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ABSTRACT

Representations are at the core of all deep reinforcement learning (RL) methods for
both Markov decision processes (MDPs) and partially observable Markov decision
processes (POMDPs). Many representation learning methods and theoretical
frameworks have been developed to understand what constitutes an effective
representation. However, the relationships between these methods and the shared
properties among them remain unclear. In this paper, we show that many of these
seemingly distinct methods and frameworks for state and history abstractions are,
in fact, based on a common idea of self-predictive abstraction. Furthermore, we pro-
vide theoretical insights into the widely adopted objectives and optimization, such
as the stop-gradient technique, in learning self-predictive representations. These
findings together yield a minimalist algorithm to learn self-predictive representa-
tions for states and histories. We validate our theories by applying our algorithm to
standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These
findings culminate in a set of preliminary guidelines for RL practitioners.1

1 INTRODUCTION
Reinforcement learning holds great potential to automatically learn optimal policies, mapping obser-
vations to return-maximizing actions. However, the application of RL in the real world encounters
challenges when observations are high-dimensional and/or noisy. These challenges become even more
severe in partially observable environments, where the observation (history) dimension grows over
time. In fact, current RL algorithms are often brittle and sample inefficient in these settings (Wang
et al., 2019; Stone et al., 2021; Tomar et al., 2021; Morad et al., 2023).

To address the curse of dimensionality, a substantial body of work has focused on compressing
observations into a latent state space, known as state abstraction in MDPs (Dayan, 1993; Dean &
Givan, 1997; Li et al., 2006), history abstraction in POMDPs (Littman et al., 2001; Castro et al.,
2009), and sufficient statistics or information states in stochastic control (Striebel, 1965; Kwakernaak,
1965; Bohlin, 1970; Kumar & Varaiya, 1986). Traditionally, this compression has been achieved
through hand-crafted feature extractors (Sutton, 1995; Konidaris et al., 2011) or with the discovery of
a set of core tests sufficient for predicting future observations (Littman et al., 2001; Singh et al., 2003).
Modern approaches learn the latent state space using an encoder to automatically filter out irrelevant
parts of observations (Lange & Riedmiller, 2010; Watter et al., 2015; Munk et al., 2016). Furthermore,
deep RL enables end-to-end and online learning of compact state or history representations alongside
policy training. As a result, numerous representation learning techniques for RL have surfaced (refer
to Table 1), drawing inspiration from diverse fields within ML and RL. However, this abundance of
methods may have inadvertently presented practitioners with a “paradox of choice”, hindering their
ability to identify the best approach for their specific RL problem.

This paper aims to offer systematic guidance regarding the essential characteristics that good repre-
sentations should possess in RL (the “what”) and effective strategies for learning such representations
(the “how”). We begin our analysis from first principles by comparing and connecting various repre-
sentations proposed in prior works for MDPs and POMDPs, resulting in a unified view. Remarkably,
these representations are all connected by a self-predictive condition – the encoder can predict its next
latent state (Subramanian et al., 2022). Next, we examine how to learn such self-predictive condition

∗Work done while ES was at McGill University.
1Please refer to https://arxiv.org/abs/2401.08898 for the 10-main-page version of this paper.
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in RL, a difficult subtask due to the bootstrapping effect (Gelada et al., 2019; Schwarzer et al., 2020;
Tang et al., 2022). We provide fresh insights on why the popular “stop-gradient” technique, in which
the parameters of the encoder do not update when used as a target, has the promise of learning the
desired condition without representational collapse in POMDPs. Building on our new theoretical
findings, we introduce a minimalist RL algorithm that learns self-predictive representations end-
to-end with a single auxiliary loss, without the need for reward model learning (thereby removing
planning) (François-Lavet et al., 2019; Gelada et al., 2019; Tomar et al., 2021; Hansen et al., 2022;
Ghugare et al., 2022; Ye et al., 2021; Subramanian et al., 2022), reward regularization (Eysenbach
et al., 2021), multi-step predictions and projections (Schwarzer et al., 2020; Guo et al., 2020), and
metric learning (Zhang et al., 2020; Castro et al., 2021). Furthermore, the simplicity of our approach
allows us to investigate the role of representation learning in RL, in isolation from policy optimization.

The core contributions of this paper are as follows. We establish a unified view of state and history
representations with novel connections (Sec. 3), revealing that many prior methods optimize a collec-
tion of closely interconnected properties, each representing a different facet of the same fundamental
concept. Moreover, we enhance the understanding of self-predictive learning in RL regarding the
choice of the objective and its impact on the optimization dynamics (Sec. 4). Our theory results in
a simplified and novel RL algorithm designed to learn self-predictive representations fully end-to-end
(Sec. 4.3). Through extensive experimentation across three benchmarks (Sec. 5), we provide empirical
evidence substantiating all our theoretical predictions using our simple algorithm. Finally, we offer our
recommendations for RL practitioners in Sec. 6. Taken together, we believe that our work potentially
aids in addressing the longstanding challenge of learning representations in MDPs and POMDPs.

2 BACKGROUND
MDPs and POMDPs. In the context of a POMDPMO = (O,A, P,R, γ, T )2, an agent receives
an observation ot ∈ O at time step t, selects an action at ∈ A based on the observed history ht :=
(ht−1, at−1, ot) ∈ Ht

3, and obtains a reward rt ∼ R(ht, at) along with the subsequent observation
ot+1 ∼ P (· | ht, at). The initial observation h1 := o1 is sampled from the distribution P (o1). The
total time horizon is denoted as T ∈ N+ ∪ {+∞}, and the discount factor is γ ∈ [0, 1] (less than 1
for infinite horizon). To maintain brevity, we employ the “prime” symbol to represent the next time
step, for example writing h′ = (h, a, o′). Under the above assumptions, our agent acts according to a
policy π(a | h) with action-value Qπ(h, a). Furthermore, it can be shown that there exists an optimal
value function Q∗(h, a) such that Q∗(h, a) = E[r | h, a] + γEo′∼P (|h,a)[maxa′ Q∗(h′, a′)], and a
deterministic optimal policy π∗(h) = argmaxaQ

∗(h, a). In an MDPMS = (S,A, P,R, γ, T ), the
observation ot and history ht are replaced by the state st ∈ S4.

State and history representations. In a POMDP, an encoder is a function ϕ : Ht → Z that produces
a history representation z = ϕ(h) ∈ Z . Similarly, in an MDP, we replace h with s, resulting in
a state encoder ϕ : S → Z and a state representation z = ϕ(s) ∈ Z . This representation is known as
an “abstraction” (Li et al., 2006) or a “latent state” (Gelada et al., 2019). Such encoders are sometimes
shared and simultaneously updated by downstream components (e.g. policy, value, world model)
of an RL system (Hafner et al., 2020a; Hansen et al., 2022). In this paper, we are interested in such a
shared encoder, or the encoder learned for the value function if the encoders are separately learned.

Below, we present the key abstractions that are central to this paper, along with their established
connections. We will highlight the conditions met by each abstraction. We defer additional common
abstractions and related concepts to Sec. A.2.

1. Q∗-irrelevance abstraction. An encoder ϕQ∗ provides a Q∗-irrelevance abstraction (Li et al.,
2006) if it contains the necessary information for predicting the return. Formally, if ϕQ∗(hi) =
ϕQ∗(hj), then Q∗(hi, a) = Q∗(hj , a),∀a. A Q∗-irrelevance abstraction can be achieved as a by-
product of learning an encoder ϕ through a value function Q(ϕ(h), a) end-to-end using model-free
RL. If the optimal values match, then Q∗(ϕQ∗(h), a) = Q∗(h, a),∀h, a.

2. Self-predictive (model-irrelevance) abstraction. We view the model-irrelevance concept (Li
et al., 2006) from a self-predictive standpoint. Specifically, a model-irrelevant encoder ϕL fulfills two

2While the classic definition of a POMDP (Cassandra et al., 1994) features a state space, we assume it to be
unknown, thus our view of a POMDP is a black-box input-output system (Subramanian et al., 2022).

3In general, ht := (ht−1, at−1, rt−1, ot) (Izadi & Precup, 2005). In this study, we assume rewards are
inaccessible during policy inference.

4In finite-horizon MDPs, we assume s includes the time step t.
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conditions: expected reward prediction (RP) and next latent state distribution prediction (ZP)5,
ensuring that the encoder can be used to predict expected reward and the next latent state distribution.

∃Rz : Z ×A → R, s.t. E[r | h, a] = Rz(ϕL(h), a), ∀h, a, (RP)

∃Pz : Z ×A → ∆(Z), s.t. P (z′ | h, a) = Pz(z
′ | ϕL(h), a), ∀h, a, z′, (ZP)

E[z′ | h, a] = E[z′ | ϕL(h), a], ∀h, a. (EZP)
A weak version of ZP is the expected next latent state z prediction (EZP) condition. ZP can
be interpreted as a sufficient statistics condition on ϕL: the next latent state z′ is conditionally
independent of the history h when ϕL(h) and a is known, symbolized as z′ ⊥⊥ h | ϕL(h), a.
Satisfying ZP only is trivial and can be achieved by employing a constant representation ϕ(h) = c,
where c is a fixed constant. Therefore, ZP must be used in conjunction with other conditions (e.g.,
RP) to avoid such degeneration. The ϕL is known as a bisimulation generator (Givan et al., 2003)
in MDPs and an information state generator (Subramanian et al., 2022) in POMDPs.

3. Observation-predictive (belief) abstraction. This abstraction is implicitly introduced by Sub-
ramanian et al. (2022), which we denote by ϕO, and satisfies three conditions: expected reward
prediction RP, recurrent encoder (Rec) and next observation distribution prediction (OP)6.

∃ψz : Z ×A×O → Z, s.t. ϕ(h′) = ψz(ϕO(h), a, o
′), ∀h, a, o′, (Rec)

∃Po : Z ×A → ∆(O), s.t. P (o′ | h, a) = Po(o
′ | ϕO(h), a), ∀h, a, o′, (OP)

∃ψo : Z → O, s.t. o = ψo(ϕO(h)), ∀h. (OR)
Similarly, the OP condition is equivalent to o′ ⊥⊥ h | ϕO(h), a, and OP is closely related to
observation reconstruction (OR), widely used in practice (Yarats et al., 2021). The recurrent
encoder (Rec) condition is satisfied for encoders parameterized with feedforward or recurrent neural
networks (Elman, 1990; Hochreiter & Schmidhuber, 1997), but not Transformers (Vaswani et al.,
2017). In this paper, we assume the Rec condition is always satisfied. In POMDPs, ϕO is well-known
as a belief state generator (Kaelbling et al., 1998).

We extend the relations between these abstractions known in MDPs (Li et al., 2006) to POMDPs.
Theorem 1 (Relationships between common abstractions (informal)). An encoder satisfying ϕO
also belongs to ϕL; an encoder satisfying ϕL also belongs to ϕQ∗ ; the reverse is not necessarily true.

3 A UNIFIED VIEW ON STATE AND HISTORY REPRESENTATIONS
3.1 AN IMPLICATION GRAPH OF REPRESENTATIONS IN RL

ZP

ϕQ∗

RP

Rec

OP

OR

Figure 1: An implication graph showing
the relations between the conditions on his-
tory representations. The source nodes of the
edges with the same color together imply the
target node. The dashed edge means it only
applies to MDPs. All the connections are dis-
covered in this work, except for (1) OP + Rec
implying ZP, (2) ZP + RP implying ϕQ∗ .

Using the taxonomy of state and history abstractions, it
becomes possible to establish theoretical links among dif-
ferent representations and their respective conditions dis-
cussed earlier. These connections are succinctly illustrated
in a directed graph, as shown in Fig. 1. In this section,
we highlight the most significantly novel finding, while
postponing the other propositions and proofs to Sec. A.

The definition of self-predictive and observation-predictive
abstractions suggests the classic phased training frame-
work. In phased training, we alternatively train an encoder
to predict expected rewards (RP) and predict next latent
states (ZP) or next observations (OP), and also train an
RL or planning agent on the latent space with the encoder
“detached” from downstream components. On the other
hand, we show in our Thm. 2 that if we learn an encoder
end-to-end in a model-free fashion but using ZP (or OP)
as an auxiliary task, then the ground-truth expected reward can be induced by the latent Q-value and
latent transition. Thus, the encoder also satisfies RP and generates ϕL (or ϕO) representation already.
Theorem 2 (ZP + ϕQ∗ imply RP). If an encoder ϕ satisfies ZP, and Q(ϕ(h), a) = Q∗(h, a),∀h, a,
then we can construct a latent reward functionRz(z, a) := Q(z, a)−γEz′∼Pz(|z,a)[maxa′ Q(z′, a′)],
such thatRz(ϕ(h), a) = E[r | h, a],∀h, a.

5RP and ZP are labeled as (P1) and (P2), respectively, in Subramanian et al. (2022).
6OP and Rec are labeled as (P2a) and (P2b), respectively, in Subramanian et al. (2022).
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Table 1: Which optimal representation will be learned by the value function in prior works? The “PO”
column shows if the approach applies to POMDPs. The “Conditions” column shows the conditions that the
encoder of the optimal value satisfies (see the appendix for the “metric” and “regularization” conditions). The
ZP loss shows the loss function they use to learn ZP condition. The ZP target shows whether they use online or
stop-gradient (including detached and EMA) encoder target. Due to the space limit, we omit the citations for
recurrent model-free RL (Hausknecht & Stone, 2015; Kapturowski et al., 2018; Ni et al., 2022) and belief-based
methods (Wayne et al., 2018; Hafner et al., 2019; Han et al., 2020; Lee et al., 2020).

Work PO? Abstraction Conditions ZP loss ZP target

Model-Free & Classic Model-Based RL ✗ ϕQ∗ ϕQ∗ N/A N/A
MuZero (Schrittwieser et al., 2020) ✗ unknown ϕQ∗ + RP N/A N/A

MICo (Castro et al., 2021) ✗ unknown ϕQ∗ + metric N/A N/A
CRAR (François-Lavet et al., 2019) ✗ ϕL ϕQ∗ + RP + ZP + reg. ℓ2 online

DeepMDP (Gelada et al., 2019) ✗ ϕL ϕQ∗ + RP + ZP W (ℓ2) online
SPR (Schwarzer et al., 2020) ✗ ϕL ϕQ∗ + ZP cos EMA

DBC (Zhang et al., 2020) ✗ ϕL ϕQ∗ + RP + ZP + metric FKL detached
LSFM (Lehnert & Littman, 2020) ✗ ϕL ϕQ∗ + RP + EZP SF detached
Baseline in (Tomar et al., 2021) ✗ ϕL ϕQ∗ + RP + ZP ℓ2 detached
EfficientZero (Ye et al., 2021) ✗ ϕL ϕQ∗ + RP + ZP cos detached
TD-MPC (Hansen et al., 2022) ✗ ϕL ϕQ∗ + RP + ZP ℓ2 EMA

ALM (Ghugare et al., 2022) ✗ ϕL ϕQ∗ + ZP RKL EMA
TCRL (Zhao et al., 2023) ✗ ϕL RP + ZP cos EMA
OFENet (Ota et al., 2020) ✗ ϕO ϕQ∗ + OP N/A N/A

Recurrent Model-Free RL ✓ ϕQ∗ ϕQ∗ N/A N/A
PBL (Guo et al., 2020) ✓ ϕL ϕQ∗ + ZP ℓ2 detached

AIS (Subramanian et al., 2022) ✓ ϕL, ϕO RP + ZP or OP ℓ2, FKL detached
Belief-Based Methods ✓ ϕO RP + ZP + OR FKL online

Causal States (Zhang et al., 2019) ✓ ϕO RP + OP N/A N/A

Minimalist ϕL (this work) ✓ ϕL ϕQ∗ + ZP ℓ2, KL stop-grad

This result holds significance, as it suggests that end-to-end approaches to learning ϕQ∗ + ZP (OP)
have similar theoretical justification as classic phased approaches.

3.2 WHICH REPRESENTATIONS DO PRIOR METHODS LEARN?

With the unified view of state and history representations, we can categorize prior works based on the
conditions satisfied by the optimal encoders of their value functions. Table 1 shows representative
examples. The unified view enables us to draw interesting connections between prior works, even
though they may differ in RL or planning algorithms and the encoder objectives. Here we highlight
some important connections and provide a more detailed discussion of all prior works in Sec. C.

To begin with, it is important to recognize that classic model-based RL actually learns ϕQ∗ in value
function. Model-based RL trains a policy and value by rolling out on the learned model. However, the
policy and value do not share representations with the model (Sutton, 1990; Sutton et al., 2012; Chua
et al., 2018; Kaiser et al., 2019; Janner et al., 2019), or learn their representations from maximizing
returns (Tamar et al., 2016; Oh et al., 2017; Silver et al., 2017). Secondly, as shown in Table 1, there
is a wealth of prior work on approximating ϕL, stemming from different perspectives. These include
bisimulation (Gelada et al., 2019), information states (Subramanian et al., 2022), variational infer-
ence (Eysenbach et al., 2021; Ghugare et al., 2022), successor features (Barreto et al., 2017; Lehnert &
Littman, 2020), and self-supervised learning (Schwarzer et al., 2020; Guo et al., 2020). The primary
differences between these approaches lie in their selection of (1) architecture (whether learning RP,
ϕQ∗ , or both), (2) ZP objectives (such as ℓ2, cosine, forward or reverse KL, as discussed in Sec. 4.1),
and (3) ZP targets for optimization (including online, detached, EMA, as detailed in Sec. 4.2). Finally,
observation-predictive representations are typically studied in POMDPs, where they are known as
belief states (Kaelbling et al., 1998) and predictive state representations (Littman et al., 2001).

