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APP: Adaptive Pose Pooling for 3D Human Pose Estimation from
Videos

Anonymous Authors

ABSTRACT
Current advancements in 3D human pose estimation have attained
notable success by converting 2D poses into their 3D counterparts.
However, this approach is inherently influenced by the errors intro-
duced by 2D pose detectors and overlooks the intrinsic spatial infor-
mation embedded within RGB images. To address these challenges,
we introduce a versatile module called Adaptive Pose Pooling (APP),
compatible with many existing 2D-to-3D lifting models. The APP
module includes three novel sub-modules: Pose-Aware Offsets Gen-
eration (PAOG), Pose-Aware Sampling (PAS), and Spatial Temporal
Information Fusion (STIF). First, we extract latent features of the
multi-frame lifting model. Then, a 2D pose detector is utilized to
extract multi-level feature maps from the image. After that, PAOG
generates offsets according to featuremaps. PAS uses offsets to
sample featuremaps. Then, STIF can fuse PAS sampling features
and latent features. This innovative design allows the APP module
to simultaneously capture spatial and temporal information. We
conduct comprehensive experiments on two widely used datasets:
Human3.6M and MPI-INF-3DHP. Meanwhile, we employ various
lifting models to demonstrate the efficacy of the APP module. Our
results show that the proposed APP module consistently enhances
the performance of lifting models, achieving state-of-the-art results.
Significantly, our module achieves these performance boosts with-
out necessitating alterations to the architecture of the lifting model.
Code and checkpoints are available at: Anonymous Github.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.

KEYWORDS
3D Human Pose Estimation, Adaptive Pose Pooling, Feature Fusion

1 INTRODUCTION
3D human pose estimation (HPE) is a critical task in computer
vision, and its goal is to estimate 3D human poses from images,
videos, and 2D human poses. It attempts to estimate precise posi-
tions and orientations of 3D human keypoints. The applications of
3D HPE are pretty large, such as virtual/augmented reality [24, 29],
motion analysis [2, 8, 43], human-computer interaction [1, 12], and
autonomous driving [13] etc. Models for 3D HPE can be broadly
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Figure 1: Difference between our method and previous meth-
ods. (a) Previous methods freeze the 2D pose detector and
train the lifting model. (b) Our proposed method utilizes the
2D pose features extracted by the lifting model and takes
multi-level feature maps extracted by the 2D pose detector
as inputs. Our method addresses the issue of underutilizing
image features by leveraging multi-level feature maps ex-
tracted by a pretrained 2D pose detector. Furthermore, while
single-frame models utilize image features, they lack tempo-
ral information. However, the APP module addresses this by
extracting temporal and spatial information simultaneously.

categorized into two fundamental classes based on the number
of viewpoints employed: multi-view and single-view. Multi-view
approaches leverage information from multiple camera perspec-
tives, as explored in studies such as [6, 14, 17, 34, 46]. They mitigate
depth ambiguity and reach better results than monocular 3D HPE
methods. However, their practical applicability is hindered by the
necessity of employing multiple cameras.

In contrast, single-view models offer a more applicable alterna-
tive and can be subdivided into single-stage and two-stage method-
ologies. Single-stage methods [3, 18, 25, 31, 40, 50] directly infer
3D human pose from input images or video frames without inter-
mediate steps. While two-stage like early methods [26, 32] adopt
a sequential approach. As shown in Figure 1(a), off-the-shelf 2D
pose detectors [5, 30, 39] extract 2D human poses from input im-
ages or video frames. After that, they can obtain corresponding 3D
human poses based on these 2D estimations, so this stage is often
called the lifting stage. Models in the lifting stage can further be
categorized into single-frame or multi-frame variants. Single-frame
models [7, 47] infer 3D human poses from individual images, while
multi-frame models process sequences of 2D human poses. The
latter one contains two categories: many-to-one and many-to-many

https://anonymous.4open.science/r/APP
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

methods. Many-to-one models estimating the 3D human pose of
a central frame using multiple 2D human poses [21, 22, 48, 49],
and many-to-many, also called seq2seq models inferring every
frame of a 3D human pose from corresponding 2D human poses
[4, 27, 33, 37, 45, 51]. They try to address different problems, rang-
ing from spatio-temporal information exploration to enhancing
model robustness.

In this paper, we focus on monocular 3D HPE. It uses only one
camera to obtain images of humans. Therefore, it introduces ambi-
guity because of the lack of depth information, which is an ill-posed
task. Besides, occlusion, including self-occlusion and occlusion by
other objects and persons, needs to be drawn to researchers’ atten-
tion. Hence, single-view models sometimes fail to get accurate and
robust 3D human poses owing to depth ambiguity and occlusion.
Many monocular 3D HPE models suffer from them because
the information of the input images fails to be fully used.
HEMlets Pose [50] and Context-Aware PoseFormer (CA-PF) [47] try
to handle this. HEMlets Pose explicitly lets the model learn relative
depth among different keypoints in 2D human poses. In compari-
son, CA-PF adopts Deformable Attention [52] to extract features
of feature maps obtained by the 2D pose detector. However, these
methods [47, 50] are single-frame models that cannot capture
temporal dynamics. Recently, multi-frame lifting models have
reached significant improvement. Why not use both image and
temporal features? This work proposes a well-designed Adaptive
Pose Pooling (APP) module. Serving as a plug-and-play component
that can be integrated with many existing lifting models. The APP
module facilitates extracting temporal and spatial information from
multi-frame 2D human pose data and feature maps. Figure 1 illus-
trates the distinction between previous methods and our proposed
method. Previous methods freeze the 2D pose detector and only
take detected 2D poses as the model input to estimate correspond-
ing 3D poses. Our method uses feature maps extracted by a 2D
pose detector and takes multi-frame lifting models’ calculated pose
features. Therefore, the APP module inherently can capture spatio-
temporal features. Do we really need to use all the features of the
feature maps? Features near 2D poses should be more important
than features at other positions. To enhance the model’s flexibility,
the model should adjust the sampling points during training. In the
meantime, getting spatial and temporal features and interacting
among features is also important for the model.

