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Supplementary Materials: APP: Adaptive Pose Pooling for 3D
Human Pose Estimation from Videos

Anonymous Authors

1 OVERVIEW

Our supplementary materials contain three parts:

e More implementation details of the 2D pose detectors used
in our experiments, including how to obtain multi-level fea-
turemaps and changes in the structure.

e More qualitative results of our proposed method on Hu-
man3.6M dataset.

2 MORE IMPLEMENTATION DETAILS

In this section, we discuss how to extract multi-level featuremaps
more. Unlike the vanilla CPN [1] version, each featuremap com-
puting branch is upsampled into the same size (height and width)
using nn.Upsample. We change the upsample operation to the
downsample operation across the channel dimension. To get the
same size of featuremaps extracted by HRNet, the channel dimen-
sion of each level of featuremap originally is 256. Specifically, we
downsample it to 32/64/128/256 by averaging operations. However,
this downsampling causes information loss. As shown in 1, we
observe that when MotionAGFormer-B [3] is selected, there is a
0.2mm increase for our method (from 38.4mm to 38.6mm), which
is worse than the vanilla version.

Table 1: In comparison with baselines on Human3.6M, we
choose different lifting models, 2D pose detectors and 2D
poses.

Method T 2D Pose Detector 2D Pose ‘ MPJPE| P-MPJPE|

Transformer [5] NeurIPS’17 243 - SH 39.2 32.8
APP w. Transformer (Ours) 243 CPN SH 39.0 32.7
APP w. Transformer (Ours) 243 HRNet-w32 SH 39.0 32.7
MixSTE [6] CVPR’22 243 - CPN 0.9 32.6
APP w. MixSTE (Ours) 243 CPN CPN 39.8 321
APP w. MixSTE (Ours) 243 HRNet-w32 CPN 39.9 32.1
MotionBERT [7] (finetune) ICCV’23 243 - SH 37.5 B

APP w. MotionBERT (finetune) (Ours) | 243 CPN SH 37.0 31.5
APP w. MotionBERT (finetune) (Ours) | 243 HRNet-w32 SH 37.0 31.6
MotionAGFormer-B [3] WACV’24 243 - CPN 39.2 315
APP w. MotionAGFormer-B (Ours) 243 CPN CPN 39.0 313
APP w. MotionAGFormer-B (Ours) 243 HRNet-w32 CPN 38.9 31.3
MotionAGFormer-B [3] WACV’24 243 - SH 38.4 32.6
APP w. MotionAGFormer-B (Ours) 243 CPN SH 38.6 32.5
APP w. MotionAGFormer-B (Ours) 243 HRNet-w32 SH 38.4 32.3
HoT [2] CVPR’24 243 - SH 39.8 335
APP w. HoT (Ours) 243 CPN SH 39.7 33.4
APP w. HoT (Ours) 243 HRNet-w32 SH 39.7 334

3 MORE QUALITATIVE RESULTS

Transformer [5], MixSTE [6], MotionBERT [7], MotionAGFormer-
B [3], and HoT [2] are selected to generate the pose features P.
However, this time, we chose the CPN as a 2D pose detector to
extract multi-level featuremaps. The results on the Human3.6M are
illustrated in Table 1. The improvement of MPJPE and P-MPJPE is
quite similar when using HRNet-w32. As mentioned in Sec 2, there
is a slight performance degradation (from 38.4 to 38.6mm) in terms
of MPJPE.

GlobalNet

RefineNet

Images I

(a) CPN

Images I

Stagel Stage2 Stage3 Stage4

(b) HRNet

Figure 1: The overview of the CPN [1] and HRNet [4], which
are 2D pose detectors used to extract multi-level featuremaps.
(a) shows the structure of the CPN, we made some minor
changes to ensure the multi-level featuremaps’ size was con-
sistent with HRNet-w32. (b) is the framework of HRNet,
which consists of four stages.
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