟨βs, β̄

e
spu⟩2 ≥

1

2
∥βs∥22 ∀e ∈ Etr

}
.

The constrained parameter space is
F = {fθ : ∥θ∥22 ≤ U ′, θ ∈ Ctr}.

Note that by construction, θ̄inv ∈ F always holds.

Our main taks is to establish improved metric entropy bounds for the following “localized” space:

∂Fδ :=

{
fθ − fθ′ : fθ, fθ′ ∈ F , ∥fθ − fθ′∥2n,2 :=

1

n∗

n∗∑
i=1

(fθ(x
∗
i )− fθ′(x∗

i ))
2 ≤ δ

}
.

We first note that

Lemma S4. When n∗ ≥ 5d, there exists c > 0 s.t.

PX

(
∀θ, θ′ ∈ Rd,

1

2
∥θ − θ′∥22 ≤ ∥fθ − fθ′∥2n,2 ≤ 2∥θ − θ′∥22

)
≥ 1− e−cn∗ . (S7)

Proof. By the fact that ∥fθ − fθ′∥n,2 = ∥n−1/2
∗ X(θ − θ′)∥2, and the concentration of Gaussian covariance matrices

[Wainwright, 2019, Theorem 6.1].

Proposition S5 (entropy bound). On the event (S7) we have, for any ζ, δ, t, Z > 0, with Str-probability ≥ 1− ζ,

logN(∂Fδ, ∥ · ∥n,2, t) ≤ min

{
dspu log

(
1 +

c′δ

emZ2δ2/2 t

)
+ dspu log

(
1 +

c′Zδ

t

)
,

dspu log

(
1 +

c′δ

2−m/dsput

)}
+ dinv log

(
1 +

c′δ

t

)
+ log ζ−1.

Proof. We condition on the event (S7) throughout the proof. Then, any θ = (βi, βs) s.t. fθ ∈ ∂Fδ must satisfy

∥βi − β̄inv∥22 + ∥βs∥22 = ∥θ − θ̄inv∥22
(S7)
≤ 2∥fθ − fθ̄inv

∥2n,2 ≤ 2δ2 ⇒ max{∥βi − β̄inv∥2, ∥βs∥2} ≤
√
2δ,

and
βs ∈ Cs := {βs : ⟨βs, β̄

e
spu⟩2 ≥

1

2
∥βs∥22 ∀e ∈ Etr}.

By (S7), we also know that a (∥ · ∥n,2, t)-covering for ∂Fδ can be constructed as the Cartesian product of a (∥ · ∥2, t/3)-
covering for the ball Bi,δ := {βi ∈ Rdinv : ∥βi − β̄inv∥2 ≤

√
2δ}, and a (∥ · ∥2, t/3)-covering for Cs ∩ Bs,δ, where

Bs,δ := {βs ∈ Rdspu : ∥βs∥2 ≤
√
2δ}. Thus, we have, for some c, c′ > 0,

logN(∂Fδ, ∥ · ∥n,2, t) ≤ logN(Bi,δ, ∥ · ∥2, ct) + logN(Bs,δ ∩ Cs, ∥ · ∥2, ct)
≤ dinv log(1 + c′δ/t) + logN(Bs,δ ∩ Cs, ∥ · ∥2, ct), (S8)

where the second inequality can be found as Wainwright [2019, Example 5.8]. It remains to bound logN(Bs,δ∩Cs, ∥·∥2, ct).

