Making minimal solvers inverse-free using null space computation

Supplementary Material

In this supplementary part, the next section presents the
connection between realization theory and the proposed
method. In Section 2, we discuss the effect of spurious so-
lutions on the null space computation process by using an
example. Finally, in Section 4, we provide additional error
histograms and a table showing the sizes of the coefficient
matrices for the minimal problems.

1. Realization theory and sparse reultant-
based solvers

Our proposed method is considered to be part of sparse
resultant-based methods. As stated earlier, in [1], it was
proven that sparse resultant and action-based solvers are
equivalent under certain conditions. Realization theory is
another approach for solving polynomial systems of equa-
tions [2, 3], particularly in control theory applications.
It can also be shown that realization theory and sparse
resultant-based methods are equivalent under certain con-
ditions.

In realization theory, the properties of multivariate Van-
dermonde vectors are used to convert the problem into a
generalized eigenvalue problem. Notably, this approach
does not require the system to have a square coefficient ma-
trix.

A multivariate Vandermonde vector is an extension
of the univariate Vandermonde vectors. Suppose x =
(z1,22,...,2,) € R™is a vector of variables. Then a mul-
tivariate Vandermonde vector is defined as follows,

x
a®

V(x) = . (1)
<at™

where each o) = (agz), . ,agf)) is the exponent vector

; (i) (i) (3)
. (%) «a @ .
of amonomial and x® "~ = 2" x5 ---x," is the cor-

responding monomial. Based on this definition, the eigen-
vectors encountered in resultant-based methods are each a
multivariate Vandermonde vector.

The method based on realization theory relies on the ob-
servation that if we multiply the Vandermonde vector of a
solution by one component of that solution, some of the
monomials presented in the original Vandermonde vector
will also appear in the product. For simplicity, suppose we
have two variables x, and y, and the system degree is two,

then if we mutiply the Vandermonde vector by =, we have

1 T

Y e

Y _ | Ty

A 2)
Ty 22y
x? 3

Obviously, the first, second and fourth elements of the re-
sulting vector also appear in the original Vandermonde vec-
tor. This relationship can be expressed using the following
equation:

P1 Vo= P2V (3)

where V' represents the Vandermonde vector of the solution,
o denotes a component of the solution such as x or y, which
is also referred to as the shift function. The matrices P, and
P» are row selection matrices.

In this formulation, V' is replaced by a matrix formed
from the null space of the Macaulay matrix, multiplied by
a basis transformation matrix. As a result, the problem re-
duces to solving a generalized eigenvalue problem. This
method has also been applied in a tensor context, where the
tensor CP decomposition was used to extract the solutions
of the polynomial system. [4].

In the context of sparse reultant-based solvers, suppose
we introduce an auxiliary equation x — A where A is a new
variable. Then, if we replace = that was multiplied into the
Vandermonde vector in the left part of Equation (2) with A,
then Equation (2) is actually consisted of polynomial x — A
multiplied by six monomials.

Therefore, for the sparse resultant-based and realization
theory methods to be equivalent, it suffices that the first,
second and fourth equations of Equation (2) are present in
the expanded system of polynomials used in the sparse re-
sultant method. Based on this observation, we can state the
following proposition.

Proposition 1 If P,V \ = P,V is present in the set of muli-
ples of the extra equation x —)\, then the sparse reultant-
based and relization theory methods are equivalent.

2. The role of spurious solutions in null space
computation

Spurious solutions are a known issue in resultant-based
methods. This typically indicates that the coefficient ma-
trix is larger than it should be. While extraneous solutions
are generally considered a nuisance, in the context of null

Method Sparse Resultant-based GAPS
problem_9pt2radial 90 x 117 165 x 200
problem_relpose_6p_focal 12 x 30 31 x 50
problem_relpose_7p_fr_1s_partial elim 22 x 41 52 x 71
problem_opt_pnp_hesch 90 x 117 88 x 115
problem_three-view_geometry_rad.dist. 146 x 178 190 x 222
problem_rel_pose_E+f_6pt 27 x 35 26 x 34
problem_p4p_optimal_abs_pos 339 x 371 359 x 392
problem_pc_relpose_5p_nulle_ne_simple 10 x 20 10 x 20
problem_triangulation_satellite 93 x 120 88 x 115
problem_unsync_relpose_diff_focal 120 x 166 104 x 152
problem_8ptF _radial _1s 11 x 20 11 x 20
problem_relpose_6p_focal_elim 21 x 36 21 x 36

Table 1. Sizes of the coefficient matrices for minimal problems using sparse resultant-based methods (Proposed and SRBM) and GAPS.

space calculations, they can sometimes be beneficial. For
more details, see the next example.