Our proposed APP module contains three novel submodules:
Pose-AwareOffsets Generation (PAOG), Pose-Aware Sampling (PAS),
and Spatial Temporal Information Fusion (STIF). To address the
problem of insufficient utilization of spatial information in images,
we propose PAOG and PAS. PAOG leverages 2D human poses as
indices to learn offsets during training. PAS adaptively extracts
features from feature maps generated by the 2D human pose de-
tector. Though single-frame models use image features, they suffer
from lacking temporal features. We proposed STIF to solve this
problem by fusing image and temporal features. We conduct ex-
tensive experiments on two popular datasets: Human3.6M and
MPI-INF-3DHP. Our proposed method achieves a new state-of-the-
art performance, with 1.3mm (from 37.5mm to 36.2mm) and 1.1mm
(from 30.6mm to 29.5mm) improvement in terms of Mean Per-Joint
Position Error (MPJPE) and P-MPJPE (Procrustes-MPJPE) on Hu-
man3.6M. There are 4.6 (from 85.9 to 89.5) and 4mm (from 16.7mm

to 12.7mm) improvements for Area Under Curve (AUC) and MPJPE
on MPI-INF-3DHP.

Compared to current methods for monocular 3D HPE, our con-
tributions are summarized as follows:

• We propose the APP module, enabling multi-frame lifting
models to utilize information from the previous stage. This
module is a plug-and-play solution compatible with most
multi-frame lifting models and mitigates the problem of
excessive reliance on 2D human pose outputs.

• We introduce Pose-Aware Offsets Generation (PAOG) and
Pose-Aware Sampling (PAS). PAOG adjusts offsets relative
to 2D human poses during training, allowing PAS to learn
to adaptively capture spatial features from feature maps.

• We employ Spatial Temporal Information Fusion (STIF) to
facilitate information interaction between the features sam-
pled by PAS and the hidden feature of the lifting model. This
enables the APPmodule to capture both temporal and spatial
features simultaneously.

• We conduct experiments on two widely used datasets: Hu-
man3.6M andMPI-INF-3DHP. Our proposed approach achieves
state-of-the-art performance on both datasets compared to
previous methods. Importantly, it does not alter the lifting
model’s architecture.

2 RELATEDWORK
Transformers[42] initially dominated the domain of natural lan-
guage processing. Owing to its expressive performance, it has
gained significant attention in computer vision as well [10]. There-
fore, Transformer-based models have been increasingly applied
across various domains, including 3D human pose estimation. Pose-
Former [49] stands out as the pioneering model to integrate Trans-
formers into 3D human pose estimation. Building upon this founda-
tion, PoseFormerV2 [48] represents an advancement, introducing a
frequency domain approach to enhance model robustness against
fast motion changes. Furthermore, MHFormer [22] addresses the
challenge of depth ambiguity by learning the representations of
multiple hypothesis poses.

In the quest for improved efficiency and accuracy, novel architec-
tural modifications have emerged. StridedTrans [21] utilizes fully
connected layers in the Transformer encoder with stride convolu-
tions. It reduces computational complexity and progressively short-
ens sequence lengths, thus enhancing pose estimation accuracy
for the central frame. Meanwhile, MixSTE [45] focuses on model-
ing strong intra-frame correspondences between individual joints,
thereby facilitating the learning of spatio-temporal correlations.
P-STMO [37] adopts a strategy of occlusion masking to enable the
model to learn more resilient pose representations. Additionally, it
leverages a large volume of unlabeled data for self-supervised pre-
training, thereby augmenting generalization capabilities. HoT [23]
achieves this by implementing feature compression and restoration
techniques, rendering it compatible with various lifting models
while reducing computational overhead.

Advancements in attention mechanisms have also been pivotal.
HDFormer [4], for instance, integrates self-attention and higher-
order attention mechanisms to construct a hierarchical attention
module aimed at mitigating complexities and handling heavily
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Figure 2: Our proposed APP module. (a) APP module contains three novel sub-modules: Pose-Aware Offsets Generation (PAOG),
Pose-Aware Sampling (PAS), and Spatial Temporal Information Fusion (STIF). STIF comprises Feature Updating and Multi-Head
Cross Attention, which is not shown in this figure. Feature Updating is used to obtain 𝑭 𝑙 and 𝑿𝑙 . MHCA fuses the hidden
features 𝑿𝑙 with pose features 𝑷 . (b) PAOG learns sampling offsets and utilizes these offsets to guide feature extraction. (c) PAS
leverages learned offsets of PAOG and 2D human poses to sample multi-level feature maps.

occluded scenarios. STCFormer [41] decomposes correlation learn-
ing into spatial and temporal dimensions, thereby reducing model
complexity. Moreover, MotionBERT [51] emerges as a dual-stream
spatio-temporal Transformer capable of concurrently capturing
spatio-temporal information, showcasing state-of-the-art perfor-
mance across multiple downstream tasks. Similarly, MotionAG-
Former [27] introduces a hybrid architecture composed of mul-
tiple dual-stream modules, effectively capturing both spatial and
temporal features of keypoints in tandem. KTPFormer[33] tries to
overcome the weakness in existing transformer-based methods by
proposing two plug-and-play attention modules, namely Kinemat-
ics Prior Attention (KPA) and Trajectory Prior Attention (TPA).
These modules take advantage of the structure of the human body
and motion trajectory information.

For the 2D-to-3D lifting stage, given a sequence of 2D human
poses 𝒑 ∈ R𝑇× 𝐽 ×𝐶𝑖𝑛 , the goal is to estimate the corresponding 3D
human poses �̂� ∈ R𝑇× 𝐽 ×𝐶𝑜𝑢𝑡 , where 𝑇 is the sequence length of
2D pose frames, 𝐽 is the number of keypoints of the 2D human
pose,𝐶𝑖𝑛 and𝐶𝑜𝑢𝑡 are the dimension of the 2D and 3D human pose
keypoints, respectively.

These advancements collectively underscore the profound im-
pact and ongoing evolution of Transformer-based approaches in
advancing the field of 3D human pose estimation. Unlike our pro-
posed method, which integrates image features into estimating 3D
human poses, none of the existing transformer-based multi-frame
methods take advantage of such information. This presents a unique
opportunity for our approach to bridge this gap and potentially

unlock new avenues for improving the accuracy and robustness of
3D human pose estimation methods.

