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1.	Abstract	
We	 propose	 a	 comprehensive	 artificial	 intelligence	
framework	 for	 optimizing	 semiconductor	
manufacturing	 processes,	 addressing	 the	 industry's	
pressing	 challenges	 of	 increasing	 complexity,	 yield	
variability,	 and	 resource	 efficiency.	 Our	 approach	
combines	 physics-informed	 neural	 networks	 with	
reinforcement	learning	to	create	accurate	digital	twins	
and	 enable	 self-optimizing	 process	 control	 across	
various	 manufacturing	 steps.	 The	 framework	
integrates	 real-time	 sensor	 data,	 physics-based	
constraints,	 and	 adaptive	 machine	 learning	 to	
optimize	process	parameters	dynamically.	We	present	
a	 detailed	 implementation	 plan	 for	 Atomic	 Layer	
Deposition	(ALD)	as	our	initial	case	study	that	can	be	
extended	to	other	critical	processes	including	etching,	
chemical	vapor	deposition,	and	lithography,	with	the	
potential	 to	 reduce	 overall	 manufacturing	
development	 cycles	 while	 significantly	 improving	
resource	 efficiency.	 This	 work	 presents	 a	 pathway	
toward	 transforming	 semiconductor	 manufacturing	
from	 experience-based	 optimization	 to	 AI-driven	
precision	control.	
	
2.	Introduction	
				The	 semiconductor	 industry	 faces	 unprecedented	
challenges	as	device	complexity	increases	and	feature	
sizes	 decrease.	 Modern	 chip	 production	 requires	
precise	control	of	 thousands	of	manufacturing	steps,	
with	 yields	 varying	 significantly	 among	
manufacturers.	 Traditional	 approaches	 relying	 on	
static	 recipes	and	manual	optimization	have	 created	
significant	 bottlenecks	 in	 the	 industry.	Development	
cycles	 for	 new	 processes	 can	 stretch	 to	 5-10	 years,	
while	 yield	 rates	 remain	 suboptimal	 across	multiple	
process	steps.	These	traditional	methods	also	result	in	
inefficient	 resource	 utilization	 and	 high	
environmental	 impact.	 Additionally,	 manufacturers	
struggle	 with	 limited	 ability	 to	 adapt	 to	 real-time	
process	 variations,	 and	 face	 ongoing	 challenges	 in	
knowledge	 transfer	 and	 process	 standardization.	
These	 limitations	 collectively	 hinder	 the	 industry's	
ability	 to	 meet	 growing	 demand	 and	 technological	
advancement	needs.	
	
Our	 proposed	 framework	 addresses	 these	 industry-
wide	challenges	through:	
	

• Digital	 twin	 creation	 using	 physics-
informed	machine	learning.	

• Real-time	 process	 optimization	 via	
reinforcement	learning.	

• Adaptive	 control	 systems	 for	 multiple	
manufacturing	processes.	

• Knowledge	 transfer	 mechanisms	 between	
different	process	steps.	

• Resource	 optimization	 across	 the	
manufacturing	pipeline.	

	
	
3.	Proposed	Methodology	
Our	 framework	 consists	 of	 three	 interconnected	
components	 designed	 for	 broad	 semiconductor	
manufacturing	optimization:	
	
3.1	 Universal	 Process	 Modeling	 through	 Scientific	
Machine	Learning	
We	 propose	 a	 generalized	 architecture	 for	 process	
modeling:	
	
Physics-Informed	Neural	Networks	(PINNs):	
	

• Modular	architecture	adaptable	to	different	
manufacturing	processes.	

• Generic	 loss	 functions	 incorporating	
physical	constraints:	
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Extensible	 differential	 programming	 framework	 for	
parameter	estimation:	

𝜕𝑆
𝜕𝑡 = 𝐹(𝑆, 𝑃, 𝑡) + 𝐶(𝑆, 𝑃)	

	
where	S	represents	process	state	variables,	P	process	
parameters,	and	C	control	inputs.	
	
3.2	Integration	of	Scientific	Machine	Learning	(SciML)	
and	Reinforcement	Learning	(RL)	
	
Our	 framework's	 key	 innovation	 is	 the	 novel	
integration	of	SciML	and	RL	approaches	 (see	Fig.	1).	
This	 combination	 enables	 both	 physics-aware	
prediction	 and	 optimal	 control	 while	 respecting	
physical	constraints:	
	
Key	Integration	Mechanisms:	
	

1. Physics-Informed	State	Space	
• SciML	 models	 provide	 physically	

meaningful	state	representations.	
• Process	variables	mapped	to	physically	

interpretable	latent	space.	
• State	 transitions	 respect	 physical	

constraints.	
𝑠123 	= 	 𝑓4566(𝑠1 , 𝑎1)	 where	 𝑓4566	ensures	
physical	consistency	

	
2. Constrained	Action	Selection	

a. SciML	models	define	feasible	action	
spaces.	

b. Physical	 constraints	 incorporated	
into	policy	network.	

c. Action	 validity	 checked	 against	
physics-based	rules.	
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d. 𝑎_𝑡	 =
𝑐𝑙𝑖𝑝*𝜋(𝑠!), 𝑎"#$(&!), 𝑎"()(&!)0	
where	 𝑎789,	 𝑎7:;	 are	 physics	
constraints	

	
3. Physics-Guided	Reward	Design		

• Reward	 includes	 physical	 correctness	
terms.	