Example 1 In order to demonstrate the a key note in null
space computation, consider the following system in two
variables:

fi(z,y) = a12® + agzy + azy® + asx + asy + ap
fa(@,y) = bia? + baxy + bgy? + byx + bsy + bg
“4)
By adding the extra equation f3(x,y) :== x — X where \ is
a new and hidden variable, we can construct the Macaulay
matrix as follows:

bg bs by O by by O by O 1
0 be b5 b3 0 b4 bz 0 b1 y2
ag as as 0 aq as 0 al 0 Yy
0 ae as as 0 ayq az 0 al y3
) 0 0 1 0 0 0 0 x =0
0 —-Xx 0 0 0 1 0 0 0 zy
0 0 =X 0 0 0 1 0 0 zy?
0 0 0 0 —-x 0 0 1 o0 2
0 0 0 0 0 -x 0 o0 1 22y

(O]

We consider the transpose of the rows of the Macaulay
matrix that corresponds to the multiplicands of equations
fi1 and fy as At. We are intrested in the null space of this
matrix.

To facilitate this, we apply a permutation matrix to rear-
range the rows of At in descending order based on the num-

ber of non-zero elements. This reordering can improve the
efficiency and stability of subsequent symbolic or numerical

computations.
b6 0 ae 0 be 0 ae 0
b5 b6 as ag b4 0 aq 0
b3 b5 as as bl 0 al 0
0 b3 0 as 0 b3 0 as
A'=1| by 0 a4 0 |=PA=| 0 b 0 a2
b2 b4 az (e} 0 b1 0 al
0 b2 0 as b5 be as ag
bl 0 al 0 b3 b5 as as
0 b1 0 ai ba by az aq

(6)
As we can see, there are six rows with only two non-zero
elements, and three of them have the same structure. This
fact is helpful for making some rows zero and making other
ones containing only one non-zero element.
If the extended system contained one more extraneous
solution, we get

0 bs bs by 0 bs by 0O b1 O 1
0 0 0 0 bg bs bs by ba b ?=/2
ag as as 0 agq az 0 ay 0 0 Yy
0 ag as as 0 a4 as 0 al 0 y3
—A 0 0 0 1 0 0 0 0 0 x
0 —A 0 0 0 1 0 0 0 0 xy
0 0 —-x 0 0 0 1 0 0 0 zy?
0 0 0 0 -x 0 0 1 0 0 z?
0 0 0 0 0 —A 0 0 1 0 g;zy
0 0 0 0 0 0 0 —A 0 1 z3
. .)
Repeating the previous process we get,
0 0 ag 0 0 b1 0 0
b6 0 as ae 0 0 ae 0
b5 0 as as 0 b4 ay 0
b3 0 0 as 0 bg a4 0
t 0 b a4 0 t b3 0 0 as
B = b4 b5 az aq = PB" = b b3 0 az
b2 b3 0 a2 bl b2 0 al
0 by a1 0 bs 0 a3 as
b1 bg 0 aq bs 0 as ae
0 b1 0 0 b4 b5 a aq

®)

Evidently, the sructure of this matrix make the process of
Gaussian Fraction-Free Elimination easier to do, because
we have two one-element rows and three two-element rows.

As demonstrated in the previous example, working with a
larger matrix—potentially containing extraneous solutions
in the extended version of the system—can actually facil-
itate the computation of the null space. This is especially
beneficial when the matrix includes single-element rows
and elements with shorter algebraic expressions, which sim-
plify symbolic elimination and make it easier to identify the
null space. Notably, this approach is particularly advanta-
geous when employing fraction-free Gaussian elimination,
as it helps preserve the sparsity of the matrix in the resulting
null space. We should note that while it is beneficial with
bigger matrices, the esistance of extraneous solutions can
have a effect on the final accuracy of the method, and they
should be eliminate via for example association with really
large eigenvalues.

3. Extracting null space from rows of transfor-
mation matrix

Given that the matrices for which we compute the null space
are typically tall (i.e., have many rows), a more efficient
strategy is to consider the transpose of the matrix. By ap-
plying fraction-free Gaussian elimination to the transposed
matrix, we can zero out its last rows. The corresponding
rows in the transformation matrix—those associated with
the zero rows—can then be used to construct the null space.

More formally, for matrix A with size k X p, we have a
transformation matrix C' such that

CA' = { A } 9)
0

where the number of zero rows is the same as the size of

null space of A, which is p — k. The last p — &k rows of C'

denoted by Z span the null space of A.

Similar to Step 5 of Algorithm 1, this way is based on
the fact that the null space of A is actually the orthogonal
complement of the row space of A and therefore we can
say that the null space is the orthogonal complement of the
column space of A?.

The main merit of this approach is that it eliminates
the need for back-substitution, as the null space is directly
extracted from the Fraction-free Gaussian elimination pro-
cess. We can see from Algorithm [that this approach is
mainly consisted of fraction-free Gaussian elimination.

Based on our experince, back-substitution approach is
slower but more stable than the approach using transfor-
mation matrix. This makes the back-substitution approach
more suitable for sparser matrices.