For this purpose, first note that, for any fixed β ̸= 0, we have

PStr
(β ∈ Cs) =

∏
e∈Etr

Pβ̄e
spu∼N (0,d−1

spuI)

(
⟨β, β̄e

spu⟩2 ≥
1

2
∥β∥22

)
=

m∏
j=1

P
(
N (0, d−1

spu∥β∥22) ≥
1

2
∥β∥22

)
≤ min{e−mdspu∥β∥2

2/4, 2−m}. (S9)



Introduce
Bs1 := {βs ∈ Rdspu : ∥βs∥2 ≤

√
2Zδ}, Bs2 := Bs,δ\Bs1,

and Cs1,Cs2 be (∥ · ∥, ct)-coverings for Bs1, Bs2 with the optimal cardinality. Then

EEtr
N(Bs,δ ∩ Cs, ∥ · ∥2, ct) ≤

∑
β∈Cs1

P(β ∈ Cs) +
∑

β∈Cs2

P(β ∈ Cs)

(S9)
≤ N(Bs1, ∥ · ∥, ct) +N(Bs,δ, ∥ · ∥, ct)e−mdspuZ

2δ2/2

≤ (1 + cZδ/t)dspu + (1 + c′δ/t)dspue−MdspuZ
2δ2/2.

By Markov’s inequality and the monotonicity of log(·), we find that for all ζ ∈ (0, 1), with Str-probability ≥ 1− ζ,

logN(Bs,δ ∩ Cs, ∥ · ∥2, ct) ≤ dspu log(1 + c′Zδ/t) + dspu log

(
1 + c′δ/t

eMZ2δ2/2

)
+ log ζ−1

< dspu log(1 + c′Zδ/t) + dspu log

(
1 +

c′δ

eMZ2δ2/2 · t

)
+ log ζ−1.

Plugging back to (S8) proves the first claim. The second claim (involving 2−m/dspu ) can be proved similarly, by using the
second case in (S9) (involving 2−m).

This allows us to prove our main result:

Proof for Proposition 2. It suffices to bound the critical radius δ̂2n of the Gaussian complexity of ∂Fδ [Wainwright, 2019,
Eq. (13.42a)]; given a high-probability bound δ̂2n ≤ δ2n that holds w. p. 1− ζ ′, we will have, with probability ≥ 1− ζ ′ −
c1e

−c2nδ
2
n ,

∥fθ̂ − fθ̄inv
∥22

(S7)
≤ 2∥fθ̂ − fθ̄inv

∥22 ≤ c0∥fθ̄inv
− fθ̄e

spu
∥22 + c1δ

2
n, (S10)

where the last inequality is Wainwright [2019, Theorem 13.13].

By Wainwright [2019, Corollary 13.7], any solution δ to the following inequality will bound δ̂2n:

16√
n

∫ δ

δ2

√
logN(∂Fδ, ∥ · ∥n,2, t) dt ≤

δ2

4σ
. (S11)

Let us restrict to δ ≥ n−1/2 and bound the LHS. Define tj = 2−jδ for j ≤ J := ⌈log n1/2δ⌉. Then∫ δ

δ2

√
logN(∂Fδ, ∥ · ∥n,2, t) dt ≤

J∑
j=0

√
logN(∂Fδ, ∥ · ∥n,2, tj)(tj − tj+1).

For any fixed Z > 0, δ ≥ n−1/2, a union bound over J applications of proposition S5 to (ζ ← n−10, δ, t← tj , Z) shows
that, with Str-probability ≥ 1− n−10 log(n1/2δ),

J∑
j=0

√
logN(∂Fδ, ∥ · ∥n,2, tj)(tj − tj+1) <

√
10 log nδ +

J∑
j=0

(tj − tj+1) ·

(
dinv log

(
1 +

c′δ

t

)
+

dspu log

(
1 +

c′δ

emZ2δ2/2 · t

)
+ dspu log

(
1 +

c′Zδ

t

))1/2

≤
√

10 log nδ +

J∑
j=0

(tj − tj+1) ·

(√
dinv log

(
1 +

c′δ

t

)
+

√
dspu log

(
1 +

c′δ

eMZ2δ2/2 · t

)
+

√
dspu log

(
1 +

c′Zδ

t

))
,

(S12)



and that

J∑
j=0

√
logN(∂Fδ, ∥ · ∥n,2, tj)(tj − tj+1) <

√
10 log nδ +

J∑
j=0

(tj − tj+1)

(
√

dinv log

(
1 +

c′δ

t

)
+

√
dspu log

(
1 +

c′δ

2m/dspu · t

))
. (S13)

By basic calculus and a scaling argument as in Wainwright [2019, p. 427], we find the summation is bounded by√
10 log n δ + c′′(

√
dinv +min{Z + e−mZ2δ2/2, 2−m/dspu}

√
dspu)δ.

