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A Appendix1

A.1 RVAE on wind farm monitoring data2

The steady-state wind farm wake simulator FLORIS was used [1] for the simulated dataset. An3

example output of a simulation from FLORIS is shown in Figure 1.

Figure 1: A representative simulated wind field from FLORIS. Lighter colors represent lower wind
speeds.

4

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Additional details on farm graph construction A graph is constructed where turbines are the5

vertices and directed edges are created between the turbines by truncating an all-to-all graph to a6

cut-off distance of 100 · d where d is the turbine rotor diameter. The 5MW NREL prototype turbine7

was used for the simulations [2] which has a diameter d = 126m. In order to test the generalization8

capabilities of the model, and most importantly the ability to implicitly learn how to use the relative9

position of the turbines and the nacelle wind orientation and power production of up-wind turbines,10

the model is tested on a different farm configuration than the one it is trained on. It is noted that the11

wake simulator used is not stochastic. The yaw directions of the turbines were randomly perturbed12

with N (0., 5.◦) around the global wind orientation in order to introduce some stochasticity. The13

training dataset consists of 4462 farm SCADA readings for the whole farm. Both farms are simulated14

with the same randomly sampled mean wind and wind orientation global conditions (uh). Due to the15

different arrangement of the turbines in the two farms and their wake interactions the wind speed and16

power production of the two farms is very different. The farm configurations are shown in Figure 2.
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Figure 2: Left: The wind farm creating the training set. Right The wind farm used for the test set.
17

Treatment of angles As shown in Figure 3, the angle of the directional vector defined by the sender18

turbine i to the receiver turbine j φij , and distance dij are used as an edge feature. In real farm19

monitoring data, the turbine yaw is adjusted by a per-turbine controller during operation according to20

the wind conditions and may be different for each turbine. The yaw angle θi with respect to north is21

used as a node feature together with mean and standard deviation of hub-height wind speed when22

available, and power production.23

Figure 3: The edge attributes Eh for edge with s = i, r = j is (cos(φi,j), sin(φij), dij). The nacelle
angle θi is included as a node (turbine) attribute.

Since the relative angle of the line defined between the turbines and the yaw angles is important, and24

not the absolute angles, a simple data augmentation procedure is performed during training where25

both yaw angle and the farm positions are randomly rotated with the same angle. A more general26

solution to the problem of learning networks that respect transformations to such symmetries would27

be to use GNs which are equivariant by design as proposed in [3] but this is left for future work.28

Further qualitative results on the simulated farm dataset In Figure 4 some RVAE predictions29

and actual data from the simulated farm test set are shown. Note that the configuration of the test30

2



0 1000 2000
0

500
1000
1500
2000
2500
3000
3500

RVAE Prediction,
w: 7.91, w 0.18[m/s]

0 1000 2000
0

500
1000
1500
2000
2500
3000
3500

RVAE Prediction,
w: 7.04, w 0.20[m/s]

0 1000 2000
0

500
1000
1500
2000
2500
3000
3500

RVAE Prediction,
w: 7.28, w 0.16[m/s]

0 1000 2000
0

500
1000
1500
2000
2500
3000
3500

RVAE Prediction,
w: 5.75, w 0.26[m/s]

0 1000 2000
0

500
1000
1500
2000
2500
3000
3500

RVAE Prediction,
w: 4.31, w 0.25[m/s]

0 1000 2000
0

500
1000
1500
2000
2500
3000
3500

Test set SCADA

0 1000 2000
0

500
1000
1500
2000
2500
3000
3500

Test set SCADA

0 1000 2000
0

500
1000
1500
2000
2500
3000
3500

Test set SCADA

0 1000 2000
0

500
1000
1500
2000
2500
3000
3500

Test set SCADA

0 1000 2000
0

500
1000
1500
2000
2500
3000
3500

Test set SCADA

Figure 4: Examples of mean wind from the RVAE when conditioning with the global latent uh
for an unseen farm (top) and corresponding mean wind from the test dataset (bottom). The arrows
correspond to the incoming wind direction, and lighter colors correspond to higher wind speed.

farm is unseen and no training is performed. The RVAE seems to capture the wake-associated wind31

deficits of the farm in all but one case (second from the right).32

A.2 Anholt farm dataset33

Post-hoc model interpretation with gradient sensitivities In order to identify which nodes are34

important for the imputed values for a particular turbine, a simple gradient sensitivity technique was35

employed. For a particular node prediction vTi ∈ VT , and a RVAE model with recognition model qφ36

and generator pθ, we have v̂Ti ∼ pφ(Vx|Gz;Gh)qφ(Gz|GC∪T\bx ;Gh) where GC∪T\bx is the graph37

that contains the masked target nodes and all the edges between context and target nodes. Since the38

model is end-to-end differentiable, one can straightforwardly compute an absolute gradient sensitivity39

as40

Ivi
=
∣∣∣ ∂v̂Ti

∂G
C∪T\b
x

∣∣∣ (1)