Algorithm 1: Compute Null Space via Transpose
and Fraction-Free Elimination
Input: Symbolic matrix A € R™*" with m > n
QOutput: Matrix N whose rows form a basis for
null(A)
1 AT < transpose of A;
2 C <+ I, (identity matrix of size m);

3 R+ AT,
4 Tow < 1;
5 for col =1ton do
6 Find the first nonzero entry in column col from
row row downward;
7 if pivot found at row k then
8 if £ # row then
9 L Swap rows row and k in both R and C;
10 for i = row + 1 to m do
1 if R[i, col] # 0 then
12 RJ[i,:] + R[row,col] - R[i,:
] — RJ[i, col] - R[row,:];
13 Cli,:] < R[row,col] - Cli,:
| — RJ[i, col] - Clrow,:];
14 row 4 row + 1;

15 rank < number of nonzero rows in R;
16 N < rows (rank + 1) to m of C;
17 return N

4. Error histograms and coefficient matrix
sizes

We have included additional plots of error histograms and
the sizes of coefficient matrices in Figure | and Table 1. As
can be seen from Table 1, the proposed method generally
performs better in most cases when the size of the coeffi-
cient matrix is large.

035 problem_tri lation_satellite
—GAPS SRBM
03h —Proposed Method
025 q
2 02F 1
z
=
3
20.15F B
0.1F 4
0.05+ 1
0 | 4 | | | |
20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
Residuals (logw)
(a) Histogram of the problem_triangulation_satellite.
03 problem_relpose_6p_focal_elim
. T T T T ; T
—GAPS SRBM
025 —Proposed Method
02F 1
Z
£0.15F 1
D
a
0.1+ 1
0.05F q
0 | _ I | | | | =
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
Residuals (logw)
(c) Histogram of the problem_relpose_6p_focal_elim
0.4 problem_opt_pnp_hesch
. T T i : :
—GAPS SRBM
035F —Proposed Method
03F q
0.251 |
&
2 02F J
3
a
0.15F q
0.1 |
0.05+ / 1
) S
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
Residuals (logw)
(e) Histogram of the problem_opt_pnp_hesch.
03 problem_p4p_optimal_abs_pos
.3 T T T ; : T
—GAPS SRBM
025 —Proposed Method
02F 1
&
£0.15 1
3
=}
0.1F q
0.05F q
0 | | f | | | .
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

Residuals (logw)

(g) Histogram of the problem_p4p_optimal_abs_pos.

prob_pc_relpose_5p_nulle_ne_simple

—GAPS
— Proposed Method

T
SRBM

0 | | | | h . L I
20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
Residuals (logm)

(b) Histogram of the prob_pc_relpose_5p_nulle_ne_simple.

problem_8ptF_radial_1s
T T

0.4 T i T :
—GAPS SRBM
0351 —Proposed Method
0.3F J
0.25F |
i
2 02f j
D
[=]
0.15F J
0.1+ \]
0.05F N 1
0 | _ | | | I . .
20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
Residuals (logm)
(d) Histogram of the problem_8ptF _radial _1s.
07 problem_rel_pose_E+f 6pt
. T T T ; T :
—GAPS SRBM
0.6F —Proposed Method
0.5F |
204r b
|7}
5
203F 4
0.2 |
0.11 b
0 | . | | S R R |
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
Residuals (log 10)
(f) Histogram of the problem rel pose E+f 6pt.
02 problem_three-view_g: ry_rad._dist.
. 7 7 T
—GAPS SRBM
—Proposed Method
0.15F J
z
2 0.1F j
3
=] \
005t \/ 8
N | | ! —
-20 -15 -10 -5 0 5 10

Residuals (log 1 0)

(h) Histogram of the problem_three-view_geometry_rad._dist.

Figure 1. Histograms of Log1 residual errors for eight problems.

References

(1]

(2]

(3]

(4]

Snehal Bhayani, Janne Heikkild, and Zuzana Kukelova.
Sparse resultant-based minimal solvers in computer vision
and their connection with the action matrix. Journal of Math-
ematical Imaging and Vision, 66(3):335-360, 2024. 1
Philippe Dreesen and Bart De Moor. Polynomial optimization
problems are eigenvalue problems. In Model-Based Control:
Bridging Rigorous Theory and Advanced Technology, pages
49-68, 2009. 1

Philippe Dreesen, Kim Batselier, and Bart De Moor. Back to
the roots: Polynomial system solving, linear algebra, systems
theory. IFAC Proceedings Volumes, 45(16):1203—-1208, 2012.
1

Jeroen Vanderstukken, Patrick Kiirschner, Ignat Domanov,
and Lieven De Lathauwer. Systems of polynomial equa-
tions, higher-order tensor decompositions, and multidimen-
sional harmonic retrieval: A unifying framework. part ii: The
block term decomposition. SIAM Journal on Matrix Analysis
and Applications, 42(2):913-953, 2021. 1

	. Realization theory and sparse reultant-based solvers
	. The role of spurious solutions in null space computation
	. Extracting null space from rows of transformation matrix
	. Error histograms and coefficient matrix sizes