Therefore, for any Z, δ0,n > 0, any solution to

δ ≥ max{δ0,n, n−1/2},
√
10 log n δ + c′′(

√
dinv +min{Z + e−mZ2δ20,n/2, 2−m/dspu}

√
dspu)δ ≤

√
nδ2

64σ2

always solves (S11) with the claimed probability. Choosing δ0,n =
√
Z2dspu/n, Z

2 =
(

2n logm
mdspu

)1/4
yields

δ2n ≤ c′′′
(
log n+ dinv

n
+

√
dspu logm

nm

)
,

while considering the second argument of min yields

δ2n ≤ c′′′
log n+ dinv + 2−2m/dspudspu

n
.

Both bounds hold with the aforementioned Str-probability. Plugging back to (S10) completes the proof.

S3 EXPERIMENT SETUP AND FULL RESULTS

S3.1 FULL RESULTS FOR SECTION 6.1

Full results for all methods in the setting of Figure 1 are reported in Figure S1, where we add the results for BLR-LC for
N := 0.3n∗, BLR-Prior for α ∈ {1, 3}, and CBLR for ρ = 0.2. The results are consistent with the discussion in the text.
We have also conducted experiments in a larger-scale setting, with ne ← 12000 for classification and ne ← 18000, dinv ←
80, dspu ← 160,m ← 5 for regression. As shown in Figure S2, the results are qualitatively similar, with our methods
performing slightly better for the regression task.

We further experimented with generalized variants of both the regression and classification experiments, where we replace
the definition of β̄∗

spu with

β̄∗
spu ∼ N

(2α
m

∑
e∈Etr

β̄e
spu, (1− α2)τ2∗ I

)
,

where τ∗ = 1 for classification and d
−1/2
spu for regression. For regression, we also introduce environment-specific correlations

between the invariant and spurious features, by replacing the generating process of xe
spu,i with

xe
spu,i ∼ N (βAexe

inv,i, (1− β2)I),

where Ae ∈ Rdspu×dinv is a random matrix with i.i.d. N (0, d−1
inv) components. The data generating process in the text thus

corresponds to α = 1, β = 0. Results for other choices of (α, β) are reported in Figure S3 and Figure S4, where we plot the
distribution of test losses across 32 independently samples for {β̄inv, β̄

·
spu}. As we can see, our method remains competitive

across all settings.
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Figure S1: Synthetic experiment: results for all methods in the setting of Figure 1.

S3.2 SETUP AND RESULTS FOR SECTION 6.2

Full results for all methods in the setting of Table 1 and Table 2 are reported in Table S1 and Table S2, respectively, where
we also report the results for our method with ρ ∈ {0.05, 0.2}. As we can see, our method achieves robust performance
across all settings. In order to maintain a high acceptance rate for the M-H test of the Langevin Monte Carlo steps, we set
the step-size upper bound η̄k = 0.001 for ColoredMNIST and η̄k = 0.0025 for PACS using binary search. To guarantee
convergence, we run 2× 104 steps with 50 parallel chains for each method. In accordance with the ERM baseline, the batch
size for the BLR-LC method is set to 32 for each domain. For the BLR-LC-N_train method, because of the relatively large
number of training examples ne on Colored MNIST, we set N := 0.02ne for Colored MNIST, while N := ne for PACS.
The training-domain validation set selection approach from [Gulrajani and Lopez-Paz, 2020] is used to search the ERM
baseline through 20 hyperparameter configurations × 3 trials, which is important for ERM to establish itself as a strong
baseline.
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Figure S2: Synthetic experiment: results for all methods at a larger scale.
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Figure S3: Synthetic classification experiment: violin plot of classification errors, across independently sampled envi-
ronments, in the setting of Figure 1. From left to right: results for α ∈ {0, 0.5, 1}. From top to bottom: results for
n∗ ∈ {4, 32, 256}. Best viewed when zoomed.
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Figure S4: Synthetic regression experiment: violin plot of test MSE across independently sampled environments in the
larger-scale setting (ne = 18000,m = 5, d = 240). From left to right: results for (α, β) ∈ {(0, 0), (1, 0), (1, 0.5)}.