3 APPROACH
3.1 Framework Overview
Figure 2 illustrates the overview of our proposed method. Given
input images 𝑰 ∈ R𝑡×3×𝐻×𝑊 , where 𝑡 is the number of image
frames and 𝐻 ,𝑊 are the height and width of the image, note that
𝑡 ≪ 𝑇 . We first use a 2D pose detector to extract the multi-level
feature maps denoted by {𝑯𝑖 }𝑆𝑠=1, where 𝑆 is the number of scales.
𝑯1 is a heatmap to get the 2D pose 𝑝 . Then pose features 𝑷 ∈
R𝑇× 𝐽 ×𝑑𝑷 is calculated in the multi-frame lifting models without
regression head, where 𝑑𝑷 is the dimension of pose features. This
process is formulated as:

{𝑯𝑖 }𝑆𝑠=1 = 𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒 (𝑰 ),
𝑷 = 𝑀𝐿𝑀 (𝒑)

(1)

𝑀𝐿𝑀 (·) denotes multi-frame lifting models without regression
head; the backbone is a 2D pose detector. In Figure 2, the values
of averaged image features 𝑭 ∈ R𝑇×(𝑘2× 𝐽 )×𝑑 and hidden features
𝑿 ∈ R𝑇× 𝐽 ×𝑑 are updated by each layer of the APP module, where
𝑘 is the window size.

To get the initialized offsets 𝚫0 ∈ R𝑇×(𝑘2× 𝐽 )×𝐶𝑖𝑛 , we repeat the
values by taking each point in the 2D human poses 𝒑 as a center
and generating a 𝑘 × 𝑘 window around it. Then the 𝑝 is resized
to R𝑇×(𝑘2× 𝐽 )×𝐶𝑖𝑛 . Now, the 2D poses 𝑝 data is a 2D vector, which
means the 𝑥 and 𝑦 coordinates of the human keypoints.
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We denote 𝑭 𝑙−1 and 𝑿𝑙−1 as the last layer outputs of the APP
module. As for the first layer of APP, the offsets 𝚫0 are used to
extract the initialized 𝑭 0 and 𝑿0:

{𝑯𝑠 }𝑆𝑠=1 = 𝜃0
𝑓
({𝑯𝑠 }𝑆𝑠=1),

{𝑭𝑠 }𝑆𝑠=1 = 𝐺𝑟𝑖𝑑𝑆𝑎𝑚𝑝𝑙𝑒 ({𝑯𝑠 }𝑆𝑠=1,𝚫
0),

𝑭 0 =
1
𝑆

𝑆∑︁
𝑠=1

𝑭𝑠 ,

𝑿0 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙 (𝑭 0)

(2)

Where 𝜃 𝑓 is a group of 2D convolution operators to project multi-
level feature maps into the same dimension 𝑑 , the implementation
of 𝐺𝑟𝑖𝑑𝑆𝑎𝑚𝑝𝑙𝑒 is consistent with nn.functional.grid_sample in
PyTorch,𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙 is to get the mean value of each 𝑘×𝑘 window.

Our proposed APP module consists of 𝐿 stacked layers. In detail,
the calculation process of each layer APP module is defined as
follows:

𝑭 𝑙 ,𝑿𝑙 = 𝐴𝑃𝑃𝑙 (𝑭 𝑙−1,𝑿𝑙−1,𝒑, {𝐻𝑖 }𝑆𝑠=1, 𝑷 ) (3)

In the last layer of the APP module, a simple regression head
consisting of two fully connected layers estimates the final 3D
human pose given by 𝑿𝑙 .

3.2 Adaptive Pose Pooling
3.2.1 Pose-Aware Offsets Generation. Inspired by deformable con-
volution and deformable attention [9, 52], we propose the PAOG
module as shown in Figure 2 (b). PAOG adaptively learns offset
points during training. It takes the previous layer features 𝑭 𝑙−1 and
𝑿𝑙−1, and the 2D poses 𝑷2𝐷

𝑝 as input to generate learned offsets Δ𝑙 ,
which is defined as follows:

Δ𝑙𝑝 = 𝑃𝐴𝑂𝐺𝑙 (𝑭 𝑙−1,𝑿𝑙−1,𝒑)

= 𝜃𝑙𝑠 (𝑭 𝑙−1) ⊗ 𝜃𝑙𝑤 (𝑿𝑙−1) + 𝒑
(4)

Where ⊗ denotes element-wise multiplication, 𝜃𝑙𝑠 and 𝜃𝑙𝑤 gener-
ate offset points based on the image center and their corresponding
weights. Note that they are both fully connected layers.

3.2.2 Pose-Aware Sampling. Using the offset points Δ𝑙𝑝 generated
by PAOG and the previous averaged image features 𝑭 𝑙−1, PAS
also utilizes the multi-level feature maps {𝑯 }𝑆

𝑠=1 ∈ R𝑡×𝐶𝑠×𝐻𝑠×𝑊𝑠

extracted from the 2D pose detector. We follow Deformable-DETR
[52] before sampling features from the multi-level feature maps 𝑭 .
They are projected into the same dimension 𝑑 as in Eq. (2). The
sampling process is then defined as:

{𝑯𝑠 }𝑆𝑠=1 = 𝜃𝑙
𝑓
({𝑯𝑠 }𝑆𝑠=1),

{𝑭𝑠 }𝑆𝑠=1 = 𝐺𝑟𝑖𝑑𝑆𝑎𝑚𝑝𝑙𝑒 ({𝑯𝑠 }𝑆𝑠=1,𝚫
𝑙 ),

𝑭 𝑙 =
1
𝑆

𝑆∑︁
𝑠=1

𝑭𝑠

(5)

3.2.3 Feature Updating. At the 𝑙 layer of the APP module, we
update the averaged image features 𝑭 𝑙 and hidden features 𝑿𝑙 as

follows:
𝑿𝑙 = 𝜃𝑙

𝑘
(𝑭 𝑙 ),

𝑭 𝑙 = 𝛼𝑭 𝑙−1 + (1 − 𝛼)𝑭 𝑙
(6)

Where 𝜃𝑙
𝑘
(·) represents a convolution operation with a kernel

size of 𝑘2, whose size is the same as the previously mentioned 𝑘 ×𝑘

window, this operation allows the PAS to learn the weights of 𝑘2

features within the window to calculate 𝑿𝑙 given by 𝑭 𝑙 . 𝛼 is a
parameter controlling the magnitude of the update for 𝑭 𝑙 .

