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A MORE ANALYSIS

Module-wise training Regarding to the module-wise training strategy, we employ a stagewise
fashion for sequence refinement. This is represented by the equation s(l) = fϕ(l)(s(l−1); z(l−1)),
where s(l) represents the refined sequence generated by the l-th refinement module fϕ(l) , and z(l−1)

denotes the pretrained embedding extracted from s(l−1). The module-wise training could signifi-
cantly reduce the computational cost and helpful for alleviating oversmoothing:

1. Stantard: For a given protein, during each epoch, the parameters of layers l and l + 1
are updated, resulting in a change in s(l). Due to the large size of the pretrained model
(ESM2-650M), performing a forward pass to obtain the updated version of z(l) consumes
significant GPU memory and increases the time cost. Consequently, conducting end-to-end
training would significantly increase the computational cost.

2. Ours: By fixing θ(l) before training θ(l+1), we can ensure that s(l) is retrained without
the need for updating z(l). This approach allows us to initialize s(l) in the first epoch and
reuse it in subsequent epochs, effectively avoiding redundant forward passes of the large
pretrained model.

3. The overall KWDesign is l ∗ 10-layer GNN model, where each refienment module consists
of 10 GNN layers. It is well known that GNN models suffer from the issue of oversmooth-
ness when training in an end-to-end fashion. To overcome this, we adopt module-wise
training to ensure that the pre-placed module serves as a good initialization for the subse-
quent module. As discovered by (Pina & Vilaplana, 2023), the layer-wise training promotes
the node features to be uncorrelated at each single layer to alleviate oversmoothing.

Distribution comparison Fig. 4 shows the confidence
distributions of positive and negative residues generated
by PiFold and KW-Design on the CATH4.2 test set. Pos-
itive residues tend towards a confidence of 1.0, while
negative residues have mostly below 0.6 confidence, in-
dicated by different colors. Our results demonstrate that
KW-Design produces positive residues with higher confi-
dence compared to PiFold, while also reducing the num-
ber of negative residues. This suggests that KW-Design
can convert low-confidence positive residues to high-
confidence ones and correct negative residues as positive
ones.

Confidence

Figure 4: Confidence distributions.

Compare structures In Fig.5, we use ESMFold(Lin et al., 2022) to generate protein structures
from designed sequences and compare the designed proteins of PiFold and KW-Design against
the reference ones. We observe that the designed structures of KW-Design are more similar to
the reference ones than those of PiFold. Specifically, KW-Design achieves 15.9%, 35.3%, and
60% improvement in structural mean squared error (MSE) on the 1a73, 1a81, and 1ac1 proteins,
respectively. These results demonstrate that KW-Design can generate proteins that are structurally
more similar to the reference ones compared to PiFold.

(a) PDBID: 1a73
PiFold MSE: 0.63,  Our: 0.50

(b) PDBID: 1a81
PiFold MSE: 0.34,  Our: 0.26

(c) PDBID: 1ac1
PiFold MSE: 0.75,  Our: 0.30

Figure 5: Comparing the designed proteins. The green structures are reference ones, while the gray and purple
structures are designed by PiFold and KW-Design, respectively. We use red circles to highlight the regions
where KW-Design produces more similar structures to the reference ones than PiFold.
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B DISCUSSION ABOUT DIVERSITY

TS45 In addition to designing single- and multi-chain proteins, we also include a set of de novo
proteins collected from the CASP15 competition to provide a more realistic assessment (Senior
et al., 2019; Kinch et al., 2021). The Critical Assessment of Protein Structure Prediction (CASP15),
which took place from May through August 2022, was held after the release dates of CATH4.3 (July
1, 2019) and PDB (August 2, 2021). In CASP15, diverse protein targets are introduced, including
FM (Free Modeling), TBM (Template-Based Modeling), TBM-easy, and TBM-hard proteins. There
are 18 FM, 25+2 TBM (including 20 TBM-eazy, 5 TMB-hard, 2 FM/TBM). The FM targets have
no homology to any known protein structure, making them particularly suitable for de novo protein
design. The TBM targets have some homology to known protein structures, while the TBM-easy
targets are relatively easy TBM targets. The TBM-hard targets are more difficult TBM targets, with
lower levels of sequence identity to known structures. We download the public TS-domains struc-
tures from CASP15 which consists of 45 structures, namely TS45. We use TS45 as a benchmark for
de novo protein design, as the structures are less similar to known structures and were not determined
prior to the construction of the training sets.

Diversity Definition To improve the success rate of protein design, it is important to explore a set
of protein sequences rather than placing a bet on a single sequence. In this case, generating diverse
sequences is crucial for exploring the reasonable protein sequence space. We define the pairwise

diversity (Jain et al., 2022) as Dij =
∑n

l=1 1ri,l ̸=rj,l

n , where ri,l indicates the l-th residue of the i-th
designed sequence. The overall diversity score is

Div =
∑
i,j

Di,j

m2
(14)

where i, j ∈ {1, 2, 3, · · · ,m} and m is the number of totally designed sequences. By default, we
set m = 10. However, measuring diversity alone without combining it with other metrics may be
misleading. For example, a high diversity indicates a low recovery rate, more likely to result in a
low structural similarity.