4 ON LEARNING SELF-PREDICTIVE REPRESENTATIONS IN RL
The implication graph (Fig. 1) establishes the theoretical connections among various representations
in RL, yet it does not address the core learning problems. This section aims to give some theoretical
answers to how to learn self-predictive representations. While self-predictive representation holds
promise, it poses significant learning challenges compared to grounded model-free and observation-
predictive representations. The bootstrapping effect, where ϕ appears in both sides of ZP (since z′
also relies on ϕ(h′)), contributes to this difficulty. We present detailed analyses of the objectives in
Sec. 4.1 and optimization in Sec. 4.2, with proofs deferred to Sec. B. Building on these analyses, we
propose a simple representation learning algorithm for ϕL in RL in Sec. 4.3.
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4.1 ARE PRACTICAL ZP OBJECTIVES BIASED?

Thm. 2 suggests that we can learn ϕL by simply training an auxiliary task of ZP on a model-free
agent. Prior works have proposed several auxiliary losses, summarized in Table 1’s ZP loss column.
Formally, we parametrize an encoder with fϕ : Ht → Z (deterministic case) or fϕ : Ht → ∆(Z)
(probabilistic case)7. The latent transition function Pz(z

′ | z, a) is parameterized by gθ : Z×A → Z
(deterministic case) or gθ : Z ×A → ∆(Z) (probabilistic case). We use Pϕ(z | h) and Pθ(z

′ | z, a)
to represent the encoder and latent transition, respectively. The self-predictive metric for ZP is ideally:

LZP,D(ϕ, θ;h, a) := Ez∼Pϕ(|h)[D(Pθ(z
′ | z, a) || Pϕ(z

′ | h, a))], (1)

where Pϕ(z
′ | h, a) = Eo′∼P (·|h,a)[Pϕ(z

′ | h′)]. D(· || ·) ∈ R≥0 compares two distributions. When
Eq. 1 reaches minimum, then for any z ∼ Pϕ(| h), the ZP condition is satisfied.

When designing practical ZP loss, prior works are mainly divided into deterministic ℓ2 ap-
proach (Gelada et al., 2019; Schwarzer et al., 2020; Tomar et al., 2021; Hansen et al., 2022; Ye et al.,
2021)8 or probabilistic f-divergence approach (Zhang et al., 2020; Ghugare et al., 2022; Hafner et al.,
2019) that includes forward and reverse KL divergences (in short, FKL and RKL):

Jℓ(ϕ, θ, ϕ̃;h, a) := Eo′∼P (|h,a)

[
∥gθ(fϕ(h), a)− fϕ̃(h′)∥22

]
, (2)

JDf
(ϕ, θ, ϕ̃;h, a) := Ez∼Pϕ(|h),o′∼P (|h,a)

[
Df

(
Pϕ̃(z

′ | h′) || Pθ(z
′ | z, a)

)]
, (3)

where ϕ̃, called ZP target, can be online (exact ϕ that allows gradient backpropagation), or the
stop-gradient version ϕ (detached from the computation graph and using a copy or exponential
moving average (EMA) of ϕ). The update rule is ϕ ← τϕ + (1 − τ)ϕ, with τ = 0 for detached
and τ ∈ (0, 1) for generic EMA. We summarize the choices of ZP targets in one column of Table 1.

We first investigate the relationship between the ideal objective Eq. 1 and practical objec-
tives Eq. 2 and Eq. 3 to better understand their implications.
Proposition 1 (The practical ℓ2 objective Eq. 2 is an upper bound of the ideal objective Eq. 1
LZP,ℓ(ϕ, θ;h, a) that targets EZP condition. The equality holds in deterministic environments.).
Proposition 2 (The practical f-divergence objective Eq. 3 is an upper bound of the ideal ob-
jective Eq. 1 LZP,Df

(ϕ, θ;h, a) that targets ZP condition. The equality holds in deterministic
environments.).
These propositions show that environment stochasticity (P (o′ | h, a)) affects both the practical ℓ2
and f-divergence objectives. While unbiased in deterministic tasks to learn the ZP condition9, they
are problematic in stochastic tasks (e.g. with data augmentation or noisy distractors) due to double
sampling issue (Baird, 1995), as the ideal objective Eq. 1 cannot be used (see Sec. B for discussion).

4.2 WHY DO STOP-GRADIENTS WORK FOR ZP OPTIMIZATION?

In this subsection, we further discuss optimizing the practical ZP objective Eq. 2. Specifically, we aim
to justify that stop-gradient (detached or EMA) ZP targets, widely used in practice (Schwarzer et al.,
2020; Zhang et al., 2020; Ghugare et al., 2022), play an important role in optimization. We find that
they may lead to EZP condition in stochastic environments (Prop. 3) and can avoid representational
collapse under some linear assumptions (Thm. 3). Meanwhile, online ZP targets lack these properties.

Before introducing the results, we want to clarify the discrepancy between learning ZP and the
well-known TD learning (Sutton, 1988). At first glance, Eq. 2 (stop-gradient version) is reminiscent
of mean-squared TD error, both having the bootstrapping structures. However, Eq. 2 has an extra
challenge due to the missing reward, leading to a trivial solution of constant representation, known as
complete representational collapse (Jing et al., 2021). Moreover, ZP requires distribution matching,
while the Bellman equations that TD learning aims to optimize only require matching expectations.

Proposition 3 (The ℓ2 objective Eq. 2 with stop gradients (Jℓ(ϕ, θ, ϕ;h, a)) ensures stationary points
that satisfy EZP, but the ℓ2 objective with online targets lacks this guarantee.).

7Despite being a special case of probabilistic encoders, deterministic encoders deserve distinct discussion
because they can be optimal in POMDPs and have been frequently used in prior works. In addition, it should be
noted that a probabilistic one may help as it smooths the objective.

8Cosine distance is an ℓ2 distance on the normalized vector space Z = { z ∈ Rd | ∥z∥2 = 1}.
9The EZP condition is equivalent to the ZP condition in deterministic tasks.
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Algorithm 1 Minimalist ϕL: learning self-predictive representations in RL

Require: Encoder fϕ : Ht → Z , Actor πν : Z → A, Critic Qω : Z ×A → R, Latent Transition
Model gθ : Z ×A → Z . Learning Rate α > 0 and Loss Coefficient λ > 0.

1: procedure UPDATE(h, a, o′, r)
2: Compute any model-free RL loss LRL (based on DDPG (Lillicrap et al., 2016) here) let
Qtar(h′, r) := r + γQω(fϕ(h

′), πν(fϕ(h
′))),

LRL(ϕ, ω, ν;h
′, r) = (Qω(fϕ(h), a)−Qtar(h′, r))2 −Qω(fϕ(h), πν(fϕ(h))). (4)

3: Compute the auxiliary ZP loss Laux(ϕ, θ;h
′) = ∥gθ(fϕ(h), a)− fϕ(h′)∥22.

4: Optimize all parameters using the sum of losses:
[ϕ, θ, ν, ω]← [ϕ, θ, ν, ω]− α∇(LRL(ϕ, ω, ν;h

′, r) + λLaux(ϕ, θ;h
′)). (5)

Prop. 3 suggests the adoption of stop-gradient targets in Eq. 2 to preserve the stationary points of
EZP in both deterministic and stochastic tasks.
Theorem 3 (Stop-gradient provably avoids representational collapse in linear models). Assume
a linear encoder fϕ(h) := ϕ⊤h−k: ∈ Rd with parameters ϕ ∈ Rk(|O|+|A|)×d, which always
operates on h−k:, a recent-k truncation of history h. Assume a linear deterministic latent transition
gθ(z, a) := θ⊤z z + θ⊤a a ∈ Rd with parameters θz ∈ Rd×d and θa ∈ R|A|×d. If we train ϕ, θ using
the stop-gradient ℓ2 objective Eh,a

[
Jℓ(ϕ, θ, ϕ;h, a)

]
without RL loss, and θ relies on ϕ by reaching

the stationary point with ∇θEh,a

[
Jℓ(ϕ, θ, ϕ;h, a)

]
= 0, then the matrix multiplication ϕ⊤ϕ will

retain its initial value over continuous-time training dynamics.
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Figure 2: The absolute normalized inner product of the
two column vectors in the learned encoder when using
online, detached, or EMA ZP target in an MDP (left) and
a POMDP (right). We plot the results for 100 different
seeds, which controls the rollouts used to sample tran-
sition and the initialization of the representation. The
bold lines represent the median of the seeds.

Thm. 3 extends the results of (Tang et al.,
2022, Theorem 1) to action-dependent latent
transition, POMDP, and EMA settings. This
theorem also implies that ϕ will keep full-rank
during training if the initialized ϕ is full-rank10.

Similar to Tang et al. (2022), we illustrate our
theoretical contribution by examining the be-
havior of the learned encoder over time when
starting from a random orthogonal initialization.
We extend these results by considering both the
MDP and the POMDP setting and consider two
classical domains, mountain car (Moore, 1990)
(MDP) and load-unload (Meuleau et al., 2013)
(POMDP), where we fit an encoder ϕ with a
latent state dimension of 2. Fig. 2 shows the orthogonality-preserving effect of the stop-gradient by
comparing the cosine similarity between columns of the learned ϕ. As expected by Thm. 3, we see
this similarity stay several orders of magnitude smaller when using stop-gradient (detached or EMA)
compared to the online case. Note that although our theory discusses the continuous-time dynamics,
we can approximate them with gradient steps with a small learning rate, as was done for these results.
4.3 A MINIMALIST RL ALGORITHM FOR LEARNING SELF-PREDICTIVE REPRESENTATIONS

Our theory leads to a straightforward RL algorithm that can target ϕL. Essentially, it integrates a single
auxiliary task into any model-free RL algorithm (e.g., DDPG (Lillicrap et al., 2016) and R2D2 (Kap-
turowski et al., 2018)), as indicated by Thm. 2. Algo. 1 provides the pseudocode for the update rule
of all parameters in our algorithm given a tuple of transition data, with PyTorch code included in
Appendix. The ℓ2 ZP loss can be replaced with KL objective with probabilistic encoder and latent
model, especially in stochastic environments, as suggested by Prop. 2. The fϕ(h

′) in ZP loss stops
the gradient from the encoder, following Sec. 4.2. The actor loss −Qω(fϕ(h), πν(fϕ(h)) freezes the
parameters of the critic and encoder, suggested by recent work on memory-based RL (Ni et al., 2023).

Our algorithm greatly simplifies prior self-predictive methods and enables a fair comparison spanning
from model-free to observation-predictive representation learning. It is characterized as minimalist
by removing reward learning, planning, multi-step predictions, projections, and metric learning. It is
also novel by being the first to learn self-predictive representations end-to-end in POMDP literature.

Our algorithm also bridges model-free and observation-predictive representation learning. We
derive learning ϕQ∗ by setting the coefficient λ to 0, and learning ϕO by replacing ZP loss with OP
loss like OFENet (Ota et al., 2020). As a by-product, by comparing {ϕQ∗ , ϕL, ϕO} derived from

10This is due to the fact that rank(A⊤A) = rank(A) for any real-valued matrix A.
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Figure 3: Decoupling representation learning from policy optimization using our algorithm based on
ALM(3) (Ghugare et al., 2022). Comparison between ϕQ∗ (TD3), ϕL (our algorithm (ZP-ℓ2, ZP-FKL, ZP-
RKL) and ALM(3)), ϕO (OP-ℓ2, OP-FKL), in the standard MuJoCo benchmark for 500k steps, averaged over
12 seeds. The observation dimension increases from left figure to right figure (17, 17, 111, 376).
our algorithm, we can disentangle representation learning from policy optimization because all
representations are learned by the same RL algorithm. This is rarely seen in prior works, as learning
ϕO or ϕL typically involves planning, while model-free RL does not. Such disentanglement allows
us to examine the sample efficiency benefits derived purely from representation learning.

5 EXPERIMENTS

We conduct experiments to compare RL agents learning the three representations {ϕQ∗ , ϕL, ϕO},
respectively. To decouple representation learning from policy optimization, we follow our minimalist
algorithm (Algo. 1) to learn ϕL, and instantiate ϕQ∗ and ϕO by setting λ = 0 and replacing ZP loss
with OP loss, as we discuss in Sec. 4.3. We evaluate the algorithms in standard MDPs, distracting
MDPs11, and sparse-reward POMDPs. The experimental details are shown in Sec. E. Through
the subsequent experiments, we aim to validate five hypotheses based on our theoretical insights
in Sec. 3 and Sec. 4, with their motivation shown in Sec. D.1.
• Sample efficiency hypothesis: do the extra OP and ZP signals help ϕO and ϕL have better sample-

efficiency than ϕQ∗ in standard MDPs (Sec. 5.1) and especially in sparse-reward tasks (Sec. 5.3)?
• Distraction hypothesis (Sec. 5.2): since learning ϕO may struggle with predicting distracting

observations, is it less sample-efficient than learning ϕL?
• End-to-end hypothesis (Sec. 5.3): as predicted by Thm. 2, is training an encoder end-to-end with

an auxiliary task of ZP (OP) comparable to the phased training with RP and ZP (OP)?
• ZP objective hypothesis (Sec. 5.1, Sec. 5.2): as predicted by Prop. 1 and Prop. 2, is using ℓ2 loss

as ZP objective similar to KL loss in deterministic tasks, but not necessarily stochastic tasks?
• ZP stop-gradient hypothesis (Sec. 5.1, Sec. 5.3): as predicted by Thm. 3, does stop-gradient

on ZP targets mitigate representational collapse compared to online ZP targets?

5.1 STATE REPRESENTATION LEARNING IN STANDARD MDPS
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Figure 4: Representation collapse with online targets. On four
benchmark tasks, we observe that using the online ZP target in ℓ2
objectives results in lower returns (top) and low-rank representations
(bottom). In line with our theory, using a detached or EMA ZP target
mitigates the representational collapse and yields higher returns.

We first evaluate our algorithm in the
relatively low-dimensional MuJoCo
benchmark (Todorov et al., 2012).
We implement it by simplifying
ALM(3) (Ghugare et al., 2022), a
state-of-the-art algorithm on MuJoCo.
ALM(3) aims to learn ϕL end-to-end
with EMA ZP target and reverse
KL, shown by Thm. 2. ALM(3)
requires a reward model in the
encoder objective and optimizes the
actor via SVG (Heess et al., 2015)
with planning for 3 steps. Following
our Algo. 1, we remove the reward
model and multi-step predictions;
instead, we train the encoder using our loss (Eq. 2 or Eq. 3) and the actor-critic is conditioned on
representations and trained using model-free TD3 (Fujimoto et al., 2018), while keeping the other
hyperparameters the same. These simplifications result in a 50% faster speed than ALM(3). Please
see Sec. E.2 for a detailed comparison between our algorithm and ALM(3).

Validation of sample efficiency and ZP objective hypotheses. Fig. 3 shows that our minimalist
ϕL using EMA ZP targets can attain similar (in Ant) or even better (in HalfCheetah and Walker2d)

11Distracting MDPs refers to MDPs with distracting observations irrelevant to optimal control in this work.
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Figure 5: Self-predictive representations are more robust. Comparison between ϕQ∗ (TD3), ϕL (ZP-ℓ2,
ZP-FKL, ZP-RKL) using our algorithm, ϕO (OP-ℓ2, OP-FKL) in the distracting MuJoCo benchmark, varying
the distractor dimension from 24 to 28, averaged over 12 seeds. The y-axis is final performance at 1.5M steps.

sample efficiency at 500k steps compared to ALM(3), and greatly outperforms ϕQ∗ , across the entire
benchmark except for Humanoid task. This suggests that the primary advantage ALM(3) brings
to model-free RL in these MuJoCo tasks, lies in state representation rather than policy optimization.
This benefit could be further enhanced by streamlining the algorithmic design. In Humanoid task,
ALM(3)’s superior performance is likely due to SVG policy optimization’s use of first-order gradient
information from latent dynamics, which is particularly beneficial in high-dimensional tasks like
this. In line with Prop. 1 and Prop. 2, different ZP objectives (ℓ2, FKL, RKL) perform similarly
on these tasks, which are nearly deterministic. Thus, these results support our sample efficiency
and ZP objective hypotheses.