3.2.4 Multi-Head Cross Attention. MHCA enables the APP module
to harness the temporal features extracted by the multi-frame lifting
models while interacting with the spatial features extracted by
PAS. We first combine the pose feature 𝑷 extracted with positional
embeddings 𝑃𝐸, initialized to zero, and updated during training.
We take 𝑿𝑙 as 𝑸 , 𝑷 as 𝑲 , and 𝑽 , then we perform as follows:

𝑸 = 𝑿𝑙𝑾𝑸 ,𝑲 = 𝑷𝑾𝑲 , 𝑽 = 𝑷𝑾𝑽 ,

𝑿𝑙 = 𝑀𝐻𝐶𝐴𝑙 (𝑸,𝑲 , 𝑽 )
= 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ),

ℎ𝑒𝑎𝑑 𝑗 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑸 𝑗𝑲𝑗√︁
𝑑𝑷

)
𝑽𝑗

(7)

Where 𝑾𝑸 ∈ R𝑑×𝑑 , 𝑾𝑲 ∈ R𝑑𝑷 ×𝑑 , and 𝑾𝑽 ∈ R𝑑𝑷 ×𝑑 , 𝑗 ( 𝑗 =

1, ..., ℎ) represents the 𝑗-th attention head, and ℎ is the number of
attention heads.

3.2.5 Feed Forward Network. Likemanymonocular 3DHPE transformer-
based methods, we apply an FFN at the end to finish computing
the current layer. We use GeLU [15] as the activation function, as
outlined in Eq. (8).

𝑯 𝑙 = 𝐹𝐹𝑁 𝑙 = 𝐹𝐶 (𝐺𝑒𝐿𝑈 (𝐹𝐶 (𝑿𝑙 ))) (8)

3.2.6 Loss Function. The loss function of our proposedAPPmodule
is the same as [27, 51]. In addition to the widely used MPJPE loss,
we also incorporate the Mean Per-Joint Velocity Error (MPJVE) loss
and the normalized MPJPE [36] loss. Let L𝑝 , L𝑣 , and L𝑠 denote
these three losses. L𝑝 calculates the 𝐿2 distance between estimated
3D human poses �̂� and ground truth 𝒈, while L𝑣 minimizes the
difference between Δ�̂� and Δ𝒈. L𝑝 and L𝑣 are thus given by:

L𝑝 =

𝑇∑︁
𝑡=1

𝐽∑︁
𝑗=1

∥�̂�𝑡 𝑗 − 𝒈𝑡 𝑗 ∥2,

L𝑣 =

𝑇∑︁
𝑡=2

𝐽∑︁
𝑗=1

∥Δ�̂�𝑡 𝑗 − Δ𝒈𝑡 𝑗 ∥2

(9)

Where Δ�̂�𝑡 = �̂�𝑡 − �̂�𝑡−1, Δ𝒈𝑡 = 𝒈𝑡 − 𝒈𝑡−1. For L𝑠 , estimated 3D
poses �̂� is scaled according to ground truth 𝒈. Then, we calculate
MPJPE loss between scaled �̂� and 𝒈. The total loss is formulated as
follows:

L = 𝛾𝑝L𝑝 + 𝛾𝑣L𝑣 + 𝛾𝑠L𝑠 (10)

where 𝛾𝑝 , 𝛾𝑣 , and 𝛾𝑠 are weights for L𝑝 , L𝑣 , and L𝑠 , respectively.
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Table 1: Qualitative comparisons of 3D human pose estimation per action on Human3.6M. The best and second-best results are
bolded and blue, respectively. 𝑇 : Number of the input frames. Seq2Seq: Estimate 3D human pose for every frame.

MPJPE Seq2Seq T Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

MHFormer [22] CVPR’22 351 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
StridedTrans [21] TMM’22 351 40.3 43.3 40.2 42.3 45.6 52.3 41.8 40.5 55.9 60.6 44.2 43.0 44.2 30.0 30.2 43.7
MixSTE [45] CVPR’22 ✓ 243 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9
MixSTE [45] CVPR’22 ✓ 243 36.7 39.0 36.5 39.4 40.2 44.9 39.8 36.9 47.9 54.8 39.6 37.8 39.3 29.7 30.6 39.8
P-STMO [37] ECCV’22 243 38.9 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 59.4 44.9 42.2 42.7 29.4 29.4 42.8
CA-PF-HRNet-48 [47] NeurIPS’23 1 - - - - - - - - - - - - - - - 39.8
HDFormer [4] IJCAI’23 ✓ 96 38.1 43.1 39.3 39.4 44.3 49.1 41.3 40.8 53.1 62.1 43.3 41.8 43.1 31.0 29.7 42.6
HDFormer [4] IJCAI’23 ✓ 96 34.7 41.7 36.0 38.4 41.1 45.3 39.6 37.4 49.0 63.1 39.8 38.9 40.2 29.3 29.1 40.3
PoseFormerV2 [48] (f=27) CVPR’23 243 - - - - - - - - - - - - - - - 45.2
STCFormer [41] CVPR’23 ✓ 243 39.6 41.6 37.4 38.8 43.1 51.1 39.1 39.7 51.4 57.4 41.8 38.5 40.7 27.1 28.6 41.0
STCFormer-L [41] CVPR’23 ✓ 243 38.4 41.2 36.8 38.0 42.7 50.5 38.7 38.2 52.5 56.8 41.8 38.4 40.2 26.2 27.7 40.5
UPS [11] CVPR’23 243 37.5 39.2 36.9 40.6 39.3 46.8 39.0 41.7 50.6 63.5 40.4 37.8 44.2 26.7 29.1 40.8
D3DP [38] (H=20,K=10, J-Agg) ICCV’23 ✓ 243 37.3 39.5 35.6 37.8 41.3 48.2 39.1 37.6 49.9 52.8 41.2 39.2 39.4 27.2 27.1 39.5
GLA-GCN [44] ICCV’23 243 41.3 44.3 40.8 41.8 45.9 54.1 42.1 41.5 57.8 62.9 45.0 42.8 45.9 29.4 29.9 44.4
MotionBERT [51] (scratch) ICCV’23 ✓ 243 36.3 38.7 38.6 33.6 42.1 50.1 36.2 35.7 50.1 56.6 41.3 37.4 37.7 25.6 26.5 39.2
MotionBERT [51] (finetune) ICCV’23 ✓ 243 36.1 37.5 35.8 32.1 40.3 46.3 36.1 35.3 46.9 53.9 39.5 36.3 35.8 25.1 25.3 37.5
HoT [23] CVPR’24 243 - - - - - - - - - - - - - - - 39.0
KTPFormer [33] CVPR’24 ✓ 243 37.3 39.2 35.9 37.6 42.5 48.2 38.6 39.0 51.4 55.9 41.6 39.0 40.0 27.0 27.4 40.1
MotionAGFormer-B [27] WACV’24 ✓ 243 36.4 38.4 36.8 32.9 40.9 48.5 36.6 34.6 51.7 52.8 41.0 36.4 36.5 26.7 27.0 38.4