Experiments & Analysis We benchmark the diversity on TS45 dataset using models pre-trained
on CATH4.3. As discovered by previous research (Hsu et al., 2022; Dauparas et al., 2022), the
sampling temperature affects diversity. Denote the temperature as T , the predicted probability vector
is p ∈ Rn,20, we sample new sequences from the distribution of Multinomial(softmax(p/T )).
We vary the temperature from 0.0 to 0.5 and plot the trends of recovery and diversity in Fig. 6. Under
the same sampling temperature, high recovery leads to decreased diversity. However, at the same
level of recovery, stronger models have higher diversity. This phenomenon can be attributed to
the fact that stronger models, such as KWDesign, PiFold, and ProteinMPNN, exhibit relatively high
confidence levels for a larger number of residues. Even after applying smoothing to the probability
distribution, the recovery rate remains consistently high, while a noticeable improvement is observed
in terms of diversity.

Recovery

Diversity

Figure 6: The trends of recovery and diversity.
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C MORE COMPARISON

Compare to LMDesign In parallel with our work, we are observing another exciting project called
LMDesign (Zheng et al., 2023), which was recently published at ICML as an oral presentation.
LMDesign aims to use the pre-trained ESM model to improve protein design. However, there are
several differences between our knowledge-Design and LMDesign.

• More comprehensive: We enhance protein design by fusing multimodal knowledge from
pre-trained models, including both structural and sequential information, while LMDesign
only uses single-modal information. Our experiments demonstrate that combining these
modalities leads to nontrivial improvements, as shown in Table 5

• More efficient: We introduce the memory-retrieval mechanism to save more than 50% of
the training time, while LMDesign does not use this mechanism.

• Novel modules: We introduce confidence-aware recycling techniques as well as virtual
MSA to boost the model performance.

• More effective: Overall, our model outperforms LMDesign by 5.12% on the CATH4.2
dataset.

Table 6: Results comparison on the CATH dataset. All baselines are reproduced under the same code frame-
work, except ones marked with †. We copy results of GVP-large and ESM-IF from their manuscripts (Hsu
et al., 2022). The best and suboptimal results are labeled with bold and underline.

Model Perplexity ↓ Recovery % ↑ CATH version
Short Single-chain All Short Single-chain All 4.2 4.3

StructGNN 8.29 8.74 6.40 29.44 28.26 35.91 ✓
GraphTrans 8.39 8.83 6.63 28.14 28.46 35.82 ✓
GCA 7.09 7.49 6.05 32.62 31.10 37.64 ✓
GVP 7.23 7.84 5.36 30.60 28.95 39.47 ✓
GVP-large† 7.68 6.12 6.17 32.6 39.4 39.2 ✓
AlphaDesign 7.32 7.63 6.30 34.16 32.66 41.31 ✓
ESM-IF† 8.18 6.33 6.44 31.3 38.5 38.3 ✓
ProteinMPNN 6.21 6.68 4.61 36.35 34.43 45.96 ✓
PiFold 6.04 6.31 4.55 39.84 38.53 51.66 ✓
LMDesign 6.77 6.46 4.52 37.88 42.47 55.65 ✓
Knowledge-Design (Ours) 5.48 5.16 3.46 44.66 45.45 60.77 ✓
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sc-TM The structural similarity is the ultimate standard for measuring the quality of the designed
sequence. However, the structures of designed protein sequences needed to be predicted by other al-
gorithms, such as AlphaFold (Jumper et al., 2021), OmegaFold (Wu et al., 2022) and ESMFold (Lin
et al., 2022). The protein folding algorithm itself has a certain inductive bias and will cause some
prediction errors, which will affect the evaluation. To overcome the inductive bias, we introduce the
self-consistent TM-score (sc-TM) metric:

sc-TM = TMScore( ˆf(S), f(S)) (15)

where f is the protein folding algorithm and TMscore(·, ·) is a widely used metric (Zhang &
Skolnick, 2005) for measuring protein structure similarity. Since the structures of the designed
sequence and reference sequence are predicted by the same protein folding algorithm, the model’s
inductive bias is expected to be canceled out when calculating the TM-score. This approach results
in a more robust metric, called the sc-TM, that is less affected by the inductive bias of the protein
folding algorithm.

sc-TM Results On the CASP15 dataset, we investigate the recovery and sc-TM metrics as the
temperature increases. To compute sc-TM, we utilize AlphaFold to predict protein structures from
sequences. According to Fig.7 and Fig.6, we observe that a slight increase in temperature from
0 to 0.1 is beneficial in significantly enhancing diversity while maintaining good recovery and sc-
TM. Specifically, when the sampling temperature is set to 0.0 and 0.1, KWDesign outperforms the
baselines, achieving the highest sc-TMScore.
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Figure 7: The statistics of recovery and sc-TM with increasing temperature.
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Do pretrained language models prefer to correct disordered regions? Thanks to the insightful
comments of Reviewer 4EsM, we investigate the preferred regions that pretrained language models
tend to correction. Expeirments follow five steps:

1. Select PDBs containing diverse protein structures, run the pretrained PiFold to get the de-
signed sequence Spi

2. Further use the pretrained KWDesign to refine Spi, resulting in the optimized sequence
Skw. All the used PiFold and KWDesign are pretrained on CATH4.3.

3. For each residue, we record whether PiFold has successfully recovered the residue type
(goodpi) or not (badpi). Similarly, we record goodkw and badkw.

4. We list four states for each residues and set a different color for each state: goodpi →
badkw(red), badpi → badkw(gray), goodpi → goodkw(white), badpi → goodkw(green).

5. We show the colored proteins with PyMol and present them in Fig.8.

Our finding is that pretraining knowledge corrects for both disordered and ordered regions. However,
it seems that the correction is more pronounced for regions with well-defined secondary structures
(α-helix and β-sheet).

1kllA00 1ud9A00

2d9eA00 3fkfA00

5nckA01 17gsA01

Figure 8: The colored proteins.
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