• SciML	 predictions	 guide	 reward	
estimation.	

• Multi-objective	 optimization	 balancing	
physics	 and	 performance	

𝑅 = 𝑅<=>?@>7:9A= + 𝜆3𝑅<BCD8AD
+ 𝜆E𝑅A@9D1>:891D	

	
4. Hybrid	Value	Function	

• Value	 estimates	 incorporate	 physical	
feasibility.	

• SciML	predictions	enhance	future	state	
value	estimation.	

• Physics-based	 regularization	 of	 value	
network	

𝑉(𝑠) = 	𝑉FG(D) + 𝛼𝑉<BCD8AD(D)	

	
Fig.	1	Workflow	

	
3.3	Initial	Case	Study:	ALD	Implementation	Plan	
Our	 initial	 validation	 will	 focus	 on	 ALD	 process	
optimization,	targeting	specific	components	essential	
for	 precise	 atomic-scale	 deposition.	 The	 framework	
will	integrate	existing	ALD	sensor	systems	to	provide	
real-time	monitoring	and	 feedback	of	 the	deposition	
process.	We	will	 implement	 comprehensive	 reaction	
kinetics	 modeling	 to	 understand	 and	 predict	 the	
complex	surface	chemistry	involved.	The	system	will	
incorporate	precursor	 timing	optimization	 to	ensure	
optimal	 layer-by-layer	 growth,	 while	 advanced	 film	
quality	 prediction	 models	 will	 enable	 real-time	
assessment	 and	 adjustment	 of	 the	 deposition	
parameters.	 These	 components	 work	 together	 to	
create	a	holistic	approach	to	ALD	process	control	and	
optimization.	After	capturing	sufficient	data,	we	also	
propose	to	use	Topological	Data	Analysis	and	Causal	
analysis	 tools	 to	 uncover	 hidden	 patterns	 and	
correlations	[6].	
	
3.	Planned	Implementation	

The	initial	system	will	be	developed	and	deployed	at	
the	 NUS	 NanoFab.	 It	 will	 incorporate	 multi-source	
sensor	 fusion	 systems	 feeding	 into	 a	 real-time	
processing	pipeline,	supported	by	automated	feature	
extraction	and	cross-process	correlation	analysis.	
	
	

4.	Expected	Outcomes	
Based	 on	 literature	 review	 and	 preliminary	
simulations,	we	anticipate:	
	
ALD	Process	Targets:	
	

• Film	thickness	prediction	accuracy:	>90%	
• Potential	yield	improvement:	20-30%	
• Expected	resource	reduction:	25-30%	

	
5.	Discussion	
Our	 proposed	 framework	 offers	 several	 potential	
benefits:	
5.1	Technical	Innovations:	
	

• Unified	approach	to	process	optimization	
• Novel	 integration	 of	 SciML	 with	

manufacturing	processes	
• Scalable	 architecture	 for	 fab-wide	

implementation	
• Cross-process	 learning	 and	 adaptation	

capabilities	
	
5.2	Expected	Industry	Impact:	
	

• Projected	cost	savings	of	$100M+	annually	
per	fab	

• Potential	yield	improvements	of	20-30%	
• Development	cycle	reduction	of	40-60%	
• Significant	 reduction	 in	 resource	

consumption	
	
5.3	Research	Roadmap:	
	

• Initial	 validation	 through	 ALD	
implementation	

• Planned	 extension	 to	 additional	
manufacturing	processes	

• Future	 integration	 with	 supply	 chain	
optimization	

• Development	 of	 industry-wide	 knowledge	
bases	

	
6.	Conclusion	
Our	proposed	framework	represents	a	significant	step	
toward	AI-driven	semiconductor	manufacturing.	The	
theoretical	 foundation	 and	 initial	 simulation	 results	
suggest	 broad	 applicability	 across	 the	 industry.	 This	
research	aims	 to	demonstrate	how	AI	can	 transform	
semiconductor	 manufacturing,	 enabling	 faster	
development	 cycles,	 improved	 yields,	 and	 more	
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efficient	resource	utilization.	
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