Validation of ZP stop-gradient hypothesis. We observe a significant performance degradation when
switching from the stop-gradient ZP targets to online ones in all MuJoCo tasks for all ZP objectives
(ℓ2, FKL, RKL). Fig. 4 (top) shows the results for the ℓ2 objective Eq. 2. To estimate the rank of the
associated linearized operator for the MLP encoder, we compute the matrix rank of latent states given
a batch of inputs12, where the batch size is 512 and the latent state dimension is 50. The MLP encoders
are orthogonally initialized (Saxe et al., 2013) with a full rank of 50. Fig. 4 (bottom) shows that the
estimated rank of ℓ2 objective with online targets collapses from full rank to low rank, a phenomenon
known as dimensional collapse in self-supervised learning (Jing et al., 2021). Interestingly, the high
dimensionality of a task worsens the rank collapse by comparing from left to right figures. In contrast,
stop-gradient targets suffer less from rank collapse, in support to our ZP stop-gradient hypothesis. For
KL objectives, switching to online targets also decreases the rank, though less severely (see Fig. 11).

5.2 STATE REPRESENTATION LEARNING IN DISTRACTING MDPS

We then evaluate the robustness of representation learning by augmenting states with distractor dimen-
sions in the MuJoCo benchmark. The distractors are i.i.d. standard isotropic Gaussians, varying the
number of dimensions from 24 to 28, following the practice in Nikishin et al. (2022). The distracting
task has the same optimal return as the original one and can be challenging to RL algorithms, even
if model-based RL could perfectly model Gaussians. We use the same code in standard MDPs. Fig. 5
shows the final averaged returns of each algorithm (variant) in the distracting MuJoCo benchmark.

Validation of distraction hypothesis. By comparing ZP with OP objectives, with higher-dimensional
distractors, learning ϕO degrades much faster than learning ϕL, verifying our distraction hypothesis.
Surprisingly, model-free RL (ϕQ∗) performs worse than ϕO, as ϕQ∗ does not need to predict the
distractors. However, we still observe a severe degradation in Ant for all methods when there are
128 distractors, which we will study in the future work.

Extending ZP objective hypothesis to stochastic tasks. In stochastic tasks, Prop. 1 and Prop. 2
tell us about the (strict) upper bounds for learning EZP and ZP conditions with the practical ℓ2 and
KL objectives, respectively. Yet, they do not indicate which objective is better for stochastic tasks
based on these bounds. In fact, we observe that both ℓ2 and reverse KL perform better than forward
KL in the distracting tasks, possibly because the entropy term in reverse KL smooths the training
objective, and ℓ2 objective simplifies the learning.

5.3 HISTORY REPRESENTATION LEARNING IN SPARSE-REWARD POMDPS

Finally, we perform an extensive empirical study on 20 MiniGrid tasks (Chevalier-Boisvert et al.,
2018). These tasks, featuring partial observability and sparse rewards, serve as a rigorous test-bed
for history representation learning. The rewards are only non-zero upon successful task completion.
Episode returns are between 0 and 1, with higher returns indicating faster completion. Each task has
an observation space of 7× 7× 3 = 147 dimensions and a discrete action space of 7 options. Our

12The rank of anm×nmatrixA is the dimension of the image of mapping f : Rn → Rm, where f(x) = Ax.
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Figure 6: End-to-end learned self-predictive and observation-predictive representations stand out in
sparse-reward tasks. We show the interquartile mean (IQM) (Agarwal et al., 2021) across 20 MiniGrid tasks,
computed over 9 seeds per task with 95% stratified bootstrap confidence intervals. The individual task plots are
shown in Appendix Fig. 14 and Fig. 15. Left: comparison of episode returns between ϕQ∗ (R2D2), ϕL (ZP, RP
+ ZP), ϕO (OP, RP + OP). RP + ZP and RP + OP methods are phased, while ZP and OP methods are end-to-end.
Right: comparison of estimated matrix rank between ZP targets (online, detached, EMA), R2D2, and OP. The
maximal achievable rank is 128.

model-free baseline is R2D2 (Kapturowski et al., 2018), composed of double Q-learning (Van Hasselt
et al., 2016) with LSTMs (Hochreiter & Schmidhuber, 1997) as history encoders. We implement
it based on recent work (Seyedsalehi et al., 2023). R2D2 uses stored LSTM hidden states for
initialization, a 50-step burn-in period, and a 10-step history rollout during training. This result in a
high dimensionality of (50 + 10)× (147 + 7) = 9240 on histories.

Based on R2D2, we implement our algorithm by adding an auxiliary task of ZP (or OP) under ℓ2
objectives, which is sufficient for solving these deterministic tasks (see Prop. 1). To compare the
phased training (Seyedsalehi et al., 2023), we further implement methods (RP + OP, RP + ZP) that
also predict rewards and freeze the encoders during Q-learning. Due to the space limit, we show the
aggregated plots in Fig. 6 and defer the individual task plots to Sec. G.

Validation of sample efficiency hypothesis. By examining the aggregated learning curves of end-to-
end methods in Fig. 6 left, we find that minimalist ϕL (ZP) significantly outperforms ϕQ∗ (R2D2) on
average. It, however, fall shorts of ϕO (OP), which aligns with our expectations given that MiniGrid
tasks are deterministic with medium-dimensional clean observations. The enhanced performance
of ϕL and ϕO over ϕQ∗ provides empirical validation of our hypothesis in sparse-reward tasks.

Validation of end-to-end hypothesis. By comparing the aggregated learning curves between end-
to-end methods and phased methods (i.e., OP vs RP + OP, and ZP vs RP + ZP) in Fig. 6 left,
we observe that end-to-end training (OP or ZP) yields equal or superior sample efficiency relative
to phased training (RP + OP or RP + ZP) when learning observation-predictive or self-predictive
representations. This supports our hypothesis, and is particularly noticeable when end-to-end learning
ϕL (ZP) markedly excels over its phased learning counterpart (RP + ZP).

Validation of ZP stop-gradient hypothesis. We extend our rank analysis from MuJoCo to MiniGrid
using the same estimation metric. As depicted in Fig. 6 right, our finding averaged across the
benchmark indicates that EMA ZP targets are able to preserve their rank, while both detached and
online ZP targets degrade the rank during training. Notably, while our theory does not distinguish
detached and EMA targets, the observed lower rank of online targets relative to both detached and
EMA targets is in line with our hypothesis. Finally, without any auxiliary task such as ZP and OP,
R2D2 degrades the rank, which is predictable in the sparse-reward setting (Lyle et al., 2021).

6 DISCUSSION

Recommendations. Based on our theoretical and empirical results, we suggest the following
preliminary guidance to RL practitioners:
1. Analyze your task first. For example, in noisy or distracting tasks, consider using self-predictive

representations. In sparse-reward tasks, consider using observation-predictive representations. In
deterministic tasks, choose the deterministic ℓ2 objectives for representation learning.

2. Use our minimalist algorithm as your baseline. Our algorithm allows for an independent
evaluation of representation learning and policy optimization effects. Start with end-to-end
learning and model-free RL for policy optimization.

3. Implementation tips. For our minimalist algorithm, we recommend adopting the ℓ2 objective
with EMA ZP targets first. When tackling POMDPs, start with recurrent networks as the encoder.

Please refer to Sec. D.2 for our discussion on limitations and conclusion.
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A A UNIFIED VIEW ON STATE AND HISTORY REPRESENTATIONS

A.1 NOTATION

Table 2 shows the glossary used in this paper.

A.2 ADDITIONAL BACKGROUND

Remark on the latent state distribution. In this paper, we assume the latent space Z as a pre-
specified Banach space, which is a complete normed vector space. We further assume any latent state
distribution defined on Z has a finite expectation. To avoid a measure-theoretic treatment, we assume
that Z is discrete-valued in our proof analysis. The proof arguments are easily generalized to the case
when Z lies in a Banach space using standard arguments.

Remark on the existence of optimal value and policy in POMDPs. In an MDP, it is well-known
that there exists a unique optimal value function following the Bellman equation, which induces
an optimal deterministic policy (Puterman, 1994). In POMDPs, the result is complicated. For a
finite-horizon POMDP, one can construct a finite-dimensional state space by stacking all previous
observations and actions to convert a POMDP into an MDP, thus the MDP result can be directly
applied. For an infinite-horizon POMDP, Subramanian et al. (2022, Theorem 25) shows that the unique
optimal value function exists when the POMDP has a time-invariant finite-dimensional information
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Table 2: Glossary of notations used in this paper.

Notation Text description Math description

γ Discount factor γ ∈ [0, 1]
T Horizon T ∈ N ∪ {+∞}
st State at step t s ∈ S
ot Observation at step t o ∈ O
at Action at step t a ∈ A
rt Reward at step t r ∈ R
ht History at step t ht = (ht−1, at−1, ot) ∈ Ht, h1 = o1

P (ot+1 | ht, at) Environment transition
R(ht, at) Environment reward function R : Ht ×A → ∆(R)
π(at | ht) Policy (actor)
π∗(ht) Optimal policy (actor)

Qπ(ht, at) Value (critic)
Q∗(ht, at) Optimal value (critic)

ϕ Encoder of history ϕ : Ht → Z
zt Latent state at step t zt = ϕ(ht) ∈ Z

Pz(zt+1 | zt, at) Latent transition
Rz(zt, at) Latent reward function
πz(at | zt) Latent policy (actor)
π∗
z (zt) Optimal latent policy (actor)

Qπz
z (zt, at) Latent value (critic)
Q∗

z(zt, at) Optimal latent value (critic)

RP Expected Reward Prediction E[rt | ht, at] = Rz(ϕ(ht), at)

OR Observation Reconstruction ot = ψo(ϕ(ht))
OP Next Observation Prediction P (ot+1 | ht, at) = Po(ot+1 | ϕ(ht), at)

ZP Next Latent State z Prediction P (zt+1 | ht, at) = Pz(zt+1 | ϕ(ht), at)
EZP Expected Next Latent State z Prediction E[zt+1 | ht, at] = E[zt+1 | ϕ(ht), at]
Rec Recurrent Encoder ϕ(ht+1) = ψz(ϕ(ht), at, ot+1)
ZM Markovian Latent Transition zt+1 ⊥⊥ z1:t−1, a1:t−1 | ϕ(ht), at

ϕπ∗ π∗-irrelevance abstraction ϕ(h1) = ϕ(h2) =⇒ π∗(h1) = π∗(h2)
ϕQ∗ Q∗-irrelevance abstraction ϕ(h1) = ϕ(h2) =⇒ Q∗(h1, a) = Q∗(h2, a)
ϕM Markovian abstraction RP + ZM
ϕL Self-predictive abstraction RP + ZP ⇐⇒ ϕQ∗ + ZP
ϕO Observation-predictive abstraction RP + OP + Rec ⇐⇒ ϕQ∗ + OP + Rec

state, which is the case when the unobserved state space is finite. The POMDP experiments shown in
Sec. 5.3 satisfy this assumption because they have a finite state space. For POMDPs with infinite-
dimensional information states, the result remains unclear.

A.2.1 ADDITIONAL ABSTRACTIONS AND FORMALIZING THE RELATIONSHIP

First, we present two additional abstractions not shown in the main paper, which are also used in
prior work. Then we formalize Thm. 1 with Thm. 4 using the concept of granularity in relation.

π∗-irrelevance abstraction. An encoder ϕπ∗ yields a π∗-irrelevance abstraction (Li et al., 2006)
if it contains the necessary information (a “sufficient statistics”) for selecting return-maximizing
actions. Formally, if ϕπ∗(hi) = ϕπ∗(hj) for some hi, hj ∈ Ht, then π∗(hi) = π∗(hj). One way of
obtaining a π∗-irrelevance abstraction is to learn an encoder ϕ end-to-end with a policy πz(a | ϕ(h))
by model-free RL (Sutton et al., 1999) such that π∗

z(ϕπ∗(h)) = π∗(h),∀h.

Markovian abstraction. An encoder ϕM provides Markovian abstraction if it satisfies the expected
reward condition RP and Markovian latent transition (ZM) condition: for any zk = ϕM (hk),

P (zt+1 | z1:t, a1:t) = P (zt+1 | zt, at), ∀z1:t+1, a1:t. (ZM)

This extends Markovian abstraction (Allen et al., 2021) in MDPs to POMDPs.
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Granularity in relation. In MDPs, it is well-known that state representations form a hierarchical
structure (Li et al., 2006, Theorem 2), but this idea had not been extended to the POMDP case. We do
so here by defining an equivalent concept of “granularity”. We say that an encoder ϕA is finer than
or equal to another encoder ϕB , denoted as ϕA ⪰ ϕB , if and only if for any histories hi, hj ∈ Ht,
ϕA(hi) = ϕA(hj) implies ϕB(hi) = ϕB(hj). The relation ⪰ is a partial ordering. Using this notion,
we can show Thm. 4:
Theorem 4 (Granularity of state and history abstractions (the formal version of Thm. 1)).
ϕO ⪰ ϕL ⪰ ϕQ∗ ⪰ ϕπ∗ .

Abstract MDP. Given an encoder ϕ, we can construct an abstract MDP (Li et al., 2006)
Mϕ = (Z,A, Pz, Rz, γ, T ) for a POMDP MO. The latent reward Rz and latent transition Pz

are then given by: Rz(z, a) =
∫
P (h | z)E[r | h, a]dh, Pz(z

′ | z, a) =
∫
P (h | z)P (o′ |

h, a)δ(z′ = ϕ(h′))dhdo′, where P (h | z) = 0 for any ϕ(h) ̸= z and is normalized to a distri-
bution. The optimal latent (Markovian) value function Q∗

z(z, a) statisfies Q∗
z(z, a) = Rz(z, a) +

γEz′∼Pz(|z,a)[maxa′ Q∗
z(z

′, a′)], and the optimal latent policy π∗
z(z) = argmaxaQ

∗
z(z, a). It is

important to note that this definition focuses solely on the process by which the encoder induces a
corresponding abstract MDP, without addressing the quality of the encoder itself.

A.2.2 ALTERNATIVE DEFINITIONS

In the main paper (Sec. 2), we present the concepts of self-predictive abstraction ϕL and observation-
predictive abstraction ϕO. In most prior works, these concepts were defined in an alternative way –
using a pair of states (histories). In comparison, our definition is based on a pair of a state (history)
and a latent state, which we believe is more comprehensible and help derive the auxiliary objectives.

For completeness, here we restate their definition, extended to POMDPs, and then show the equiva-
lence between their and our definitions.

Model-irrelevance abstraction (Li et al., 2006) (bisimulation relation (Givan et al., 2003)) ΦL. If
for any two histories hi, hj ∈ H such that ΦL(hi) = ΦL(hj), then

E[r | hi, a] = E[r | hj , a], ∀a ∈ A, (6)

P (z′ | hi, a) = P (z′ | hj , a), ∀a ∈ A, z′ ∈ Z, (7)

where P (z′ | h, a) =
∫
P (o′ | h, a)δ(z′ = ΦL(h

′))do′. Here we extend the concept from MDPs (Li
et al., 2006; Givan et al., 2003) into POMDPs. It is worth noting that while original concepts assume
deterministic rewards or require reward distribution matching for stochastic rewards (Castro et al.,
2009) in Eq. 6, the requirement can indeed be relaxed. As shown by Subramanian et al. (2022), it
is sufficient to ensure expected reward matching to maintain optimal value functions. As such, we
adopt this relaxed requirement of expectation matching in our concept.
Proposition 4 (ΦL is equivalent to ϕL).

Proof. It is easy to see that ϕL implies ΦL. If ϕL(hi) = ϕL(hj), then by RP,

E[r | hi, a] = Rz(ϕL(hi), a) = Rz(ϕL(hj), a) = E[r | hj , a], (8)

and by ZP,

P (z′ | hi, a) = Pz(z
′ | ϕL(hi), a) = Pz(z

′ | ϕL(hj), a) = P (z′ | hj , a). (9)

Therefore, ϕL implies ΦL.

Now we want to show ΦL implies ϕL. We will use the following fact: for any two random variables
X,Y and a function f that maps Y into a random variable Z, we have X ⊥⊥ f(Y ) | Y . This is
equivalent to say:

P (X = x | Y = y) = P (X = x | Y = y, Z = f(y)), ∀x, y. (10)

A corollary is on the conditional expectation:

E[X | Y = y] = E[X | Y = y, Z = f(y)]. (11)

First, to see RP condition: using the fact (Eq. 11),

E[r | H = hi,A = a] = E[r | H = hi,A = a,Z = ϕ(hi)]. (12)
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By Eq. 6, we have for any hi, hj such that ϕ(hi) = ϕ(hj) := z,

E[r | H = hi,A = a,Z = z] = E[r | H = hj ,A = a,Z = z]. (13)

This exactly indicates RP condition: E[r | H = hi,A = a] is a function of ϕ(hi), a.

Similar to the proof of showing RP, we can show ZP: using the fact (Eq. 10),

P (z′ | H = hi,A = a) = P (z′ | H = hi,A = a,Z = ϕ(hi)). (14)

By Eq. 7, we have for any hi, hj such that ϕ(hi) = ϕ(hj) := z,

P (z′ | H = hi,A = a,Z = z) = P (z′ | H = hj ,A = a,Z = z). (15)

This exactly indicates ZP condition: P (z′ | H = hi,A = a) is a distribution conditioned on ϕ(hi), a.