APP w. MotionBERT (finetune) (Ours) ✓ 243 34.6 36.7 37.4 31.5 38.9 45.7 35.9 33.3 48.4 53.4 39.1 36.3 34.4 24.2 24.8 37.0
APP w. MotionAGFormer-B (Ours) ✓ 243 33.7 37.2 35.0 32.2 37.2 40.7 34.6 34.3 45.1 51.4 37.0 34.6 36.8 27.0 26.8 36.2

P-MPJPE T Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

MHFormer [22] CVPR’22 351 31.5 34.9 32.8 33.6 35.3 39.6 32.0 32.2 43.5 48.7 36.4 32.6 34.3 23.9 25.1 34.4
StridedTrans [21] TMM’22 351 - - - - - - - - - - - - - - - -
MixSTE [45] CVPR’22 ✓ 243 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6
MixSTE [45] CVPR’22 ✓ 243 28.0 30.9 28.6 30.7 30.4 34.6 28.6 28.1 37.1 47.3 30.5 29.7 30.5 21.6 20.0 30.6
P-STMO [37] ECCV’22 243 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4
CA-PF-HRNet-48 [47] NeurIPS’23 1 - - - - - - - - - - - - - - - 32.7
HDFormer [4] IJCAI’23 ✓ 96 29.6 33.8 31.7 31.3 33.7 37.7 30.6 31.0 41.4 47.6 35.0 30.9 33.7 25.3 23.6 33.1
HDFormer [4] IJCAI’23 ✓ 96 27.9 32.8 29.7 30.6 32.5 35.0 28.9 29.2 38.3 50.0 32.9 30.1 31.8 23.6 22.8 31.7
PoseFormerV2 [48] (f=27) CVPR’23 243 - - - - - - - - - - - - - - - -
STCFormer [41] CVPR’23 ✓ 243 29.5 33.2 30.6 31.0 33.0 38.0 30.4 29.4 41.8 45.2 33.6 29.5 31.6 21.3 22.6 32.0
STCFormer-L [41] CVPR’23 ✓ 243 29.3 33.0 30.7 30.6 32.7 38.2 29.7 28.8 42.2 45.0 33.3 29.4 31.5 20.9 22.3 31.8
UPS [11] CVPR’23 243 30.3 32.2 30.8 33.1 31.1 35.2 30.3 32.1 39.4 49.6 32.9 29.2 33.9 21.6 24.5 32.5
D3DP [38] (H=20,K=10, J-Agg) ICCV’23 ✓ 243 30.6 32.4 29.2 30.9 31.9 37.4 30.2 29.3 40.4 43.2 33.2 30.4 31.3 21.5 22.3 31.6
GLA-GCN [44] ICCV’23 243 32.4 35.3 32.6 34.2 35.0 42.1 32.1 31.9 45.5 49.5 36.1 32.4 35.6 23.5 24.7 34.8
MotionBERT [51] (scratch) ICCV’23‡ ✓ 243 30.8 32.8 32.4 28.7 34.3 38.9 30.1 30.0 42.5 49.7 36.0 30.8 31.7 22.0 23.0 32.9
MotionBERT [51] (finetune) ICCV’23 ✓ 243 - - - - - - - - - - - - - - - -
HoT [23] CVPR’24 243 - - - - - - - - - - - - - - - -
KTPFormer [33] CVPR’24 ✓ 243 30.1 32.3 29.6 30.8 32.3 37.3 30.0 30.2 41.0 45.3 33.6 29.9 31.4 21.5 22.6 31.9
MotionAGFormer-B [27] WACV’24 ✓ 243 30.6 32.6 32.2 28.2 33.8 38.6 30.5 29.9 43.3 47.0 35.2 29.8 31.4 22.7 23.5 32.6

APP w. MotionBERT (finetune) (Ours) ✓ 243 30.0 31.3 31.9 26.9 32.8 37.0 29.8 29.2 40.7 47.9 34.1 30.0 30.0 21.0 21.7 31.6
APP w. MotionAGFormer-B (Ours) ✓ 243 28.2 30.2 28.5 26.5 30.1 33.2 27.2 28.1 36.4 42.0 30.8 27.7 29.7 21.4 21.9 29.5

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
4.1.1 Human3.6M. Human3.6M [16] is a widely used large-scale
3D human pose estimation dataset. The dataset consists of images
captured by four high-resolution cameras placed at the corners of a
room to capture the human body frommultiple angles. It includes 11
subjects performing 17 action scenarios (e.g., talking on the phone,
taking photos), making it a benchmark dataset for 3D human pose
estimation. We follow previous studies [27, 51] by using subjects 1,
5, 6, 7, and 8 for model training and subjects 9 and 11 for testing.

4.1.2 MPI-INF-3DHP. MPI-INF-3DHP [28] dataset comprises in-
door and outdoor scenes. It contains over 1.3 million frames cap-
tured from 14 camera viewpoints, recording eight actions performed
by eight subjects. The test set includes seven action classes and three
different scenarios: green screen, non-green screen, and outdoor
scenes.