.



Table S1: Colored MNIST: test accuracy for all methods on all domains. We report the 20th percentile / mean / 80th
percentile across 20 independent runs.

n∗ Method / e∗ 0.1 0.2 0.9

0 ERM 88.5 87.2 71.5

4

CBLR 87.8 / 88.2 / 88.5 86.7 / 87.0 / 87.3 81.5 / 81.9 / 85.6
CBLR_0.05 87.8 / 87.9 / 88.0 87.1 / 87.3 / 87.7 79.8 / 81.9 / 85.9
CBLR_0.20 85.0 / 85.7 / 87.2 86.0 / 86.6 / 87.6 79.3 / 76.4 / 86.9

BLR 75.2 / 80.6 / 88.1 77.5 / 79.3 / 85.8 88.4 / 87.5 / 90.0
BLR-LC-N_adapt 88.1 / 88.0 / 88.7 86.6 / 87.0 / 87.4 80.5 / 81.8 / 85.6
BLR-LC-N_train 88.3 / 88.4 / 88.5 87.2 / 87.3 / 87.4 67.9 / 69.3 / 71.1

DivDis 88.4 / 88.4 / 88.5 87.8 / 87.8 / 87.9 70.7 / 70.7 / 70.9

8

CBLR 87.8 / 88.2 / 88.5 86.5 / 87.0 / 87.4 85.0 / 85.7 / 87.1
CBLR_0.05 87.8 / 88.1 / 88.6 87.0 / 87.2 / 87.5 83.9 / 85.1 / 86.8
CBLR_0.20 85.4 / 86.1 / 88.0 85.1 / 86.0 / 87.1 85.3 / 86.7 / 88.9

BLR 83.0 / 86.1 / 88.4 80.9 / 81.7 / 86.5 89.2 / 89.3 / 90.0
BLR-LC-N_adapt 87.9 / 88.3 / 88.7 87.0 / 87.1 / 87.5 82.9 / 83.5 / 86.0
BLR-LC-N_train 88.3 / 88.4 / 88.5 87.2 / 87.3 / 87.4 68.3 / 69.9 / 71.8

DivDis 88.4 / 88.4 / 88.5 87.8 / 87.8 / 87.8 70.6 / 70.7 / 70.8

16

CBLR 87.6 / 88.2 / 88.7 86.8 / 87.0 / 87.4 87.1 / 87.7 / 88.5
CBLR_0.05 87.9 / 88.1 / 88.6 86.9 / 87.2 / 87.5 86.4 / 87.0 / 87.9
CBLR_0.20 85.7 / 86.3 / 88.5 86.0 / 86.5 / 87.3 87.9 / 88.6 / 89.4

BLR 86.0 / 87.4 / 88.5 85.4 / 85.5 / 87.0 89.1 / 89.4 / 90.0
BLR-LC-N_adapt 88.3 / 88.5 / 88.7 87.1 / 87.3 / 87.5 83.9 / 84.9 / 86.9
BLR-LC-N_train 88.2 / 88.4 / 88.6 87.2 / 87.3 / 87.4 70.1 / 71.4 / 73.4