Belief abstraction ΦO (weak belief bisimulation relation (Castro et al., 2009)). It satisfies Rec,
and if for any two histories hi, hj ∈ H such that ΦO(hi) = ΦO(hj), then

E[r | hi, a] = E[r | hj , a], ∀a ∈ A, (16)

P (o′ | hi, a) = P (o′ | hj , a), ∀a ∈ A, o′ ∈ O. (17)

This concept is known as a naive abstraction in MDPs (Jiang, 2018) and weak belief bisimulation
relation in POMDPs (Castro et al., 2009). Similarly, prior concepts assume deterministic reward or
distribution matching for stochastic rewards, while we relax it to expected reward matching.

Proposition 5 (ΦO is equivalent to ϕO).

Proof. The proof is almost the same as the proof of Prop. 4 by replacing z′ with o′.

A.3 PROPOSITIONS AND PROOFS

With the additional background in Sec. A.2, we show the complete implication graph in Fig. 7 built
on Fig. 1.

ZP

ϕQ∗

RP

ZM
Rec

OP
ϕπ∗

OR

Figure 7: The complete implication graph showing the relations between the conditions on history
representations. The source nodes of the edges with the same color together imply the target node.
The dashed edge means it only applies to MDPs. As a quick reminder, RP: expected reward prediction,
OP: next observation prediction, OR: observation reconstruction, ZP: next latent state prediction,
Rec: recurrent encoder, ZM: Markovian latent transition. All the connections are discovered in this
work, except for (1) OP + Rec implying ZP, (2) ZP + RP implying ϕQ∗ , (3) ϕQ∗ implying ϕπ∗ .

A.3.1 RESULTS RELATED TO ZP

Lemma 1 (Functions of independent random variables are also independent). If X ⊥⊥ Y , then for
any functions f, g, we have f(X) ⊥⊥ g(Y ).
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Proof. This is a well-known result. Here is an elementary proof. Let A,B be any two sets,

P (f(X) ∈ A, g(Y ) ∈ B) = P (X ∈ f−1(A), Y ∈ g−1(B)) (18)
X⊥⊥Y
= P (X ∈ f−1(A))P (Y ∈ g−1(B)) = P (f(X) ∈ A)P (g(Y ) ∈ B). (19)

Lemma 2. If X ⊥⊥ Y | Z, then for any function f , we have X ⊥⊥ Y, f(Z) | Z.

Proof.

P (Y, f(Z) | X,Z) = P (f(Z) | X,Z)P (Y | X,Z, f(Z)) (20)
= P (f(Z) | Z)P (Y | Z) = P (f(Z) | Z)P (Y | Z, f(Z)) = P (Y, f(Z) | Z). (21)

Proposition 6 (ZP implies both ZM and Rec.).
Remark 1. These are new results. ZP implying ZM means ϕL ⪰ ϕM .

Proof of Prop. 6 (ZP implies ZM). Since ZP that zt+1 ⊥⊥ ht | zt, at, this implies zt+1 ⊥⊥ f(ht) |
zt, at for any transformation f by Lemma 1. One special case of f is that f(ht) = (z1:t, a1:t−1) ,
where zk = ϕ(hk), which is ZM.

zt

zt+1

ht

ot+1

at

Figure 8: The graphical model of the interaction between history encoder and the environment.

Proof of Prop. 6 (ZP implies Rec). Let ϕ satisfy ZP, i.e. z′ ⊥⊥ h | ϕ(h), a. Then we can show that
z′ ⊥⊥ h | ϕ(h), a, o′. This is because the graphical model ((h, a) → o′ and (h, a, o′) → z′; see
Fig. 8) does not have v-structure such that (h, z′)→ o′, thus adding the variable o′ to conditionals
preserves conditional independence, by the principle of d-separation (Pearl, 1988).

As (a, o′) also appears in the condition, we have z′ ⊥⊥ h′ | ϕ(h), a, o′ by Lemma 2, which is the
probabilistic form of Rec.

Proposition 7 (OP and Rec imply ZP (Subramanian et al., 2022).).

Proof of Prop. 7 and Thm. 4 (ϕO ⪰ ϕL). We directly follow the proof in (Subramanian et al., 2022,
Proposition 4). Let ϕ satisfy OP and Rec, then we will have ZP:

P (z′ | h, a) =
∫
P (z′, o′ | h, a)do′ =

∫
δ(z′ = ϕ(h′))P (o′ | h, a)do′ (22)

(Rec,OP )
=

∫
δ(z′ = ψz(ϕ(h), a, o

′))Po(o
′ | ϕ(h), a)do′ (23)

=

∫
P (z′, o′ | ϕ(h), a)do′ = Pz(z

′ | ϕ(h), a). (24)
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Proof of Thm. 4 (ϕQ∗ ⪰ ϕπ∗ ). If ϕQ∗(hi) = ϕQ∗(hj), then Q∗(hi, a) = Q∗(hj , a),∀a, and then
taking argmax we get the optimal policy, π∗(h1) = argmaxaQ

∗(h1, a) = argmaxaQ
∗(h2, a) =

π∗(h2).

Proposition 8 (OR and ZP imply OP).

Proof. Consider given h, a, for any o′,

P (o′, ϕ(h′) | h, ϕ(h), a) = P (ϕ(h′) | h, a)P (o′ | ϕ(h′), h, ϕ(h), a) (25)
(ZP,OR)

= Pz(ϕ(h
′) | ϕ(h), a)δ(o′ = ψo(ϕ(h

′))) (26)

= Pz(ϕ(h
′) | ϕ(h), a)P (o′ | ϕ(h′), ϕ(h), a) (27)

= P (o′, ϕ(h′) | ϕ(h), a), (28)

where Ln. 27 follows that the OR condition o′ ⊥⊥ h′ | ϕ(h′) implies o′ ⊥⊥ ϕ(h), a | ϕ(h′) by
Lemma 1. Therefore, o′, ϕ(h′) ⊥⊥ h | ϕ(h), a. By Lemma 1, we have OP o′ ⊥⊥ h | ϕ(h), a.

Proposition 9 (In MDPs, OR implies ZP and OP).

Proof. Assume ϕ satifies OR in MDPs, i.e. there exists ψs : Z → S such that ψs(ϕ(s)) = s. We
want to show that z′, s ⊥⊥ s | ϕ(s), a which implies ZP by Lemma 1. In fact,

P (z′, s | s, ϕ(s), a) = P (z′, s | s, a) = P (z′ | s, a)δ(s = s) (29)

P (z′, s | ϕ(s), a) = P (s | ϕ(s), a)P (z′ | s, ϕ(s), a) (30)
OR
= δ(s = s)P (z′ | s, a). (31)

Similar proof to OP by replacing z′ with s′.

A.3.2 RESULTS RELATED TO MULTI-STEP CONDITIONS

Below are results on multi-step RP, ZP, and OP, and due to space limit, we do not show these
connections in Fig. 7.

Proposition 10 (ZP is equivalent to multi-step ZP). For k ∈ N+, define k-step ZP as

P (zt+k | ht, at:t+k−1) = P (zt+k | ϕ(ht), at:t+k−1), ∀h, a, z. (32)

Proof. As ZP is 1-step ZP, thus multi-step ZP implies ZP. Now we show that ZP implies multi-step
ZP.

P (zt+k | ht, at:t+k−1) =

∫
P (zt+1:t+k, ot+1:t+k | ht, at:t+k−1)dot+1:t+kdzt+1:t+k−1 (33)

=

∫ k∏
i=1

δ(zt+i = ϕ(ht+i))P (ot+i | ht+i−1, at+i−1)dot+1:t+kdzt+1:t+k−1 (34)

=

∫ (∫
δ(zt+k = ϕ(ht+k))P (ot+k | ht+k−1, at+k−1)dot+k

)
(35)

k−1∏
i=1

δ(zt+i = ϕ(ht+i))P (ot+i | ht+i−1, at+i−1)dot+1:t+k−1dzt+1:t+k−1 (36)

=

∫
P (zt+k | ht+k−1, at+k−1)

k−1∏
i=1

δ(zt+i = ϕ(ht+i))P (ot+i | ht+i−1, at+i−1)dot+1:t+k−1dzt+1:t+k−1

(37)

ZP
=

∫
P (zt+k | ϕ(ht+k−1), at+k−1)

k−1∏
i=1

δ(zt+i = ϕ(ht+i))P (ot+i | ht+i−1, at+i−1)dot+1:t+k−1dzt+1:t+k−1

(38)
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=

∫
P (zt+k | zt+k−1, at+k−1)

k−1∏
i=1

δ(zt+i = ϕ(ht+i))P (ot+i | ht+i−1, at+i−1)dot+1:t+k−1dzt+1:t+k−1

(39)

= . . . (40)

=

∫ k∏
i=2

P (zt+i | zt+i−1, at+i−1)P (zt+1 | ht, at)dzt+1:t+k−1 (41)

ZP
=

∫ k∏
i=2

P (zt+i | zt+i−1, at+i−1)P (zt+1 | ϕ(ht), at)dzt+1:t+k−1 (42)

ZM
=

∫
P (zt+1:t+k | ϕ(ht), at:t+i−1)dzt+1:t+k−1 (43)

= P (zt+k | ϕ(ht), at:t+i−1). (44)

Proposition 11 (ZP and RP imply multi-step RP). For k ∈ N+, define k-step RP as

E[rt+k | ht, at:t+k] = E[rt+k | ϕ(ht), at:t+k], ∀h, a (45)

Proof.

E[rt+k | ht, at:t+k] =

∫
P (ot+1:t+k | ht, at:t+k−1)E[rt+k | ht+k, at+k]dot+1:t+k (46)

RP
=

∫
P (ot+1:t+k | ht, at:t+k−1)Rz(ϕ(ht+k), at+k)dot+1:t+k (47)

=

∫
P (ot+1:t+k | ht, at:t+k−1)δ(zt+k = ϕ(ht+k))Rz(zt+k, at+k)dot+1:t+kdzt+k (48)

=

∫ (∫
P (ot+1:t+k | ht, at:t+k−1)δ(zt+k = ϕ(ht+k))dot+1:t+k

)
Rz(zt+k, at+k)dzt+k (49)

=

∫
P (zt+k | ht, at:t+k−1)Rz(zt+k, at+k)dzt+k (50)

k-step ZP
=

∫
P (zt+k | ϕ(ht), at:t+k−1)Rz(zt+k, at+k)dzt+k (51)

= E[rt+k | ϕ(ht), at:t+k], (52)

where k-step ZP is implied by ZP by Prop. 10.

Proposition 12 (OP implies multi-step OP in MDPs, but not POMDPs). For k ∈ N+, define
k-step OP as

P (ot+k | ht, at:t+k−1) = P (ot+k | ϕ(ht), at:t+k−1), ∀h, a, o. (53)

Proof. We first show the result in MDPs. Assume a state encoder ϕ satisfies OP,

P (st+k | st, at:t+k−1) =

∫
P (st+1:t+k | st, at:t+k−1)dst+1:t+k−1 (54)

MDPs
=

∫
P (st+1 | st, at)

k∏
i=2

P (st+i | st+i−1, at+i−1)dst+1:t+k−1 (55)

OP
=

∫
P (st+1 | ϕ(st), at)

k∏
i=2

P (st+i | st+i−1, at+i−1)dst+1:t+k−1 (56)

MDPs
=

∫
P (st+1:t+k | ϕ(st), at:t+k−1)dst+1:t+k−1 (57)

= P (st+k | ϕ(st), at:t+k−1). (58)
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However, in POMDPs, OP does not imply multi-step OP. This can be shown by a counterexample
in Castro et al. (2009, Theorem 4.10), where the weak belief bisimulation relation corresponds to
single-step OP and RP, while trajectory equivalence corresponds to multi-step OP and RP. The idea
is to show that for two histories h1t and h2t , if P (ot+1 | h1t , at) = P (ot+1 | h2t , at),∀ot+1, at, it does
not imply that P (ot+2 | h1t , at, ot+1, at+1) = P (ot+2 | h2t , at, ot+1, at+1),∀ot+1:t+2, at:t+1.

A.3.3 RESULTS RELATED TO ϕQ∗

Proof sketch of ZP + RP (ϕL) imply ϕQ∗ . To show Q∗(h, a) = Q∗
z(ϕL(h), a),∀h, a, please

see (Subramanian et al., 2022, Theorem 5 and Theorem 25) for finite-horizon and infinite-horizon
POMDPs, respectively. For the approximate version, please see (Subramanian et al., 2022, Theo-
rem 9 and Theorem 27). By definition, Q∗(h, a) = Q∗

z(ϕL(h), a),∀h, a implies that ϕL is a kind of
ϕQ∗ .

Proof of Thm. 2 (ZP + ϕQ∗ imply RP). Suppose ϕ satisfies ZP and we train model-free RL with
value parameterized by Q(ϕ(h), a) to satisfy the Bellman optimality equation:

Q(ϕ(ht), at) =

E[rt | ht, at] t = T,

E[rt | ht, at] + γEot+1∼P (|ht,at)

[
max
at+1

Q(ϕ(ht+1), at+1)

]
else,

(59)

where the case t = T only applies to finite-horizon problems (the same below). This is equivalent
to say that Q(ϕ(ht), at) = Q∗(ht, at),∀ht, at, where Q∗ satisfies the Bellman optimality equation,
too:

Q∗(ht, at) =

E[rt | ht, at] t = T,

E[rt | ht, at] + γEot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)

]
else.

(60)

Now we can construct an abstract MDP with ϕ. The latent transition matches due to ZP. The latent
reward function is purely defined by latent value and latent transition13:

Rz(zt, at) :=

Q(zt, at) t = T,

Q(zt, at)− γEzt+1∼P (|zt,at)

[
max
at+1

Q(zt+1, at+1)

]
else.

(61)

We want to show RP condition: Rz(ϕ(ht), at) = E[rt | ht, at],∀ht, at.
Here is our proof. Recall that the grounded reward function can also be derived reversely by Q∗:

E[rt | ht, at] :=

Q
∗(ht, at) t = T,

Q∗(ht, at)− γEot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)

]
else.

(62)

If the problem is finite-horizon with horizon T and when t = T , RP holds due to Q(ϕ(hT ), aT ) =
Q∗(hT , aT ).

Now consider general case when t < T in finite-horizon (γ = 1) and any t in infinite-horizon (γ < 1).
Due to Q-value match (Q(ϕ(ht), at) = Q∗(ht, at)), it is equivalent to show that

Eot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)

]
= Ezt+1∼P (|ϕ(ht),at)

[
max
at+1

Q(zt+1, at+1)

]
, ∀ht, at, t.

(63)

Proof for this:

LHS
ϕQ∗
= Eot+1∼P (|ht,at)

[
max
at+1

Q(ϕ(ht+1), at+1)

]
(64)

13In the main paper, we omit the finite-horizon case due to space limit.
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=

∫ (∫
P (ot+1 | ht, at)δ(zt+1 = ϕ(ht+1))dot+1

)
max
at+1

Q(zt+1, at+1)dzt+1 (65)

=

∫
P (zt+1 | ht, at)max

at+1

Q(zt+1, at+1)dzt+1 (66)

ZP
=

∫
P (zt+1 | ϕ(ht), at)max

at+1

Q(zt+1, at+1)dzt+1 = RHS. (67)

Lemma 3 (Integral probability metric (Subramanian et al., 2022)). Given by a function class F ,
integral probability metric (IPM) between two distributions P,Q ∈ ∆(Z) is

DF (P,Q) = sup
f∈F
|Ex∼P[f(x)]− Ey∼Q[f(y)]|. (68)

For any real-valued function g, the following inequality is derived by definition:

|Ex∼P[g(x)]− Ey∼Q[g(y)]| ≤ ρF (g)DF (P,Q), (69)

where ρF (g) := inf{ρ ∈ R+ | ρ−1g ∈ F} is a Minkowski functional.
Remark 2. Some examples include:

• Total Variance (TV) distance is an IPM defined by FTV = {f : ∥f∥∞ ≤ 1}.
• Wasserstein (W) distance is an IPM defined by FW = {f : ∥f∥L ≤ 1}.
• KL divergence is not an IPM, but is an upper bound of TV distance by Pinsker’s inequality:

DFTV(P,Q) ≤
√

2DKL(P || Q). (70)

Theorem 5 (Approximate version of Thm. 2 (approximate ZP and approximate ϕQ∗ imply
approximate ϕL)). Suppose the encoder ϕ satisfies approximate ZP (AZP) and we train model-free
RL with value parameterized by Q(ϕ(h), a) to approximate Q∗(h, a), namely: ∀t, ht, at,

∃Pz : Z ×A → ∆(Z), s.t. DF (P (zt+1 | ht, at), Pz(zt+1 | ϕ(ht), at)) ≤ δt, (AZP)
|Q∗(ht, at)−Q(ϕ(ht), at)| ≤ αt. (Approx. ϕQ∗ )

where DF is an IPM. Under these conditions, we can construct a latent reward function:

Rz(zt, at) :=

Q(zt, at) t = T,

Q(zt, at)− γEzt+1∼Pz(|zt,at)

[
max
at+1

Q(zt+1, at+1)

]
else,

(71)

such that

|E[rt | ht, at]−Rz(ϕ(ht), at)| ≤ ϵt, ∀t, ht, at, (ARP)

where ϵt =

{
αT t = T,

αt + γ(αt+1 + ρF (Vt+1)δt) else,
(72)

V(zt) = max
at

Q(zt, at), (73)

where Vt+1 is the latent state-value function V at step t+ 1.