4.1.3 Evaluation Metrics. For the Human3.6M dataset, we report
the MPJPE and P-MPJPE. Before computing the error, the former

aligns the estimated 3D pose with the ground truth root node
(hip). At the same time, the latter requires rigid alignment based
on the ground truth, including translation and rotation, before
error calculation. For the MPI-INF-3DHP dataset, consistent with
previous works [4, 27, 38, 47, 48], we report MPJPE, Percentage
of Correct Keypoints (PCK) with a threshold of 150mm, and Area
Under Curve (AUC).

4.2 Implementation Details
We adopt Transformer [42], MotionAGFormer-B [27], MixSTE [45],
MotionBERT [51], and HoT [23] as the foundation models. These
models’ dimensions 𝑑𝑷 are 128, 256, 512, and 128, respectively. For
a fair comparison, we use pretrained lifting models provided by the
authors.

YOLOv3 [35] is used to extract bounding boxes of humans in the
images, and then we crop the images to 192 × 256 according to the
bounding boxes. However, in [47], the 3D ground truth human pose
is directly used to extract bounding boxes, which is not feasible in
real-world scenarios.
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Table 2: Qualitative comparisons of 3D human pose estimation per action using 2D Ground Truth (GT) human poses on
Human3.6M. The best and second-best results are bolded and blue, respectively. 𝑇 : Number of the input frames. Seq2Seq:
Estimate 3D human pose for every frame.

MPJPE (GT) Seq2Seq T Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

MHFormer [22] CVPR’22 351 27.7 32.1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 39.3 30.0 31.0 29.4 22.2 23.0 30.5
StridedTrans [21] TMM’22 351 27.1 29.4 26.5 27.1 28.6 33.0 30.7 26.8 38.2 34.7 29.1 29.8 26.8 19.1 19.8 28.5
MixSTE [45] CVPR’22 ✓ 81 25.6 27.8 24.5 25.7 24.9 29.9 28.6 27.4 29.9 29.0 26.1 25.0 25.2 18.7 19.9 25.9
MixSTE [45] CVPR’22 ✓ 243 21.6 22.0 20.4 21.0 20.8 24.3 24.7 21.9 26.9 24.9 21.2 21.5 20.8 14.7 15.6 21.6
P-STMO [37] ECCV’22 243 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3
D3DP [38] (H=20,K=10, J-Agg) ICCV’23 ✓ 243 19.9 19.4 19.4 19.0 19.8 22.0 21.4 19.1 24.8 23.2 19.6 18.7 18.6 14.0 14.5 19.6
GLA-GCN [44] ICCV’23 243 20.1 21.2 20.0 19.6 21.5 26.7 23.3 19.8 27.0 29.4 20.8 20.1 19.2 12.8 13.8 21.0
STCFormer [41] CVPR’23 ✓ 81 25.9 25.9 22.7 24.0 24.6 27.5 27.6 23.1 30.1 31.5 25.1 24.7 23.8 18.4 19.6 25.0
STCFormer-L [41] CVPR’23 ✓ 243 20.8 21.8 20.0 20.6 23.4 25.0 23.6 19.3 27.8 26.1 21.6 20.6 19.5 14.3 15.1 21.3
HDFormer [4] IJCAI’23 ✓ 96 - - - - - - - - - - - - - - - 21.6
MotionBERT [51] (scratch) ICCV’23 ✓ 243 16.7 19.9 17.1 16.5 17.4 18.8 19.3 20.5 24.0 22.1 18.6 16.8 16.7 10.8 11.5 17.8
MotionBERT [51] (finetune) ICCV’23 ✓ 243 15.9 17.3 16.9 14.6 16.8 18.6 18.6 18.4 22.0 21.8 17.3 16.9 16.1 10.5 11.4 16.9
KTPFormer [33] CVPR’24 ✓ 243 18.8 17.4 18.1 17.7 18.3 20.6 19.6 17.7 23.3 22.0 18.7 17.0 16.8 12.4 13.5 18.1
MotionAGFormer-B [27] WACV’24 ✓ 243 - - - - - - - - - - - - - - - 19.4

APP w. MotionAGFormer-B (Ours) ✓ 243 18.2 20.6 18.4 17.9 19.5 21.3 20.7 20.6 25.2 25.7 19.3 18.2 17.4 11.3 12.1 19.1

The lengths of 2D human pose sequences 𝑇 on Human3.6M
and MPI-INF-3DHP are set to 243 and 81, respectively, and images
are uniformly sampled into sequence lengths 𝑡 = 𝑇

9 for a trade-
off between performance and efficiency. Additionally, 𝑡 must be
divisible by 𝑇 . We extract feature maps from images using HRNet-
w32 [39] with four resolutions. It is chosen as the pose detector,
𝐶𝑠 = 32𝑠+1 ∈ {32, 64, 128, 256}, 𝐻𝑠 = 𝐻

4𝑠+1 ∈ {𝐻4 ,
𝐻
8 ,

𝐻
16 ,

𝐻
32 },𝑊𝑠 =

𝑊
4𝑠+1 ∈ {𝑊4 , 𝑊8 , 𝑊16 ,

𝑊
32 }.

The parameters of our proposed APP module are mainly deter-
mined by the number of layers 𝐿, the number of attention heads
ℎ, the kernel size 𝑘 , the dimension 𝑑 of the APP module, and the
dimension of hidden feature 𝑭𝑝 used in the selected lifting model.
Also, we employ DropPath [20] with the probability 𝑝 . For Hu-
man3.6M and MPI-INF-3DHP, 𝐿, ℎ, 𝑘 , 𝛼 , 𝑝 , and 𝑑 are set to 6, 8, 3,
0.9, 0.2, and 128, respectively. We train the APP module using the
Adam optimizer [19]. 2D ground truth human pose is sent to the
model for MPI-INF-3DHP. In Eq. (9), the weights of each part of the
loss are set to 1.0, 20.0, and 0.5, respectively. All experiments are
conducted on one NVIDIA RTX 3090 GPU.