DivDis 88.4 / 88.4 / 88.5 87.8 / 87.8 / 87.9 70.7 / 70.7 / 70.8

32

CBLR 88.2 / 88.5 / 88.8 86.7 / 87.0 / 87.4 88.6 / 88.8 / 89.1
CBLR_0.05 88.1 / 88.4 / 88.7 87.0 / 87.2 / 87.5 87.5 / 88.0 / 88.4
CBLR_0.20 87.2 / 87.7 / 88.5 86.2 / 86.8 / 87.4 89.1 / 89.4 / 89.7

BLR 87.8 / 88.2 / 88.8 86.3 / 86.8 / 87.3 89.6 / 89.8 / 90.0
BLR-LC-N_adapt 88.5 / 88.6 / 88.7 87.2 / 87.3 / 87.5 84.8 / 85.6 / 86.4
BLR-LC-N_train 88.2 / 88.4 / 88.6 87.2 / 87.3 / 87.4 72.7 / 73.6 / 75.4

DivDis 88.4 / 88.4 / 88.5 87.8 / 87.8 / 87.9 70.7 / 70.7 / 70.8



Table S2: PACS: test accuracy for all methods on all domains. We report the 20th percentile / mean / 80th percentile across
20 independent runs.

n∗ Method / e∗ A C P S

0 ERM 87.8 72.6 96.1 76.3

16

CBLR 87.8 / 88.5 / 89.5 80.8 / 81.7 / 82.7 96.7 / 97.1 / 97.6 77.6 / 78.3 / 79.5
CBLR_0.05 86.6 / 87.4 / 88.8 79.5 / 80.2 / 81.6 96.1 / 96.7 / 97.3 76.1 / 76.9 / 78.0
CBLR_0.20 83.9 / 85.4 / 87.0 78.2 / 79.3 / 81.0 95.8 / 96.3 / 96.7 73.8 / 74.9 / 76.4

BLR 86.8 / 87.7 / 89.2 76.1 / 78.8 / 82.9 95.5 / 96.1 / 97.0 70.1 / 72.5 / 75.5
BLR-LC-N_adapt 88.3 / 88.7 / 89.5 81.8 / 82.6 / 83.5 97.0 / 97.3 / 97.6 77.8 / 78.7 / 79.9
BLR-LC-N_train 86.1 / 86.8 / 87.5 79.7 / 80.0 / 80.6 96.7 / 96.9 / 97.0 76.1 / 76.4 / 77.6

DivDis 85.1 / 85.6 / 86.3 79.3 / 79.3 / 79.7 96.4 / 96.8 / 97.6 77.7 / 78.0 / 79.1

32

CBLR 88.8 / 89.8 / 90.7 82.7 / 83.3 / 84.2 96.7 / 97.1 / 97.3 78.6 / 79.2 / 80.1
CBLR_0.05 87.5 / 88.5 / 89.5 80.3 / 81.6 / 82.7 96.1 / 96.6 / 97.0 77.2 / 78.3 / 79.5
CBLR_0.20 86.1 / 87.0 / 88.5 79.5 / 80.8 / 82.1 96.1 / 96.4 / 97.0 75.4 / 76.8 / 78.2

BLR 88.8 / 89.6 / 90.7 82.1 / 82.9 / 84.4 96.4 / 96.9 / 97.6 76.4 / 77.6 / 79.2
BLR-LC-N_adapt 89.0 / 89.5 / 90.2 81.6 / 82.5 / 83.8 97.0 / 97.3 / 97.6 76.4 / 77.0 / 79.9
BLR-LC-N_train 86.1 / 86.9 / 87.5 79.7 / 80.3 / 81.0 96.7 / 97.0 / 97.3 75.9 / 76.4 / 77.5

DivDis 85.1 / 85.1 / 85.6 79.1 / 79.6 / 81.2 96.4 / 96.8 / 97.3 77.1 / 77.3 / 78.5