Proof. For the case of t = T in finite-horizon, ARP holds by the assumption of approx. ϕQ∗ . Now
we discuss generic case of t. Recall the reward and latent reward can be rewritten as:

E[rt | ht, at] = Q∗(ht, at)− γEot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)

]
, (74)

Rz(zt, at) = Q(zt, at)− γEzt+1∼P (|zt,at)

[
max
at+1

Q(zt+1, at+1)

]
. (75)

Therefore, the reward gap is upper bounded:

|E[rt | ht, at]−Rz(ϕ(ht), at)| (76)
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≤ |Q∗(ht, at)−Q(ϕ(ht), at)| (77)

+ γ

∣∣∣∣Eot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)

]
− Ezt+1∼P (|ϕ(ht),at)

[
max
at+1

Q(zt+1, at+1)

]∣∣∣∣ (78)

≤ αt + γ

∣∣∣∣Eot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)−max
at+1

Q(ϕ(ht+1), at+1)

]∣∣∣∣ (79)

+ γ

∣∣∣∣Eot+1∼P (|ht,at)

[
max
at+1

Q(ϕ(ht+1), at+1)

]
− Ezt+1∼P (|ϕ(ht),at)

[
max
at+1

Q(zt+1, at+1)

]∣∣∣∣ (80)

≤ αt + γEot+1∼P (|ht,at)

[
max
at+1

|Q∗(ht+1, at+1)−Q(ϕ(ht+1), at+1)|
]

(81)

+ γ

∣∣∣∣Ezt+1∼P (|ht,at)

[
max
at+1

Q(zt+1, at+1)

]
− Ezt+1∼P (|ϕ(ht),at)

[
max
at+1

Q(zt+1, at+1)

]∣∣∣∣ (82)

≤ αt + γαt+1 + γ
∣∣Ezt+1∼P (|ht,at)[V(zt+1)]− Ezt+1∼P (|ϕ(ht),at)[V(zt+1)]

∣∣ (83)

≤ αt + γ(αt+1 + ρF (Vt+1)δt), (84)

where Eq. 77 is by triangle inequality, Eq. 79 is by triangle inequality and approx. ϕQ∗ , Eq. 81 is by
the maximum-absolute-difference inequality |max f(x)−max g(x)| ≤ max |f(x)− g(x)|, Eq. 83
is by approx. ϕQ∗ , and Ln. 84 is by the property of IPM (Eq. 69 in Lemma 3) and AZP.

Remark 3. In the infinite-horizon problem, assume δt = δ and αt = α for any t, and DF is
Wasserstein distance. Furthermore, assume the latent rewardRz(z, a) is Lr-Lipschitz and the latent
transition Pz(z

′ | z, a) is Lp-Lipschitz, then by (Subramanian et al., 2022, Lemma 44), if γLp < 1,

ρF (Vt+1) = ∥V∥L ≤
Lr

1− γLp
, ∀t. (85)

Thus, the reward difference bound can be rewritten as

ϵ ≤ (1 + γ)α+
γLrδ

1− γLp
. (86)

B OBJECTIVES AND OPTIMIZATION IN SELF-PREDICTIVE RL

Proof of Prop. 1. First, we show LZP,ℓ(ϕ, θ;h, a) ≤ Jℓ(ϕ, θ, ϕ;h, a),∀h, a.

Jℓ(ϕ, θ, ϕ;h, a)− LZP,ℓ(ϕ, θ;h, a) (87)

= Eo′∼P (|h,a)
[
∥gθ(fϕ(h), a)− fϕ(h′)∥22

]
− ∥gθ(fϕ(h), a)− Eo′∼P (|h,a)[fϕ(h

′)]∥22 (88)

=(((((((∥gθ(fϕ(h), a)∥22 −((((((((((((
2Eo′ [⟨gθ(fϕ(h), a), fϕ(h′)⟩] + Eo′

[
∥fϕ(h′)∥22

]
(89)

−(((((((∥gθ(fϕ(h), a)∥22 +((((((((((((
2⟨gθ(fϕ(h), a),Eo′ [fϕ(h

′)]⟩ − ∥Eo′ [fϕ(h
′)]∥22 (90)

= Eo′
[
∥fϕ(h′)− Eo′ [fϕ(h

′)]∥22
]
≥ 0. (91)

The inner product terms are cancelled due to the fact that inner product is bilinear. The equality holds
when P (o′ | h, a) is deterministic.

Second, the ideal objective using ℓ2 distance LZP,ℓ(ϕ, θ;h, a) = ∥gθ(fϕ(h), a) −
Eo′∼P (|h,a)[fϕ(h

′)]∥22 can only lead to EZP condition when reaching optimum of zero. This is
because when gθ(fϕ(h), a) = Eo′∼P (|h,a)[fϕ(h

′)],∀h, a, it precisely satisfies the EZP condition.

Proof of Prop. 2. The goal is to show LZP,Df
(ϕ, θ;h, a) ≤ JDf

(ϕ, θ, ϕ;h, a),∀h, a.

Recall the definition of f-divergence that subsumes forward and reverse KL divergences: Df(Q ||
P ) =

∫
P (x)f

(
Q(x)
P (x)

)
dx, where f : [0,∞)→ R is a convex function.

LZP,Df
(ϕ, θ;h, a) =

∫
Pϕ(z | h)Df(Pϕ(z

′ | h, a) || Pθ(z
′ | z, a))dz (92)
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=

∫∫
Pϕ(z | h)Pθ(z

′ | z, a)f
(
Eo′ [Pϕ(z

′ | h′)]
Pθ(z′ | z, a)

)
dzdz′ (93)

=

∫∫
Pϕ(z | h)Pθ(z

′ | z, a)f
(
Eo′

[
Pϕ(z

′ | h′)
Pθ(z′ | z, a)

])
dzdz′ (94)

≤
∫∫

Pϕ(z | h)Pθ(z
′ | z, a)Eo′

[
f

(
Pϕ(z

′ | h′)
Pθ(z′ | z, a)

)]
dzdz′ (95)

= Ez∼Pϕ(|h),o′∼P (|h,a)

[∫
Pθ(z

′ | z, a)f
(

Pϕ(z
′ | h′)

Pθ(z′ | z, a)

)
dz′

]
(96)

= JDf
(ϕ, θ, ϕ;h, a), (97)

where we use Jensen’s inequality by the convexity of f . The equality holds when P (o′ | h, a) is
deterministic according to Jensen’s inequality.

Discussion on the double sampling issue. The ideal objective Eq. 1 is hard to have an unbiased
estimate in stochastic environments. This is due to double sampling issue (Baird, 1995) that we do
not allow agent to i.i.d. sample twice from transition, i.e. o′1, o

′
2 ∼ P (o′ | h, a). To see it more clearly,

for example, when D is forward KL divergence, The ideal objective becomes:

LZP,FKL(ϕ, θ;h, a) = Ez∼Pϕ(|h)[DKL(Pϕ(z
′ | h, a) || Pθ(z

′ | z, a))] (98)

= Ez∼Pϕ(|h)[DKL(Eo′ [Pϕ(z
′ | h′)] || Pθ(z

′ | z, a))] (99)

= Ez∼Pϕ(|h)

[∫
Eo′ [Pϕ(z

′ | h′)] log Eo′ [Pϕ(z
′ | h′)]

Pθ(z′ | z, a)
dz′

]
(100)

= Ez∼Pϕ(|h),o′∼P (|h,a),z′∼Pϕ(|h′)

[
log

Eo′+

[
Pϕ(z

′ | h′+)
]

Pθ(z′ | z, a)

]
, (101)

where o′, o′+ ∼ P (| h, a) are two i.i.d. samples, and h′ = (h, a, o′), h′+ = (h, a, o′+).

Proof of Prop. 3. Recall the stop-gradient objective Eq. 2:

J := Jℓ(ϕ, θ, ϕ;h, a) = Eo′∼P (|h,a)

[
∥gθ(fϕ(h), a)− fϕ(h′)∥22

]
. (102)

The gradients are:

∇ϕ,θEh,a[J ] = Eh,a

[
(gθ(fϕ(h), a)− Eo′

[
fϕ(h

′)
]
)⊤∇ϕ,θgθ(fϕ(h), a)

]
. (103)

When θ, ϕ reaches a stationary point, we have ∇ϕ,θEh,a[J ] = 0 and thus ϕ = ϕ. Therefore, we
have a stationary point (θ∗, ϕ∗) such that: gθ(fϕ(h), a) = Eo′∼P (|h,a)[fϕ(h

′)], for any h, a, which
is the expected ZP (EZP) condition. In a deterministic environment, EZP is equivalent to ZP. In a
stochastic environment, EZP is to match the expectation (instead of distribution).

However, in online objective, the gradient w.r.t. ϕ contains an extra term:

Eh,a,o′
[
(gθ(fϕ(h), a)− fϕ(h′))⊤∇ϕfϕ(h

′)
]
. (104)

Thus, when EZP holds, the gradient is zero in deterministic environments, but can be non-zero in
stochastic environments.

Proof of Thm. 3. The setup. Let ht:−k a vectorization of the recent truncation of history ht with
window size of k ∈ N, i.e. ht:−k = vec(at−k, ot−k+1, . . . , at−1, ot) ∈ Rx,14 where x = k(|O| +
|A|). We assume a linear encoder that maps history ht ∈ Ht into zt:

zt = fϕ(ht) := ϕ⊤ht:−k ∈ Rd, (105)

14We zero pad ai and oi if i ≤ 0.

26



Published as a conference paper at ICLR 2024

where k ∈ N is a constant, and the parameters ϕ ∈ Rx×d. In other words, the linear encoder only
operates on recent histories of a fixed window size. We assume a linear deterministic latent transition

zt+1 = gθ(zt, at) := θ⊤z zt + θ⊤a at ∈ Rd, (106)
where the parameters θz ∈ Rd×d and θa ∈ Ra×d. In fact, the result can be generalized to a non-linear
dependence of actions.

The proof. The continuous-time training dynamics of ϕ:
ϕ̇ = −Eht,at

[
∇ϕJℓ(ϕ, θ, ϕ;ht, at)

]
(107)

= −Eht,at,ot+1

[
∇ϕ∥θ⊤z ϕ⊤ht:−k + θ⊤a at − ϕ

⊤
ht+1:−k∥22

]
(108)

= −Eht,at

[
(θ⊤z ϕ

⊤ht:−k + θ⊤a at − Eot+1

[
ϕ
⊤
ht+1:−k

]
)⊤∇ϕθ

⊤
z ϕ

⊤ht:−k

]
(109)

= −Eht,at

[
ht:−k(θ

⊤
z ϕ

⊤ht:−k + θ⊤a at − Eot+1

[
ϕ
⊤
ht+1:−k

]
)⊤

]
θ⊤z . (110)

The gradient of the loss w.r.t. θz:
∇θzEht,at

[
Jℓ(ϕ, θ, ϕ;ht, at)

]
(111)

= Eht,at

[
(θ⊤z ϕ

⊤ht:−k + θ⊤a at − Eot+1

[
ϕ
⊤
ht+1:−k

]
)⊤∇θz (θ

⊤
z ϕ

⊤ht:−k + θ⊤a at)
]

(112)

= ϕ⊤Eht,at

[
ht:−k(θ

⊤
z ϕ

⊤ht:−k + θ⊤a at − Eot+1

[
ϕ
⊤
ht+1:−k

]
)⊤

]
∈ Rd×d. (113)

Therefore, we have
ϕ⊤ϕ̇ = −∇θzEht,at

[
Jℓ(ϕ, θ, ϕ;ht, at)

]
θ⊤z . (114)

Following the practice in (Tang et al., 2022), we assume ∇θzEht,at

[
Jℓ(ϕ, θ, ϕ;ht, at)

]
= 0, i.e. θz

reaches the stationary point of the inner optimization that depends on ϕ, then ϕ⊤ϕ̇ = 0. Thus, the
training dynamics of ϕ⊤ϕ is

d(ϕ⊤ϕ)

dt
= ϕ̇⊤ϕ+ ϕ⊤ϕ̇ = ϕ̇⊤ϕ+ (ϕ̇⊤ϕ)⊤ = 0. (115)

This means that ϕ⊤ϕ keeps same value during training.

C ANALYZING PRIOR WORKS ON STATE AND HISTORY REPRESENTATION
LEARNING

In this section, we provide a concise but analytical overview of previous works that learn or approxi-
mate self-predictive or observation-predictive representations on states or histories. Please see Lesort
et al. (2018) for an early and detailed survey on state representation learning.

We focus on the objectives of state or history encoders in their value functions. For each work
discussed, we present a summary of the conditions that their encoders aim to satisfy or approximate
at the beginning of each paragraph. In cases where multiple encoder objectives are proposed, we
select the one employed in their primary experiments for our discussion. In particular, we list the
exact objectives they aim to optimize, which might be redundant for exact conditions. For example,
multi-step RP can be implied by RP + ZP by Prop. 11 (or ϕQ∗ + ZP by Thm. 2), and multi-step ZP
can be implied by ZP by Prop. 10.

C.1 SELF-PREDICTIVE REPRESENTATIONS

CRAR (François-Lavet et al., 2019): ϕQ∗ + RP + ZP with online ℓ2 + regularization. Combined
reinforcement via abstract representations (CRAR) is designed to learn self-predictive representations
in MDPs. It incorporates RP and ZP auxiliary losses into the end-to-end RL objective. They assume
the deterministic case (for the encoder, transition and latent transition), thus using ℓ2 objective is
sufficient (Prop. 1). They use online ZP target and observe the representation collapse when the
reward signals are scarce. To prevent this issue, they introduce regularization terms into the encoder
objective. These terms minimize Es1,s2 [exp(−∥ϕ(s1)− ϕ(s2)∥2)] + Es

[
max(∥ϕ(s)∥2∞ − 1, 0)

]
,

where s1, s2, s are samples from the state space. These terms, similar to entropy maximization,
encourage diversity within the latent space.

27



Published as a conference paper at ICLR 2024

DeepMDP (Gelada et al., 2019): ϕQ∗ + RP + ZP with online ℓ2. DeepMDP aims to learn state
representations that match RP and ZP. In their experiments, they assume deterministic case, resulting
in dirac distributions Pϕ(z

′ | s′) and Pθ(z
′ | z, a). Although they use the Wasserstein distance, it

reduces to ℓ2 distance for two dirac distributions. They use an online target in ZP loss. In their toy
DonutWorld task, they try phased training with RP + ZP, but the agent tends to be trapped in a local
minimum of zero ZP. Then they try ϕQ∗ + RP + ZP in Atari by training RP + ZP as an auxiliary task
of a distributional RL baseline, outperforming the baseline in their main result. They also find that
ϕQ∗ + RP + ZP is comparable to ϕQ∗ + ZP, aligned with our theoretical prediction based on Thm. 2.
They also try phased training in Atari and find that RP + ZP performs poorly, while RP + ZP + OR
yields good results.

SPR (Schwarzer et al., 2020): ϕQ∗ + multi-step ZP with EMA cos. Self-Predictive Represen-
tations (SPR) improves the ZP objective in DeepMDP. They use a special kind of ℓ2 loss (i.e. cos
distance) to bound the loss scale, and use an EMA target. They use multi-step prediction loss to learn
the condition:

P (zt+1:t+k | st, at:t+k−1) = P (zt+1:t+k | ϕ(st), at:t+k−1), (116)

where k = 5 in their experiments. In addition, to reduce the large latent space generated by CNNs,
they use a linear projection of the latent states to satisfy ZP.

DBC (Zhang et al., 2020): ϕQ∗ + RP + stronger ZP with detached FKL. Deep Bisimulation for
Control (DBC) trains the state encoder ϕ with several auxiliary losses, including RP and ZP. The ZP
loss uses a forward KL objective with a detached target. Their main contribution is the introducation
of the bisimulation metric (Ferns et al., 2004) into state representation learning: for any si, sj ∈ S
and ai, aj ∈ A,

∥ϕ(si)− ϕ(sj)∥1 = |R(si, ai)−R(sj , aj)|+ γW (Pθ(z
′ | ϕ(si), ai),Pθ(z

′ | ϕ(sj), aj)),
(metric)

where W is Wasserstein distance and Pθ is modeled as a Gaussian. The metric condition enforces
the latent space to be structured with a ℓ1 metric. They train ϕ satisfying the metric condition by
minimizing the mean square error on it as another auxiliary loss. This leads to a stronger ZP condition.

PBL (Guo et al., 2020): ϕQ∗ + indirect multi-step ZP. Predictions of Bootstrapped Latents (PBL)
designs two auxiliary losses, reverse prediction and forward prediction, for their history encoder ϕ,
transition model θ, observation encoder f , and projector g:

min
f,g

Eh

[
∥g(f(o))− ϕ(h)∥22

]
, (Reverse)

min
ϕ,θ

Eh,a,o′
[
∥θ(ϕ(h), a)− f(o′)∥22

]
. (Forward)

To understand their connection with ZP, assume the two losses reach zero with ϕ(h) = g(f(o))
and θ(ϕ(h), a) = Eo′∼P (|h,a)[f(o

′)] for any h, a, although in theory this may be unrealizable.
Furthermore, assume deterministic transition, then

g(θ(ϕ(h), a)) = g(f(o′)) = ϕ(h′). (117)

Therefore, in deterministic environments, reverse and forward prediction together is equivalent to
ZP if they reach the optimum. They also adopt multi-step version of their loss with a horizon of
20. While forward and reverse prediction both appear critical in this work, the follow-up work
BYOL-explore (Guo et al., 2022) removes reverse prediction.