4.3 Qualitative Comparison of Human3.6M
We conducted comparative evaluations with recent state-of-the-art
(SOTA)models on the Human3.6M dataset. The results, summarized
in Table 1, underscore the superiority of our proposed APP module
when integrated with MotionAGFormer-B, attaining SOTA per-
formance. Specifically, in comparison with lifting models MixSTE
[45] and HDFormer [4], which also utilize HRNet-detected 2D hu-
man pose as input, our approach achieves notable improvements
of 3.6mm (from 39.8mm to 36.2mm) and 4.1mm (from 40.3mm
to 36.2mm) in MPJPE, and 1.1mm (from 30.6mm to 29.5mm) and
2.2mm (from 31.7mm to 29.5mm) in terms of P-MPJPE, respectively.
What’s more, our proposed method surpasses CA-PF-HRNet-48
[47] 3.6mm (from 39.8mm to 36.2mm) in MPJPE, and 3.2mm (from
32.7mm to 29.5mm).

Although our method exhibits a slightly higher MPJPE of 1.3mm
compared to MotionBERT [51] when ground truth 2D human pose
is employed as input, it surpasses MotionAGFormer-B by 0.3mm.

These findings collectively attest to the efficacy and competitive-
ness of our proposed approach in advancing the state-of-the-art in
monocular 3D human pose estimation.

Table 3: Qualitative comparisons of 3D human pose estima-
tion per action on MPI-INF-3DHP. We report AUC, MPJPE,
and PCK. The best and second-best results are bolded and
blue, respectively. 𝑇 : Number of the input frames.

Method T AUC↑ MPJPE↓ PCK↑
D3DP [38] (H=20,K=10, J-Agg) ICCV’23 243 78.2 29.7 97.7
HDFormer [4] IJCAI’23 32 64.0 51.5 96.8
HDFormer [4] IJCAI’23 96 72.9 37.2 98.7
PoseFormerV2 [48] CVPR’23 81 78.8 27.8 97.9
CA-PF-HRNet-32 [47] NeurIPS’23 1 75.4 32.7 98.0
CA-PF-HRNet-48 [47] NeurIPS’23 1 76.3 31.4 98.2
MotionAGFormer-B [27] WACV’24 81 84.2 18.2 98.3
KTPFormer [33] CVPR’24 27 84.4 19.2 98.9
KTPFormer [33] CVPR’24 81 85.9 16.7 98.9

APP w. MotionAGFormer-B (Ours) 81 89.5 12.7 98.9

4.4 Qualitative Comparison of MPI-INF-3DHP
In evaluating the MPI-INF-3DHP dataset, we aligned the sequence
length𝑇 to 81 frames tomaintain consistencywith the experimental
setup ofMotionAGFormer-B [27]. As detailed in Table 2, ourmethod
demonstrates incremental enhancements across various evaluation
metrics. Specifically, we observe marginal improvements in the
AUC and MPJPE upon KTPFormer [33], with gains of 3.6 (from 85.9
to 89.5) and 4mm (from 16.7mm to 12.7mm), respectively. Moreover,
the PCK of our method is the same as KTPFormer [33] because the
threshold of PCK is set to 150mm. When comparing our method
with the baseline model MotionAGFormer-B[27], there are huge
improvements for AUC (from 84.2 to 89.5) andMPJPE (from 18.2mm
to 12.7mm). These findings underscore the efficacy and robustness
of our proposed method in enhancing monocular 3D human pose
estimation performance on the MPI-INF-3DHP dataset.
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4.5 Ablation Study
We conduct extensive experiments to substantiate the effectiveness
of our proposed APPmodule. As shown in Table 4, our experimental
results manifest a consistent enhancement in the performance of the
lifting models across diverse configurations of 2D pose detectors
and multiple-frame lifting models, affirming the efficacy of the
APP module. Transformer [42] is a simple spatial-temporal vanilla
transformer with 12 layers.

Table 4: In comparison with baselines on Human3.6M, we
choose different lifting models and 2D poses.

Method 𝑇 2D Pose Param MACs MACs/frame MPJPE↓ P-MPJPE↓
Transformer [42] NeurIPS’17 243 SH 9.62M 46.16G 189.95M 39.2 32.8
APP w. Transformer (Ours) 243 SH 13.20M 70.71G 290.97M 39.0 32.7

MixSTE [45] CVPR’22 243 CPN 33.78M 147.60G 607.38M 40.9 32.6
APP w. MixSTE (Ours) 243 CPN 39.54M 174.85G 719.54M 39.9 32.1

MotionBERT [51] (finetune) ICCV’23 243 SH 42.47M 185.60G 763.77M 37.5 -
APP w. MotionBERT (finetune) (Ours) 243 SH 48.23M 211.77G 871.48M 37.0 31.6

MotionAGFormer-B [27] WACV’24 243 CPN 11.72M 64.78G 266.60M 39.2 31.5
APP w. MotionAGFormer-B (Ours) 243 CPN 15.30M 90.14G 370.97M 38.9 31.3
MotionAGFormer-B [27] WACV’24 243 SH 11.72M 64.78G 266.60M 38.4 32.6
APP w. MotionAGFormer-B (Ours) 243 SH 15.30M 90.14G 370.97M 38.4 32.3
MotionAGFormer-B [27] WACV’24 243 HRNet 11.72M 64.78G 266.60M 36.6 29.5
APP w. MotionAGFormer-B (Ours) 243 HRNet 15.30M 90.14G 370.97M 36.2 29.5
MotionAGFormer-B [27] WACV’24 243 GT 11.72M 64.78G 266.60M 19.4 -
APP w. MotionAGFormer (Ours) 243 GT 15.30M 90.14G 370.97M 19.1 18.4

HoT [23] CVPR’24 243 SH 16.35M 33.48G 137.79M 39.8 33.5
APP w. HoT (Ours) 243 SH 20.66M 50.80G 209.06M 39.7 33.4

Notably, the APP module contributes to performance improve-
ments while maintaining small parameters, accounting for approxi-
mately 37% (from 9.62M to 13.2M), 17% (from 33.78M to 39.54M),
14% (from 42.47M to 48.23M), 30% (from 11.72M to 15.3M), 26% (from
16.35M to 20.66M) parameters of Transformer [42], MixSTE [45],
MotionBERT [51], MotionAGFormer-B [27], HoT [23], respectively.
When it comes to MACs, the gains are 34% (from 46.16G to 70.71G),
16% (from 147.6G to 174.85G), 12% (from 185.6G to 211.77G), 28%
(from 64.78G to 90.14G), 34% (from 33.48G to 50.8G).