An instance of such maps is visualized for a farm state snapshot and for a representative set of41

turbines in Figure 5. Wind orientation is inferred from turbine nacelle orientation and it is visualized42

as arrows centered at each turbine and pointing towards the incoming wind. The upwind turbines43

seem to contribute more to the imputation value of the masked turbines. This is aligned with the44

physics of the problem and in particular with the directionality of the wake effects which is always45

from upstream to downstream turbines. The values of the turbines in the undisturbed boundaries46

of the farm as in plots indexed 0 and 4 rely on non-upstream neighbors for imputation. This also is47

expected, as there is no up-wind information for the imputation so the network needs to rely on any48

neighbors to impute the wind velocity values.49

B Supplemental material for the NP section50

Additional details on the training setup All experiments were performed using the Adam opti-51

mizer [4] with a learning rate of 10−4 and default parameters. All RVAE models were trained for52

4 · 104 steps and NP models up to 5 · 104 steps with batches of size 16. Each batch contains a random53

number of context and target points which varies between 3 and 50. All GN functions involved are54

feed-forward 3-layer Multi-Layer Perceptron (MLPs) with rectified linear unit non-linearities and no55

activation in the last layer. The GN block used is encode-process-decode architecture as in [5] with56

residual connections. The encoder and decoder contain layers that do not perform message passing57

but only cast the inputs to a predefined dimension (Graph Independent layers).58
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Figure 5: Absolute gradient sensitivity maps for data imputation of SCADA for different turbines,
for a single snapshot of the farm conditions. Arrows point against incoming wind. Imputation target
turbines in red. The value of neighbors and in particular of upstream neighbors are important.

Qualitative results on 1D regression meta-learning In Figure 7 qualitative results for the behavior59

of the RVAE for varying numbers of context points are shown. In the absence of context points, the60

model tends to predict the mean which is zero for the training dataset. Please refer directly to the61

notebook for further details on the implementation.62
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Figure 6: Implementation of NP as a conditional RVAE. The qφ is implemented as a deep set, and pθ
is a node block. The node block is a function that contains a node update function which uses the
node inputs and the global context (here the uz variable).

B.1 Implementation of NP as a VAE with arbitrary conditioning63

In order to make the exposition of the main text clearer in what follows the ELBO objective for a64

RVAE model with arbitrary conditioning and a DeepSet encoder is detailed. In the NP implementation65

a set of context DC and target DT points are encoded through qφ to a global Gaussian latent variable66

uz. Now consider the NP problem as a missing data imputation problem, where the context points,67

DC : {xC , yC} are observed sets of points from a function, and the target points DT : {xT , yT } are68

points coming from the same function where we only have their x coordinate (xT ) and we seek to69

evaluate the yT values. The NP approach to this problem is to separately encode DC∪T and DC to a70

Gaussian latent space uz using a DeepSet encoder, use the known xT as conditioning, and compute71

yT using uz and xT (and optionally a deterministic r introduced in [6]). The loss function for NPs72

given in Equation 2 can be cast as an arbitrary conditioning objective as in [7].73

The VAE-AC[7] approach to an imputation problem such as this one, is to augment the dataset74

with an additional variable b which signifies whether points are observed or unobserved. The DKL75

term of the ELBO objective drives the latent representation uz of the recognition network to be76

similar when observing DC and DC∪T . A network with parameters θ is jointly trained to yield77
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Figure 7: Qualitative results for 1D regression meta-learning with an RVAE. The model was trained
using both node and edge features and with samples from GPs that had the same parameters.

yT ∼ pθ(yT |uz, xT ). The arbitrary conditioning ELBO objective in that case reads,78

log p(yT |xT , xC , yC) ≥Eqφ(z|DC∪T )

[∑
i∈T

log pθ(yi|z, xi) + log
q(z|DC∪T\b)
q(z|DC∪T )

]
Eqφ(z|DC∪T )

[∑
i∈T

log pθ(yi|z, xi)
]
−DKL(qφ(z|DC∪T )||qφ(z|DC∪T\b))

(2)

The VAE-AC approach is particularly convenient for the RVAE which contains message passing79

layers, since no special message passing needs to be performed between observed and unobserved80

points. In Figure 6 a more detailed computational diagram is shown. Please also refer to the81

corresponding notebook provided with the supplemental materials.82
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