Successor Representations and Features (Barreto et al., 2017; Lehnert & Littman, 2020): ϕQ∗

+ RP + weak ZP. Here, we introduce successor features (SF) with our notation. Suppose the
expected reward function can be computed as

E[r | s, a] = g(ϕ(s), a)⊤w, ∀s, a, (118)

where ϕ : S → Z is a state encoder and g : Z ×A → Rd is called state-action feature extractor, and
w ∈ Rd are weights15. In our notation, Eq. 118 is RP condition for ϕ.

15Although it is linear w.r.t. w, it can recover any reward function, e.g. when ϕ(s) = s and g(s, a)i =
E[r | s, a] for some i.
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As a special case, in tabular MDPs with finite state and action spaces with state-dependent reward
R(s), let ϕ(s) ∈ {0, 1}|S| be one-hot state representation, and let g(ϕ(s), a) = ϕ(s) and weight
ws = E[r | s], this satisfies Eq. 118. This special case is known as successor representation (SR)
setting (Dayan, 1993). In deep SR (Kulkarni et al., 2016; Lehnert & Littman, 2020), they allow
learning ϕ with assuming g(ϕ(s), a) = ϕ(s).

The Q-value function of a policy π can be rewritten as

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt | S0 = s,A0 = a

]
(119)

= Eπ

[ ∞∑
t=0

γtg(ϕ(st), at)
⊤w | S0 = s,A0 = a

]
(120)

= Eπ

[ ∞∑
t=0

γtg(ϕ(st), at) | S0 = s,A0 = a

]⊤

w (121)

:= ψπ(s, a)⊤w, (122)

where ψπ(s, a) is called successor features (Barreto et al., 2017), a geometric sum of future g(ϕ(s), a).
Although ψπ can belong to any function class, following deep SR (Kulkarni et al., 2016; Lehnert &
Littman, 2020), we assume it is parametrized by the state encoder as ψπ(s, a) = fπ(ϕ(s), a)
where fπ : Z × A → Rd. Then, by plugging Eq. 122 in Bellman equation Qπ(s, a) =
Es′,a′∼π[R(s, a) + γQπ(s′, a′)], we have

fπ(ϕ(s), a) = g(ϕ(s), a) + γEs′,a′∼π[f
π(ϕ(s′), a′)]. (123)

Therefore, Eq. 123 can be viewed as a weak version of ZP, because given any current latent state and
action pair (ϕ(s), a), Eq. 123 can predict the expectation of some function of next latent state ϕ(s′).
ZP can imply Eq. 123 because it can predict exactly the distribution of next latent state.

With a combination of RP (Eq. 118), ϕQ∗ (implied by Eq. 123 when π is optimal), and a weak version
of ZP, we show that the state encoder that successor features learn, belongs to a weak version of ϕL.

As a special case, in Linear Successor Feature Model (LSFM) (Lehnert & Littman, 2020, Theorem 2),
they show that SF is exactly the bisimulation (ϕL) under several assumptions: finite action and latent
space, the successor features fπ(z, a) = Faz is a linear function, and the policy π : Z → ∆(A)
conditions on latent space. However, here we point it out that with the assumptions above implies
EZP (not necessarily ZP), thus, still a weak version of bisimulation.

Following Lehnert & Littman (2020), assume the finite latent space is composed of one-hot
vectors: Z = {e1, e2, . . . , en}, we can construct a matrix Fπ ∈ Rd×n with each column
Fπ(i) = Ea∼π(|ei)[Faei].

1

γ
(fπ(ϕ(s), a)− g(ϕ(s), a)) = Es′,a′∼π[f

π(ϕ(s′), a′)] (124)

= Es′∼P (|s,a),a′∼π(|ϕ(s′))[Fa′ϕ(s′)] (125)

= Es′∼P (|s,a)[F
πϕ(s′)] = FπEs′∼P (|s,a)[ϕ(s

′)]. (126)

By (Lehnert & Littman, 2020, Lemma 4), Fπ is invertible, thus there exists a function J : Z×A → Z
such that J(ϕ(s), a) = Es′∼P (|s,a)[ϕ(s

′)], i.e., EZP holds.

EfficientZero (Ye et al., 2021): ϕQ∗ + RP + multi-step ZP with detached cos. EfficientZero
improves MuZero (Schrittwieser et al., 2020) by introducing ZP loss as one of their main contributions.
We consider it especially crucial to planning algorithms because ZP enforces the latent model to be
accurate. Similar to SPR (Schwarzer et al., 2020), they use 5-step cos objective with a projection on
latent states, and add image data augmentation for visual RL tasks.

RPC (Eysenbach et al., 2021): ϕπ∗ + ZP with online forward KL. From the perspective of
information compression, robust predictive control (RPC) aims to jointly learn the encoder of policy
Pϕ(z | s) and the latent policy πz(a | z) in MDPs. The policy π(a | s) is not only maximizing return,
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but also imposed a constraint on Eπ[I(s1:∞; z1:∞)] ≤ C where C > 0 is a predefined constant. By
applying variational information bottleneck, this constraint induces the algorithm RPC to maximize
the following objective w.r.t. ϕ and θ (see their Eq. 6):

L(ϕ, θ; st, at) = Ezt∼Pϕ(|st),st+1∼P (|st,at),zt+1∼Pϕ(|st+1)

[
log

Pθ(zt+1 | zt, at)
Pϕ(zt+1 | st+1)

]
(127)

= −Ezt∼Pϕ(|st),st+1∼P (|st,at)[DKL(Pϕ(zt+1 | st+1) || Pθ(zt+1 | zt, at))] (128)
which is exactly the practical forward KL objective Eq. 3. In practice, the authors formulate it
as constrained optimization and use gradient descent-ascent to update the encoder and Lagrange
multiplier. In addition, they also use this objective as an intrinsic reward to regularize the latent
policy’s reward-maximizing objective. It is worth noting that while RPC aims to learn the ZP
condition along with reward maximization, it does not explicitly learn representations to fulfill the RP
or ϕQ∗ conditions. As a result, we can consider it as an approach that approximates self-predictive
representations.

ALM (Ghugare et al., 2022): ϕQ∗ + multi-step ZP with EMA reverse KL. Aligned Latent
Models (ALM) is based on variational inference, and aims to learn the latent model Pθ(z

′ | z, a),
the state encoder Pϕ(z | s) and the latent policy πz(z) to jointly maximize the lower bound of
the expected return. The objective of their encoder includes maximizing the return and ZP loss,
instantiated as 3-step reverse KL with an EMA target. Specifically, given a tuple of (s, a, s′), the
1-step objective for their encoder is computed as
min
ϕ

Ez∼Pϕ(|s)
[
−Rz(z, a) +DKL(Pθ(z

′ | z, a) || Pϕ(z
′ | s′))− Ez′∼Pθ(|z,a)

[
Qπ(z′, πz(z′))

]]
,

(129)

where Rz(z, a) is the latent reward, learned by the RP condition (with ϕ detached), and z′ indi-
cates stop-gradient. With the latent reward and also their intrinsic rewards, they perform SVG
algorithm (Heess et al., 2015) for policy optimization with a planning horizon of 3 steps. We provide
a detailed description of ALM and its variants in Sec. E.2.

AIS (Subramanian et al., 2022): RP + ZP with detached ℓ2 or forward KL in their approach,
while RP + OP with detached ℓ2 in their experiments. Approximate Information States (AIS)
adopts a phased training framework where the history encoder ϕ learns from RP instead of max-
imizing returns. In their approach section (Subramanian et al., 2022, Sec. 6.1.2), they propose
using MMD with ℓ2 distance-based kernel kd to learn ZP, and detach the target. The distance-
based kernel (Sejdinovic et al., 2013) takes a pair of latent states z1, z2 ∈ Z as inputs, and is
defined as kd(z1, z2) = 1

2 (d(z0, z1) + d(z0, z2)− d(z1, z2)) where z0 ∈ Z is arbitrary. In this case,
d(z1, z2) = ∥z1 − z2∥22 is ℓ2 distance.

Let fϕ(h) be the deterministic encoder, Pθ(z
′ | fϕ(h), a) := Pϕ,θ be the predicted next latent

distribution, and Qϕ(z
′ | h, a) be real next latent distribution. The MMD with kd can be reduced to

ℓ2 distance between the expectations of two distributions:
MMD2

kd
(Pϕ,θ,Qϕ;h, a) (130)

= −Ez′
1,z

′
2∼Pϕ,θ

[d(z′1, z
′
2)] + 2Ez′

1∼Pϕ,θ,z′
2∼Qϕ

[d(z′1, z
′
2)]− Ez′

1,z
′
2∼Qϕ

[d(z′1, z
′
2)] (131)

= −Ez′
1,z

′
2∼Pϕ,θ

[
∥z′1 − z′2∥22

]
+ 2Ez′

1∼Pϕ,θ,z′
2∼Qϕ

[
∥z′1 − z′2∥22

]
− Ez′

1,z
′
2∼Qϕ

[
∥z′1 − z′2∥22

]
(132)

= 2∥Ez′∼Pϕ,θ
[z′ | h, a]− Ez′∼Qϕ

[z′ | h, a]∥22. (133)
Therefore, the MMD objective can be viewed as ZP with ℓ2 distance (i.e., EZP). They also pro-
pose forward KL to instantiate ZP loss. Nevertheless, AIS (Subramanian et al., 2022) do not show
experiment results on learning ZP. Instead, they and the follow-up works (Patil et al., 2022; Seyed-
salehi et al., 2023) implement AIS by learning OP loss with MMD objectives, resulting in learning
observation-predictive representations. Another follow-up work, Discrete AIS (Yang et al., 2022),
learns ZP loss with ℓ2 objective in a discrete latent space, so that they can apply value iteration.

TD-MPC (Hansen et al., 2022): ϕQ∗ + RP + multi-step ZP with EMA ℓ2. Temporal Difference
learning for Model Predictive Control (TD-MPC) uses a planning horizon of 5 for the encoder
objective and the latent value objective with TD learning. TD-MPC also uses MPC for action
selection during inference. They find that learning ZP works better than learning OR or not learning
ZP in the DM Control suite.
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TCRL (Zhao et al., 2023): RP + multi-step ZP with EMA cos. Temporal consistency rein-
forcement learning (TCRL) simplifies TD-MPC (Hansen et al., 2022) by removing the planning
component, replacing ℓ2 loss with cos loss, and detaching the encoder parameters during value
function learning. They validate their approach on the state-based DM Control suite. Although the
paper refers to TCRL as minimalist for learning representations, it is worth noting that TCRL is more
complicated than our approach, as it still requires reward prediction and multi-step prediction.

C.2 OBSERVATION-PREDICTIVE REPRESENTATIONS

PSR (Littman et al., 2001) and belief trajectory equivalence (Castro et al., 2009): Rec + multi-
step OP and RP. Predictive State Representation (PSR) aims to learn a history encoder ϕ and
transition model PO such that

P (ot+1:t+k | ht, at:t+k−1) = PO(ot+1:t+k | ϕ(ht), at:t+k−1), ∀h, a, o, (134)

which implies multi-step OP (defined in Prop. 12) in POMDPs. The original PSR uses linear transition
models. Follow-up work on PSRs (James et al., 2004) and belief trajectory equivalence introduce
multi-step RP to PSR. In Castro et al. (2009), they show that single-step OP and RP do not necessarily
imply multi-step OP and RP in POMDPs, summarized in Prop. 12. In this sense, PSR is a stronger
notion of belief abstraction.

Causal state representations (Zhang et al., 2019): Rec + OP + RP. This work connects
observation-predictive representations in POMDPs with causal state models in computational me-
chanics (Shalizi & Crutchfield, 2001). Specifically, they show that belief trajectory equivalence (Rec
+ multi-step OP and RP) (Castro et al., 2009) implies a causal state of a stochastic process, where
RP means reward distribution prediction. The resulting abstract MDP is a causal state model or
an ϵ-machine, generating minimal sufficient representations for predicting future observations. In
the implementation, they train a deterministic RNN encoder and a deterministic transition model to
satisfy OP and RP conditions, and also train a latent Q-value function using Q-learning by freezing
encoder parameters. Optionally, they also train a discretizer on the latent space in finite POMDPs.

Belief-Based Methods (Hafner et al., 2019; 2020b; Han et al., 2020; Lee et al., 2020): RP + OR
+ ZP with online forward KL. As a major approach to solving POMDPs, belief-based methods
extends belief MDPs (Kaelbling et al., 1998) to deep RL through variational inference, deriving the
encoder objective as ELBO. Let the latent variables are z1:T , the world model p(o1:T , r1:T | a1:T ),
and the posterior are q(z1:T | o1:T , a1:T ) with the factorization:

p(z1:T+1, o1:T+1, r1:T | a1:T ) = p(z1)p(o1 | z1)
T∏

t=1

p(rt | zt, at)p(zt+1 | zt, at)p(ot+1 | zt+1),

(135)

q(z1:T+1 | hT+1) =

T∏
t=0

q(zt+1 | ht+1) =

T∏
t=0

q(zt+1 | zt, at, ot+1), (136)

where ht+1 = (ht, at, ot+1) in our notation. The log-likelihood has a lower bound:

EhT+1,r1:T [log pθ(o1:T+1, r1:T | a1:T )] (137)

= EhT+1,r1:T

[
logEq(z1:T+1|hT+1)

[
p(z1:T+1, o1:T+1, r1:T | a1:T )

q(z1:T+1 | hT+1)

]]
(138)

≥ EhT+1,r1:T ,z1:T∼q(·|hT+1)

[
log

p(z1:T , o1:T+1, r1:T | a1:T )
q(z1:T+1 | hT+1)

]
(139)

= EhT+1,r1:T ,z1:T+1∼q(hT+1)


T∑

t=0

log p(ot+1 | zt+1)︸ ︷︷ ︸
(1)

+ log p(rt | zt, at)︸ ︷︷ ︸
(2)

− log
q(zt+1 | ht+1)

p(zt+1 | zt, at)︸ ︷︷ ︸
(3)

.
(140)

31



Published as a conference paper at ICLR 2024

When p, q are trained to optimal, the first term becomes OR condition and the second term becomes
reward distribution matching that implies RP. The third term with expectation can be written as
Ezt,ht+1

[DKL(q(zt+1 | ht+1) || p(zt+1 | zt, at))], which is exactly our practical forward KL objec-
tive Eq. 3 to learn ZP. From our relation graph (Fig. 1; Prop. 8), ZP + OR imply OP, thus belief-based
methods aim to approximate observation-predictive representation (RP + OP). Normally, they use
an online target in forward KL, because they have OR signals that can help prevent representational
collapse. They also train encoders without maximizing returns.

We can also build the connections between OR and RP objectives and maximizing mutual information.
Let P (o, z) be the marginal joint distribution of observation and latent state at the same time-step,
where P (o′, z′) =

∫
P (o′, z′, h, a)dhda =

∫
P (h, a)P (o′ | h, a)P (z′ | h′)dhda. Consider,

I(o′; z′) = Eo′,z′∼P (o′,z′)

[
log

P (o′, z′)

P (o′)P (z′)

]
(141)

= Eo′,z′∼P (o′,z′)

[
log

P (o′ | z′)
P (o′)

]
(142)

= Eo′,z′∼P (o′,z′)[logP (o
′ | z′)] +H(P (o′)) (143)

= Eh,a∼P (h,a),o′∼P (|h,a),z′∼P (|h′)[logP (o
′ | z′)] +H(P (o′)). (144)

Since the entropy term is independent of latent states, the OR objective in belief-based methods
is exactly maximizing the I(o; z). Similarly, the RP objective in belief-based methods is exactly
maximizing I(r; z).

OFENet (Ota et al., 2020): ϕQ∗ + OP. Online Feature Extractor Network (OFENet) trains the
state encoder using an auxiliary task of OP loss with ℓ2 distance. This is perhaps the most related
algorithm to our Algo. 1 for learning ΦO. They show strong performance of their approach over
model-free baseline in standard MuJoCo benchmark. Follow-up work (Lange et al., 2023) empirically
find that ϕQ∗ + RP slightly improves up model-free RL, but much worse than ϕQ∗ + OP in MuJoCo
benchmark.

SAC-AE (Yarats et al., 2021): ϕQ∗ + OR. Soft Actor-Critic with AutoEncoder (SAC-AE) trains
the state encoder with an auxliary task of OR loss with forward KL and also ℓ2-regularization. They
detach the state encoder in policy objective. As in MDPs, OR implies OP (Prop. 9), SAC-AE also
approximates observation-predictive representation.