All ablation studies are conducted on the Human3.6M dataset,
with MotionAGFormer-B [27] chosen as the baseline model and
2D human body pose detected using HRNet [39]. Initially, we con-
ducted experiments on parameter selections for the APP module.
The results of Table 5 presents indicate that our proposed method
achieves the best performance when 𝐿, 𝑘 , 𝛼 , 𝑝 , and 𝑑 are selected
as 6, 3, 0.9, 0.2, and 128, respectively.

Table 5: Ablation study of the parameters on Human3.6M. 𝐿:
The number of layers of our proposed APP module. 𝑝: Prob-
ability of the DropPath. 𝑑: The Number of the dimensions.
We report MPJPE and P-MPJPE. The best and second-best
results are bolded and blue, respectively.

𝐿 𝑘 𝛼 𝑝 𝑑 Params MPJPE↓ P-MPJPE↓
6 3 0.9 0.2 128 3.58M 36.2 29.5
4 3 0.9 0.2 256 7.50M 36.5 29.7
4 3 0.9 0.4 128 2.76M 36.3 29.6
6 5 0.9 0.2 128 5.15M 36.5 29.7
6 3 0.6 0.2 128 3.58M 36.6 30.0
6 3 0.9 0 128 3.58M 36.5 29.9

Then, we conducted ablation experiments on the submodules of
our proposed APP module. In Table 6, the first row presents partial

components of three submodules: MHCA, PAOG, and PAS. The
table shows that MHCA has the most significant impact on the APP
model’s performance. However, the other three components also
enhance the model’s performance to varying degrees.

Table 6: Ablation study of the components on Human3.6M.
MHCA: Use MHCA. Weights: Apply weights to the learned
offsets. PoseAware: Choose the detected 2D pose as the pivot;
otherwise, the center of the image will be selected. Conv:
Convolution is performed on the sampled features; other-
wise, the mean operation is carried out directly. We report
MPJPE and P-MPJPE. The best and second-best results are
bolded and blue, respectively.

MHCA Weights PoseAware Conv Params MPJPE↓ P-MPJPE↓
✓ 2.69M 36.6 29.8

✓ 2.30M 62.0 43.1
✓ 2.30M 68.0 44.7

✓ 3.18M 67.2 45.7
✓ ✓ 2.69M 36.2 29.6
✓ ✓ 2.69M 36.7 29.9
✓ ✓ 3.58M 36.4 29.6

✓ ✓ 2.30M 63.6 43.2
✓ ✓ 3.18M 59.1 40.0

✓ ✓ 3.18M 71.0 45.1
✓ ✓ ✓ 2.69M 36.5 30.0
✓ ✓ ✓ 3.58M 36.3 29.9
✓ ✓ ✓ 3.58M 36.4 29.6

✓ ✓ ✓ 3.18M 57.0 39.1
✓ ✓ ✓ ✓ 3.58M 36.2 29.5

Finally, we conducted ablaton experiments on image frames
𝑡 setting. Although the MACs (24.83G) of the APP module are
not affected by the number of frames, yet image frames 𝑡 need
more computation in training stage because we need multi-level
featuremaps extracted by 2D pose detector. Furthermore, when
𝑡 ≥ 81, the training time becomes very long. Therefore, 𝑡 = 27 = 𝑇

9
is tradeoff between accuracy and efficiency. In inference stage, this
problem no longer appears, owing to that 2D pose detector is used
to estimate 2D pose for every frame.

Table 7: Ablation study of the image frames 𝑡 on Human3.6M.
We report MPJPE and P-MPJPE. The best and second-best
results are bolded and blue, respectively.

𝑡 Params MPJPE↓ P-MPJPE↓
1 3.58M 36.5 30.0
3 3.58M 36.5 29.8
9 3.58M 36.3 29.6
27 3.58M 36.2 29.6

4.6 Visualization
To validate the generalization ability of the model, we selected the
MotionBERT [51] (finetune version) and MotionAGFormer-B [27]
as foundation models, which were trained on 2D poses extracted by
SH [30] on Human3.6M dataset, for comparison with our proposed
APP module. We chose two video segments from the internet to
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visually analyze the APP module. For the visual analysis in Figures
3 and 4, MotionAGFormer-B was selected as the foundation model.

4.6.1 Analysis of MHCAModule. We visualized the attention maps
of the MHCA submodule at each layer of our proposed APP module.
The values of each attention map were normalized to [0, 1]. Each
attention map extracted at every layer is a 17 × 17 matrix. Figure
3 shows that although each layer has different focuses, the APP
module can capture the relationships between key points.

Figure 3: Visualization of the attention maps of each layer of
MHCA in our proposed APP module.

Figure 4: Visualization of the initialized/learned sampling
points learned by each layer, where the initialized/learned
sampling points are marked in orange and magenta, respec-
tively. Each sampling point is represented by a cross (x).

4.6.2 Analysis of PAOG Module. Figure 4 illustrates the sampling
points learned by our proposed PAOG submodule. The first row in
the figure is appended for observation, while the second to fifth

rows represent feature maps extracted at different resolutions. Each
layer of the PAOG submodule can adaptively learn sampling points
based on the distribution of feature maps at different resolutions.

4.6.3 Analysis of In-the-wild Videos. We selected six frames from
two videos to compare the predicted 3D human poses by two lifting
models, MotionBERT [51] and MotionAGFormer-B [27], with those
predicted by our proposed model. The differences have been circled
in orange.

Figure 5: Qualitative comparison with SOTA methods
on in-the-wild images. We select MotionBERT[51] and
MotionAGFormer-B [27] as foundation models.

5 CONCLUSION
Presenting APP, short for Adaptive Pose Pooling, a flexible mod-
ule crafted to mesh with various multi-frame lifting models. This
versatile module utilizes the hidden features extracted by lifting
models with the feature maps obtained from the 2D pose detec-
tor. APP excels in simultaneously extracting spatial and temporal
features through this collaborative approach module, and our visu-
alization demonstrates this. Extensive experimentation highlights
the reliability of our module, showcasing its ability to enhance the
performance metrics of lifting models while consistently achieving
state-of-the-art results across diverse scenarios. Notably, APP mod-
ule presents remarkable adaptability, maintaining its effectiveness
even when paired with different 2D poses. A noteworthy feature is
its capacity to enhance performance without requiring structural
changes to the existing lifting model architecture.
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