64

CBLR 89.7 / 90.8 / 91.7 84.2 / 85.0 / 85.7 97.0 / 97.4 / 97.9 79.9 / 80.5 / 81.4
CBLR_0.05 89.0 / 89.4 / 90.2 82.3 / 83.3 / 84.2 96.4 / 96.9 / 97.3 78.5 / 79.4 / 80.4
CBLR_0.20 88.0 / 88.8 / 90.0 82.7 / 83.1 / 83.8 96.4 / 96.8 / 97.3 76.7 / 78.3 / 79.6

BLR 90.0 / 90.5 / 91.4 84.2 / 85.3 / 86.1 97.0 / 97.3 / 97.9 79.4 / 80.0 / 81.3
BLR-LC-N_adapt 89.2 / 90.0 / 90.7 82.3 / 82.7 / 84.4 97.0 / 97.2 / 97.6 77.6 / 79.0 / 80.5
BLR-LC-N_train 87.0 / 87.4 / 88.0 79.3 / 79.9 / 80.6 97.0 / 97.0 / 97.3 75.5 / 76.3 / 77.2

DivDis 85.6 / 85.9 / 86.8 78.6 / 79.1 / 79.9 96.4 / 96.8 / 97.3 77.2 / 77.6 / 78.6

128

CBLR 90.7 / 91.5 / 92.2 86.3 / 86.9 / 87.8 97.3 / 97.6 / 98.2 81.5 / 82.4 / 83.7
CBLR_0.05 90.0 / 90.4 / 91.4 84.2 / 85.5 / 87.6 97.3 / 97.3 / 97.6 80.8 / 81.4 / 83.4
CBLR_0.20 89.5 / 90.6 / 92.4 84.0 / 84.8 / 87.4 96.7 / 96.9 / 97.3 79.2 / 79.7 / 81.3

BLR 90.5 / 91.1 / 91.7 86.1 / 86.6 / 87.4 96.7 / 97.4 / 97.9 80.1 / 81.2 / 82.5
BLR-LC-N_adapt 89.2 / 89.9 / 90.7 82.7 / 83.2 / 84.2 97.0 / 97.3 / 97.9 79.1 / 79.8 / 80.6
BLR-LC-N_train 86.6 / 87.2 / 88.0 79.5 / 80.4 / 81.2 96.7 / 97.0 / 97.3 75.7 / 76.4 / 77.6

DivDis 84.8 / 85.4 / 86.1 78.8 / 79.7 / 80.6 96.4 / 96.9 / 97.3 76.7 / 77.2 / 78.1

256

CBLR 91.9 / 92.5 / 92.9 86.3 / 86.7 / 88.5 97.6 / 97.9 / 98.2 83.7 / 84.2 / 85.1
CBLR_0.05 91.9 / 92.3 / 92.7 78.4 / 82.9 / 87.6 97.3 / 97.5 / 97.9 82.9 / 83.5 / 84.2
CBLR_0.20 91.4 / 91.9 / 92.4 85.7 / 86.9 / 88.7 97.3 / 97.5 / 97.9 81.8 / 82.9 / 83.8

BLR 91.4 / 91.8 / 92.4 85.9 / 86.5 / 87.4 97.3 / 97.6 / 98.2 80.6 / 81.7 / 82.8
BLR-LC-N_adapt 89.7 / 90.0 / 90.5 80.8 / 82.5 / 84.2 97.0 / 97.4 / 97.9 77.2 / 78.3 / 80.1
BLR-LC-N_train 87.5 / 87.9 / 88.5 79.9 / 80.4 / 81.0 96.7 / 96.8 / 97.0 76.9 / 77.2 / 78.5

DivDis 85.3 / 85.8 / 87.0 80.6 / 80.6 / 80.8 96.7 / 96.9 / 97.3 76.3 / 77.0 / 78.1
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