C.3 OTHER RELATED REPRESENTATIONS

UNREAL (Jaderberg et al., 2016), Loss is its own Reward (Shelhamer et al., 2016). These
works make early attempts at auxiliary task design for RL. UNREAL trains recurrent A3C agent
with several auxiliary tasks, including reward prediction (RP), pixel control and value function replay.
Loss is its own Reward trains A3C agent with several auxiliary tasks, including reward prediction
(RP), observation reconstruction (OR), inverse dynamics, and a proxy of forward dynamics (OP)
that finds the corrupted observation from a time series. Among them, inverse dynamics condition in
MDPs is that

∃Pinv : Z × Z → ∆(A), s.t. Pinv(a | ϕ(s), ϕ(s′)) = P (a | s, s′), ∀s, a, s′, (145)

but this condition does not direct relation with forward dynamics (OP).

VPN (Oh et al., 2017), MuZero (Schrittwieser et al., 2020): ϕQ∗ + RP. From Thm. 2, we know
that ϕQ∗ + RP is implied by ϕQ∗ + ZP, thus this representation lies between ϕQ∗ and ϕL. Both
VPN and MuZero learn the shared state encoder and latent model from maximizing the return and
predicting rewards. Their policies are learned by the MCTS algorithm.

E2C (Watter et al., 2015) and World Model (Ha & Schmidhuber, 2018): ZP + OR. They are
similar to belief-based methods, but remove the reward prediction loss from the encoder objective.
Instead, reward signals are only accessible to latent policies or values.
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Contrastive representation learning in RL (CURL (Laskin et al., 2020), DRIML (Mazoure
et al., 2020), ContraBAR (Choshen & Tamar, 2023)): ϕQ∗ (RP) + weak OP (OR). CURL (ϕQ∗

+ weak OR) introduces contrastive learning using the infoNCE objective (Oord et al., 2018) as an
auxiliary task in MDPs. InfoNCE between positive and negative examples is shown to be a lower
bound of mutual information between input and latent state variables (Poole et al., 2019). In MDPs,
it is a lower bound of I(s; z), which corresponds to OR objectives Eq. 141. Therefore, CURL can be
interpreted as maximizing a lower bound of OR.

DRIML (ϕQ∗ + weak OP) proposes an auxiliary task named InfoMax in MDPs. In its single-step
prediction variant, InfoMax maximizes the lower bound of I(z′; z, a) via the infoNCE objective.
Similar to the analysis (Rakelly et al., 2021), by data processing inequality:

I(z′; z, a) ≤ I(z′; s, a) ≤ I(s′; s, a), (146)

I(z′; z, a) ≤ I(s′; z, a) ≤ I(s′; s, a). (147)

When all equalities hold (e.g. ϕ satisfies OR), these imply z′ ⊥⊥ s, a | z, a (ZP) and s′ ⊥⊥ s, a | z, a
(OP).

ContraBAR (weak RP and weak OP) introduces infoNCE objectives to meta-RL, which requires
incorporating reward signals into observations when viewed as POMDPs (Ni et al., 2022). Similar to
DRIML, in its single-step prediction variant, the objective is to maximize the lower bound of mutual
information of I(z′; z, a) where z is a joint representation of state s and reward r. As shown in the
ContraBAR paper (Choshen & Tamar, 2023, Theorem 4.3), under certain optimality condition, the
objective can lead to learning RP and OP conditions.

Learning Markov State Abstraction (Allen et al., 2021): ϕQ∗ + ZM. From Prop. 6, we know
that ZM is implied by ZP, thus representation lies between ϕQ∗ and ϕL. They show that ZM can
be implied by inverse dynamics and density ratio matching in MDPs. Thus, they train on these two
objectives as auxiliary losses.

MICo (Castro et al., 2021): ϕQ∗ + metric. With a state encoder ϕ, matching under Independent
Coupling (MICo) defines a distance metric Uϕ in the state space. For any pair of states x, y ∈ S,

Uϕ(x, y) = |rπx − rπy |+ γEx′∼Pπ
x ,y′∼Pπ

y
[Uϕ(x

′, y′)], (metric)

where rπx = Ea∼π(|x)[R(x, a)] and Pπ
x (x

′ | x) = Ea∼π(|x)[P (x
′ | x, a)]. The metric Uϕ is parame-

terized with

Uϕ(x, y) =
1

2
(∥ϕ(x)∥22 + ∥ϕ(y)∥22) + β arctan(

√
1− cos(ϕ(x), ϕ(y))2, cos(ϕ(x), ϕ(y))). (148)

They learn the MICo metric by an auxiliary loss using mean squared error.

Denoised MDPs (Wang et al., 2022): OR + RP + ZP in a factorized latent space (implying
ϕπ∗ , not ϕQ∗). This work aims to learn a state abstraction that ignores components that are either
reward-irrelevant or uncontrollable. Such an abstraction can retain the optimal policy while not
necessarily preserving optimal value functions. Consequently, denoised MDPs can be conceptualized
as approximating ϕπ∗ . Technically, the authors postulate that the latent state of an MDP is composed
of elements (x, y, z) where the transition in y is independent of actions. Additionally, the reward
function r(s), independent of z, is decomposed into rx(x) and ry(y). Thus, the optimal policy
(though not its value) can only depend on the latent state component x.

In practice, they introduce variational objectives to learn the encoder p(x, y, z | s) with observation
reconstruction (OR), reward prediction (RP), and next latent state prediction (ZP) using online
forward KL divergences. The structure of the latent state space helps the partial encoder p(x | s) to
gravitate towards ϕπ∗ abstraction, despite the absence of a theoretical guarantee. Finally, they use
model-free RL to optimize a policy on the latent x space.

TD7 (Fujimoto et al., 2023): ZP with detached ℓ2. TD7 algorithm is introduced for addressing
MDPs and evaluated on the MuJoCo benchmark. TD7 learns a state encoder using ZP loss with
detaching the next latent states, which performs better than EMA version. They use ℓ2 loss and nor-
malize latent states by average ℓ1 norm, which performs better than cos loss and other normalization
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methods. They find that training with ZP loss only is slightly better than training with ZP + RP, and
much better than end-to-end training (ZP + ϕ∗Q). Lastly, it is noteworthy that in TD7, the critic not
only takes a state s and an action a as inputs, but also the latent state fϕ(s) and the predicted next
latent state gθ(fϕ(s), a), which is named as state-action embedding in the paper.

D ADDITIONAL DISCUSSION

D.1 MOTIVATING OUR HYPOTHESES

Here we provide our motivation for our hypotheses shown in Sec. 5.

• Motivating the sample efficiency hypothesis. The performance of deep RL algorithms is notably
influenced by task structure, and no single algorithm consistently outperforms others across all
tasks (Wang et al., 2019; Li et al., 2022; Ni et al., 2022). Common wisdom suggests that certain
algorithms excel in specific types of tasks (Mohan et al., 2023). For instance, self-predictive
representations are often effective in distracting tasks (Zhang et al., 2020; Zhao et al., 2023), while
observation-predictive representations typically perform well in sparse-reward scenarios (Zintgraf
et al., 2021; Zhang et al., 2021). However, these methods often incorporate additional complexities
like intrinsic rewards and metric learning or are primarily evaluated in pixel-based tasks.
Given these considerations, we propose the use of our minimalist algorithm as a tool to focus solely
on the impact of representation learning in vector-based tasks. This approach aims to provide a
clearer understanding of how different representation learning strategies affect sample efficiency in
various task structures (including popular standard benchmarks), without the confounding factors
present in more complex algorithms or environments.

• Motivating the distraction hypothesis. The belief that algorithms predicting observations tend
to underperform in distracting tasks is supported by several studies (Zhang et al., 2020; Okada
& Taniguchi, 2021; Fu et al., 2021; Deng et al., 2022). The challenge arises from the need for
these models to predict every detail of observations, including irrelevant features, which can be
extremely difficult due to randomness and high dimensionality. Similar to the motivation in our
sample efficiency hypothesis, prior works primarily focus on complex algorithms evaluated in
pixel-based tasks, often with real-world video backgrounds as distractors.
Considering these, we propose a shift towards studying the impact of distractions using a minimalist
algorithm in simpler, configurable environments. This approach aims to isolate and understand the
specific effects of distracting elements in tasks, providing a more straightforward and controlled
setting for analysis.

• Motivating the end-to-end hypothesis. According to our Thm. 2, learning an encoder end-to-end
with the auxiliary task of ZP can implicitly learn the reward prediction conditioned on its optimality,
potentially making it comparable to the phased learning. However, this is a theoretical prediction
and may not necessarily translate to practical scenarios, particularly considering that RL agents
rarely achieve global optima. On the other hand, prior works (Schwarzer et al., 2020; Ghugare
et al., 2022) have shown the success of the end-to-end learning, but these algorithms incorporate
other moving components (multi-step prediction, intrinsic rewards) and are not directly applicable
to POMDPs.
These limitations underscore the importance of empirically testing whether the benefits of the
end-to-end learning extend to POMDPs when employing a minimalist approach in representation
learning.

• Motivating the ZP objective hypothesis. Our Prop. 1 and Prop. 2 suggest that it suffices to use ℓ2
objective in deterministic tasks while KL divergences might be more effective in stochastic ones.
However, these are theoretical assumptions that do not fully account for the complexities of the
learning process. Additionally, most existing research tends to focus on a single objective type in
deterministic settings (as summarized in Table 1), leaving the performance of alternative objectives,
particularly in stochastic tasks, largely unexplored. A notable exception is AIS (Subramanian et al.,
2022) which discusses various ZP objectives but lacks practical evaluation on them.
These gaps in the literature motivate us to undertake a thorough comparison of these ZP objectives
in practical settings.

• Motivating the ZP stop-gradient hypothesis. Our Thm. 3 suggests that applying stop-gradient to
ZP targets could help mitigate representational collapse. However, this prediction is based on linear
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models without incorporating RL loss, which is a significant departure from deep RL scenarios.
While most prior studies focus on one type of ZP target without delving into collapse issues (as
summarized in Table 1), SPR (Schwarzer et al., 2020) is an exception, comparing online and EMA
encoders in Atari tasks. Nonetheless, SPR’s analysis focuses on return performance and lacks
direct evidence of representational collapse.
Addressing these research gaps, we aim to conduct an extensive comparison of ZP targets in both
MDPs and POMDPs. Our analysis includes providing direct evidence through the estimation of
representational rank.

D.2 LIMITATIONS AND CONCLUSION

Limitations. The limitations of our work can be divided into theoretical and empirical aspects. On
the theoretical side, although we show a continuous-time analysis of auxiliary learning dynamics with
linear models in Thm. 3, we do not provide a convergence analysis for the joint optimization of RL
and auxiliary losses and the results may not hold beyond linear assumption. On the empirical side, our
experiment scope does not cover more complicated domains that require pixel-based observations.

Conclusion. This work has offered a principled analysis of state and history representation learning
in reinforcement learning, bridging the gap between various approaches. Our unified view and
analysis of self-predictive learning also inspire a minimalist RL algorithm for learning self-predictive
representations. Extensive empirical studies in benchmarks across standard MDPs, distracting MDPs,
and sparse-reward POMDPs, validate most of our hypotheses suggested by our theory.

E EXPERIMENTAL DETAILS

E.1 SMALL SCALE EXPERIMENTS TO ILLUSTRATE THM. 3

In this section, we discuss the details of the experiments used to explore the empirical effects of using
stop-gradient to detach the ZP target in the self-predictive loss. First, we discuss the details shared
between both domains and then discuss domain-specific details.

We learn on data obtained by rolling out 10 trajectories under a fixed, near-optimal policy starting
from a random state. Trajectories are followed until termination or until 200 transition have been
observed, whichever happens first. The encoder, ϕ ∈ Rk×2 where k is the number of observed
features, is updated using full gradient descent with a small learning rate, α = 0.01, for 500 steps.
At every 10 steps, the absolute cosine similarity between the 2 columns of ϕ is computed, i.e.,
f(x, y) = |x⊤y|/(||x||2||y||2) and the results are plotted in Fig. 2. The optimal transition model
θ∗ =

[
θ∗z

⊤ θ∗a
⊤]⊤ is solved using singular value decomposition and the Moore-Penrose inverse to

minimize the linear least-squares objective:∥∥∥∥[ϕ⊤S A
] [θz
θa

]
− ϕ̃⊤S′

∥∥∥∥
2

, (149)

where S and S′ are matrices with each row corresponding to the sampled states (histories) and next
states (histories), respectively, and, similarly, A is a row-wise matrix of the sampled actions. The
ϕ̃ is set as ϕ in online target, or ϕ̄ in detached target and EMA target where the Polyak step size
τ = 0.005. To avoid numerical issues, singular values close to zero are discarded according to
the default behavior of JAX’s (?) jax.numpy.linalg.lstsq method when using float32
encoding.

Mountain car (Moore, 1990). We follow the dynamics and parameters used in (Sutton & Barto,
2018, Example 10.1). We encode states using a 10× 10 uniform grid of radial basis function (RBF),
e.g., fi(s) = exp(−(s−ci)⊤Σ−1(s−ci)) for an RBF centered on ci, and with a width corresponding
to 0.15 of the span of the state space. Specifically, Σ is diagonal and normalizes each dimension such
that the width of the RBF covers 0.15 in each dimension. As a result, the total number of features
k = 100. Actions are encoded using one-hot encoding and |A| = 3. The policy used to generate data
is an energy pumping policy which always picks actions that apply a force in the direction of the
velocity and applies a negative force when the speed is zero.
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Load-unload (Meuleau et al., 2013). Load-unload is a POMDP with 7 states arranged in a chain.
There are 2 actions which allow the agent to deterministically move left or right along the chain,
while attempting to move past the left-most or right-most state results in no movement. There are
three possible observations which deterministically correspond to being in the left-most state, the
right-most state or in any one of the 5 intermediate states. Observations and actions are encoded
using one-hot encodings. The agent’s state correspond to the history of observation and actions over
a fixed window of size 20 with zero padding for a total of k = 98 features (k = 20× 3 + 19× 2).
Finally, the policy used to generate trajectories is a stateful policy that repeats the last action with
probability 0.8 and always starting with the move-left action.

E.2 MDP EXPERIMENTS IN SEC. 5.1 AND SEC. 5.2

Standard MuJoCo in Sec. 5.1. This is a popular continuous control benchmark from Ope-
nAI Gym (Brockman et al., 2016). We evaluate on Hopper-v2 (11-dim), Walker2d-v2 (17-dim),
HalfCheetah-v2 (17-dim), Ant-v2 (111-dim), and Humanoid-v2 (376-dim), where the numbers in the
brackets are observation dimensions.

Distracting MuJoCo in Sec. 5.2. We follow Nikishin et al. (2022) to augment the state space
with a distracting dimension in Hopper-v2, Walker2d-v2, HalfCheetah-v2, and Ant-v2. The number
of distractors varies from 24 = 16 to 28 = 256. Therefore, the largest observation dimension is
256 + 111 = 367 in distracting Ant-v2. The distractors follow i.i.d. standard Gaussian N (0, I).

Our algorithm setup in Sec. 5.1 and Sec. 5.2 largely follows the code of ALM(3) (Ghugare et al.,
2022)16. The original ALM paper also introduces an ablation of the method, “ALM-no-model”, which
uses model-free RL (rather than SVG) to update the actor parameters. This ablation is structurally
similar to our method, which similarly avoids using a model. However, ALM-no-model still employs
a reward model and a latent model for learning representations, although not for updating policy.

Below, we compare ALM and our minimalist ϕL implementation. We show ablation results comparing
our method and ALM variants in Sec. G.

Differences between our minimalist ϕL (with reverse KL and EMA targets) and ALM.

• Reward model: we remove reward models from both ALM(3) and ALM-no-model. It should be
noted that although ALMs learn reward models, they do not update their encoders through reward
prediction loss.

• Encoder objective: our state encoder (ϕ) is updated by Eq. 5. Given a probabilistic encoder Pϕ(z |
s) and a probabilistic latent model Pθ(z

′ | z, a) for MDPs, and the latent state zϕ ∼ Pϕ(z | s), we
formulate our encoder objective for a data tuple (s, a, r, s′) as follows:

min
ϕ

(Qω(zϕ, a)−Qtar(s, a, s′, r))2 −Qω(zϕ, πν(zϕ)) +DKL(Pθ(z
′ | zϕ, a) || Pϕ(z

′ | s′)).
(150)

In contrast, ALM-no-model employs a more complicated objective to train the state encoder ϕ. It
performs a 1-step rollout with the reward model Rµ(z, a) without a discount factor, and modify the
stop-gradients on latent states within the Q-value. Given a data tuple (s, a, s′), the objective is

min
ϕ

−Rµ(zϕ, a)− Ez′
ϕ,θ∼Pθ(|zϕ,a)

[
Qω(z

′
ϕ,θ, πν(z

′
ϕ,θ

))
]
+DKL(Pθ(z

′ | zϕ, a) || Pϕ(z
′ | s′)),

(151)

where they eliminate the mean-squared TD loss and maximize the Q-value through its latent states
rather than actions, as done in our objective. ALM(3) extends ALM-no-model by implementing a
3-step rollout in the encoder objective.
To isolate the design of stop-gradients in Q-value and mean-squared TD error, we introduce
ALM(0) that lies between ALM-no-model and ours with the 0-step objective:

min
ϕ

−Qω(zϕ, πν(zϕ)) +DKL(Pθ(z
′ | zϕ, a) || Pϕ(z

′ | s′)). (152)

16https://github.com/RajGhugare19/alm
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Table 3: Hyperparameters used in Markovian agents in standard and distracting MuJoCo.

Hyperparameter Value

Discount factor (γ) 0.99
Warmup steps 5000

Target network update rate (τ ) 0.005
Replay buffer size 106 for Humanoid-v2 and 105 otherwise

Batch size 512
Learning rate 0.0001

Max gradient norm 100
Latent state dimension 50
Exploration stddev. clip 0.3

Exploration stddev. schedule linear(1.0, 0.1, 100000)
Auxiliary loss coefficient (λ) 1.0 for ZP-FKL, ZP-RKL and OP, and 10.0 for ZP-ℓ2

• Actor objective: our algorithm share the same actor objective with ALM-no-model and ALM(0),
compared to ALM(3) which uses SVG with a 3-step rollout (Heess et al., 2015) and additional
intrinsic rewards (i.e. the negative reverse KL divergence term; see Eq. 8 in ALM paper for details).

Implementation details for our minimalist algorithm learning ϕL, and learning ϕO and ϕQ∗ .
We follow the exact implementation of the network architectures in ALM(3). The encoder, actor, and
critic are parameterized as 2-layer neural networks with 512 hidden units. The latent transition model
(only used in learning ϕL) and observation predictor (only used in learning ϕO) are parameterized
as 2-layer networks with 1024 hidden units. The probabilistic encoder, latent model and decoder
output a Gaussian distribution with a diagonal covariance matrix. We apply layer normalization (Ba
et al., 2016) after the first layer of the critic network. We use ELU activation (Clevert et al., 2015)
and Adam optimizers (Kingma & Ba, 2015) for all networks.

We enumerate the values of our hyperparameters in Table 3. If a hyperparameter is shared with
ALM(3), we maintain the same value as that used in ALM(3) (Ghugare et al., 2022, Table 3).

E.3 POMDP EXPERIMENTS IN SEC. 5.3

MiniGrid in Sec. 5.3. This is a widely-used discrete gridworld benchmark from Farama founda-
tion (Chevalier-Boisvert et al., 2018; 2023). In this benchmark, an agent has a first-person view to
navigate a 2D gridworld with obstacles (e.g., walls and lava). Some tasks require the agent to pick
up keys and open doors to navigate to the goal location. The agent’s observations are symbolic (not
pixel-based) with a size of 7 × 7 × 3 where 7 × 7 is the spatial field of view, and the 3 channels
encode different semantics. The action space is discrete with 7 options: turn left, turn right, move
forward, pick up, drop, toggle, and done. Tasks are goal-oriented; the episode terminates immediately
when the agent reaches the goal, or times out after a maximum of T steps. Rewards are designed to
encourage fast task completion. A successful episode yields a reward of 1− 0.9 ∗H/T ∈ [0.1, 1.0]
at the terminal step, where H denotes the total steps. Failed episodes result in a reward of 0.0.

We select 20 tasks in MiniGrid, following the recent work RQL-AIS (Seyedsalehi et al., 2023). All
of these tasks require memory in an agent. The tasks are grouped as follows:

• SimpleCrossing (4 tasks): SimpleCrossingS9N1, SimpleCrossingS9N2, SimpleCrossingS9N3,
SimpleCrossing11N5

• LavaCrossing (4 tasks): LavaCrossingS9N1, LavaCrossingS9N2, LavaCrossingS9N3, LavaCross-
ing11N5

• Unlock (2 tasks): Unlock, UnlockPickup

• DoorKey (3 tasks): DoorKey-5x5, DoorKey-6x6, DoorKey-8x8

• KeyCorridor (3 tasks): KeyCorridorS3R1, KeyCorridorS3R2, KeyCorridorS3R3

• ObstructedMaze (2 tasks): ObstructedMaze-1Dl, ObstructedMaze-1Dlh
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• MultiRoom (2 tasks): MultiRoom-N2-S4, MultiRoom-N4-S5

In each group, we arrange the tasks by increasing level of difficulty. Please refer to the MiniGrid
website17 for detailed descriptions. Note that while RQL-AIS also evaluates the RedBlueDoors tasks,
we have omitted them from our selection as they are MDPs.

Implementation details on algorithms. We adopt the RQL-AIS codebase18 for our implementation
of a non-distributed version of R2D2 (Kapturowski et al., 2018). We retain their exact implementation
and hyperparameters for R2D2, which includes a recurrent replay buffer with uniform sampling, a
50-step burn-in period, a 10-step rollout, and a stepsize of 5 for multi-step double Q-learning. The
only difference is that we replace the periodic hard update of target networks with a soft update, to
align with our EMA setting.

We implement our end-to-end approaches based on R2D2. Minimalist ϕL introduces a single
auxiliary task of ZP; while ϕO adds a single auxiliary task of OP. Both use deterministic ℓ2
loss. We normalize the loss coefficient λ Eq. 5 by the output dimension (i.e., 128 for ZP loss
and 147 for OP loss) to balance with Q-learning scalar loss. We tune the normalized λ between
(0.01, 0.03, 0.3, 1.0, 3.0, 10.0, 100.0) in SimpleCrossing and LavaCrossing tasks. We find that 0.01
works best for OP and 1.0 best for ZP.

Furthermore, we also implement the phased approaches based on R2D2. Both ϕL (RP + ZP) and
ϕO (RP + OP) freeze the encoder parameters during Q-learning. We introduce the coefficient α
multiplied to ZP or OP loss to integrate with RP loss. All three losses use deterministic ℓ2 objectives.
We normalize α to balance reward scalar loss and tune it between (0.01, 0.1, 0.3, 1.0, 3.0, 10.0) in
SimpleCrossing and LavaCrossing tasks. We find 1.0 works best for both RP + ZP and RP + OP.

We enumerate the values of our hyperparameters in Table 4. If a hyperparameter is shared with R2D2
implemented by RQL-AIS, we maintain the same value as that used in RQL-AIS paper (Seyedsalehi
et al., 2023, Table 3). Our network architecture exactly follows RQL-AIS (see their Appendix F).

Lastly, it is important to highlight the distinction between our implementation of RP + OP and the
original RQL-AIS approach (Seyedsalehi et al., 2023). Both approaches aim to learn ϕO in a phased
manner with the same architecture. The main differences are:

• RQL-AIS employs a pre-trained autoencoder to compress the 147-dimensional observations into
64-dimensional latent representations. Then RQL-AIS trains their agent using latent representations
while keeping the autoencoder parameters frozen. In contrast, our RP + OP implementation removes
the autoencoder and instead directly predicts raw observations.

• RQL-AIS uses MMD loss for observation prediction, which we show is equivalent to learning EZP
condition (see our discussion in Sec. C on AIS). Thus, in RP + OP implementation, we replace the
MMD loss with an ℓ2 loss.

• The loss coefficient α is set to 0.5 in RQL-AIS while 0.1/147 in our implementation.

• We use soft update on target Q network to align with our other implementations.

Despite these implementation differences, we find that our RP + OP implementation performs
similarly to RQL-AIS across the 20 tasks.

E.4 EVALUATION METRICS

We evaluate the episode return by executing the deterministic version of the actor to compute the
undiscounted sum of rewards.

We estimate the rank of a batch of latent states by calling
torch.linalg.matrix_rank(atol, rtol) function in PyTorch (Paszke et al., 2019).
This function calculates the number of singular values that are greater than max(atol, σ1 ∗ rtol)
where σ1 is the largest singular value. In MDP experiments, the batch has a size of (512, 50) with
atol=1e-2, rtol=1e-2. In POMDP experiments, the batch has a size of (256 ∗ 10, 128)

17https://minigrid.farama.org/environments/minigrid/
18https://github.com/esalehi1996/POMDP_RL
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Table 4: Hyperparameters used in recurrent agents in MiniGrid.

Hyperparameter Value

Discount factor (γ) 0.99
Number of environment steps 4 ∗ 106
Target network update rate (τ ) 0.005

Replay buffer size full
Batch size 256

Learning rate 0.001
Latent state dimension 128

Epsilon greedy schedule exponential(1.0, 0.05, 400000)
R2D2 sequence length 10

R2D2 burn-in sequence length 50
n-step TD 5

Training frequency every 10 environment steps
Auxiliary loss coefficient (λ) 1.0/128 for ZP and 0.01/147 for OP

Loss coefficient for phased training (α) 1.0/128 for RP + ZP and 1.0/147 for RP + OP

with atol=1e-3, rtol=1e-3, where we reshape the 3D tensor of (256, 10, 128) size into 2D
matrix.

Each algorithm variant of the experiments is conducted across 12 individual runs in MDPs and 9
individual runs in POMDPs.

We employ the Rliable library (Agarwal et al., 2021) to compute the IQM and its CI for the aggregated
curves (Fig. 6). Essentially, IQM is the 25% trimmed mean over the data on 20 tasks with 9 seeds,
i.e., 180 runs.

E.5 COMPUTATIONAL RESOURCES

It requires around 1.5 days for us to train our algorithm in a (distracting) MuJoCo task for 1.5M
environment steps with 3 runs executed in parallel. The 3 runs share a single A100 GPU and utilize 3
CPU cores.

On the same machine, training cost (in secs) per update for Ant-v2 is as follows: model-free
agents take around 0.032s, self-predictive and observation-predictive agents with ℓ2 objective take
around 0.036s (13% more), self-predictive and observation-predictive agents with KL objective take
around 0.038s (19% more), ALM(3) agent takes around 0.058s (81% more). The brackets show the
percentage increase compared to model-free agents.

It requires around 0.5 days for us to train our algorithm in a MiniGrid task for 4M environment steps
with 3 runs executed in parallel. The 3 runs share a single V100 GPU and utilize 3 CPU cores.

F ARCHITECTURE AND CODE

h

fϕ

z Qω, πν

gθa

r

h′ z′

Figure 9: Architecture of our minimalist ϕL algorithm. The dashed edge indicates the stop-gradient
operator; the undirected edges indicate learning from grounded signals of rewards or next latent
states.
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Besides Algo. 1, we provide a pseudocode written in PyTorch syntax (Paszke et al., 2019) in Algo. 2.
Fig. 9 shows our architecture. We also have open-sourced our code at https://github.com/
twni2016/self-predictive-rl.

Algorithm 2 Our loss function for learning self-predictive representation in PyTorch syntax

1 def loss(hist, act, next_obs, rew):
2 # hist:(B,T,O+A), act:(B,A), next_obs:(B,O), rew:(B,1)
3 from torch import cat; from copy import deepcopy
4

5 # Encode histories into latent states
6 h_enc = Encoder(hist) #(B,Z)
7 next_hist = cat([hist, cat([act, next_obs], dim=-1)], dim=1) #(B,T+1,

O+A)
8 next_h_enc_tar = Encoder_Target(next_hist) #(B,Z)
9

10 # Compute RL loss
11 td_tar = rew + gamma * Critic_Target(next_h_enc_tar, Actor(

next_h_enc_tar))
12 critic_loss = ((Critic(h_enc, act)- td_tar.detach())**2).mean()
13 actor_loss = -deepcopy(Critic)(h_enc.detach(), Actor(h_enc)).mean()
14

15 # Compute ZP loss
16 zp_loss = ((Latent_Model(h_enc, act) - next_h_enc_tar)**2).sum(-1).

mean()
17

18 return critic_loss + actor_loss + zp_coef * zp_loss

G ADDITIONAL EMPIRICAL RESULTS

Ablation studies comparing our minimalist ϕL to ALM variants. Fig. 10 shows the comparison
between our method and several ALM variants (introduced in Sec. E.2). Both ALM(3) and ALM-no-
model have similar encoder objectives (1-step versus 3-step) but differ in actor objective (model-free
TD3 versus model-based SVG); their performance is similar except for the Humanoid-v2 tasks,
suggesting that the model-based actor update is most useful on higher-dimensional tasks. Comparing
ALM-no-model and ALM(0), which only differ in encoder objective (1-step versus 0-step), we see
that ALM(0) performs notably worse. This suggests that the use of stop-gradients in Q-value and the
omission of mean-squared TD-error in Eq. 152 and Eq. 151 might be problematic, although this issue
can be considerably mitigated by the 1-step variant. Finally, our minimalist ϕL Eq. 150 performs
comparably to ALM-no-model on most tasks and significantly outperforms ALM(0). These results
suggest that our method can achieve the benefits of a 1-step rollout without having to unroll a model;
however, a method that uses a 3-step rollout can sometimes achieve better results.

Additional results on ZP targets in standard MuJoCo. Fig. 11 shows the performance and the
estimated representational rank for the ZP KL divergences (FKL and RKL). Similar to findings
in ℓ2 objective (Fig. 4), we notice significantly lower returns when removing the stop-gradient
version (Detached and EMA). Surprisingly, this decreased performance does not seem to be caused
by dimensional collapse; on most tasks, the online version of the KL objective does not suffer
from dimensional collapse observed for the ℓ2 objective. These findings suggest that our estimated
representational rank may not be correlated with expected returns.

Ablation studies on ZP loss in standard MuJoCo. Fig. 12 shows the ZP losses (ℓ2 loss, FKL
loss, RKL loss) for each ZP objective within our minimalist ϕL algorithm. We include results for the
online, detached, and EMA targets. As expected, online ZP targets directly minimize ZP losses, thus
reaching much lower ZP loss values. However, a lower ZP loss value does not imply higher returns,
since the agent needs to balance the RL loss and ZP loss. In future work, we aim to explore strategies
to effectively decrease ZP loss without compromising the performance of the stop-gradient variant.
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Failed experiments in standard MuJoCo. We did not explore the architecture design and did
little hyperparameter tuning on our algorithm. Nevertheless, we observed two failure cases. To
match the assumption of Thm. 3 that the gradient w.r.t. the latent transition parameters θ reaches
zero, we experimented with higher learning rates (0.1, 0.01, 0.001) for updating the parameters θ in
MuJoCo tasks. Yet, we did not observe any performance increase compared to the default learning
rate (0.0001). Secondly, inspired by the findings in Fig. 12, we tried a constrained optimization
on auxiliary task to adaptively update the loss coefficient using gradient descent-ascent for the
stop-gradient version. However, this resulted in a significant performance decline without an explicit
decrease in ZP loss values.

Full per-task curves in distracting MuJoCo. Fig. 13 shows all learning curves in distracting
MuJoCo.

Full per-task curves in MiniGrid. Fig. 14 shows all learning curves in MiniGrid tasks. Minimalist
ϕL (ZP) is better than model-free RL (R2D2) in 8 of 20 tasks, and similar in the others except for
a single task. On the other hand, ϕO (OP) is better than model-free RL (R2D2) in 10 tasks, with
the other tasks being identical. Since MiniGrid tasks are deterministic without distraction and the
observation is not high-dimensional, ϕO (OP) outperforming ϕL (ZP) in 7 tasks is expected. The
end-to-end ϕL (ZP) surpasses its phased counterpart (RP + ZP) in 14 tasks, with the rest tasks being
the same. The end-to-end ϕO (OP) is better than its phased counterpart (RP + OP) in 7 tasks, but falls
short in 4 tasks. These findings underline the efficacy of the end-to-end approach to learning ϕL over
the phased approach.

Fig. 15 shows all matrix rank curves in MiniGrid tasks. Across all 20 tasks, online ZP targets
consistently have the lowest matrix rank, aligned with our prediction from Thm. 3. However, while
Thm. 3 shows that both detached and EMA targets avoid collapse in linear setting, we observe that
detached targets severely collapse in 3 tasks, a phenomenon absent with EMA targets. This prompts
further theoretical investigation in a nonlinear context. As expected, OP consistently achieves the
highest rank compared to ZP and R2D2, since OP learns the finest abstraction.
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Figure 10: Ablation studies on ALM variants (ALM(3), ALM-no-model, ALM(0)) and our minimalist
ϕL (ZP-RKL with EMA targets).
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Figure 11: Representation collapse is less severe with online targets for KL objectives. On four
benchmark tasks, we observe that using the online ZP target results in lower returns. Rows 1 and 2
show results for the forward KL; rows 3 and 4 show result for the reverse KL.
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Figure 12: Online ZP targets reach much smaller values on ZP objectives than stop-gradient ZP
targets in standard MuJoCo. Top row: ZP with ℓ2 objective; Middle row: ZP with FKL objective;
Bottom row: ZP with RKL objective.
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Figure 13: Full learning curves on distracting MuJoCo benchmark.
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Figure 14: The episode return between ϕQ∗ (R2D2), ϕL (ZP, RP + ZP), ϕO (OP, RP + OP) in 20
MiniGrid tasks over 4M steps, averaged across ≥ 9 seeds. The end-to-end approaches (R2D2, ZP,
OP) are shown by solid curves, while the phased ones (RP + ZP, RP + OP) are shown by dashed
curves. The ZP targets use EMA. Tasks sharing the same prefixes (e.g., SimpleCrossing, KeyCorridor)
are arranged in order of increasing difficulty.
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Figure 15: The estimated matrix rank between ZP targets (online, detached, EMA), R2D2, and OP
in 20 MiniGrid tasks over 4M steps, averaged across ≥ 9 seeds. The maximal achievable rank is 128.
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