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A Appendix

A.1 Training Details

In our experiments, the classifier fθ is a 8-layer MLP with 128 hidden dimensions per layer. We
assume the same dimensionality per layer for simplicity but the approach easily supports MLPs with
variable hidden dimensionalities: one can train seperate generative models or use the technique from
[39] where smaller dimensionalities are padded. The generative model gθ is a ResNet18 decoder that
maps a 128 dimensional vector to a 3 by 32 by 32 pixel image for RGB images and 1 by 32 by 32 for
grayscale images and speech spectrograms. We repurpose the implementation from the PyTorch
Lightning Bolts [9] repository: https://github.com/PyTorchLightning/lightning-bolts/
blob/master/pl_bolts/models/autoencoders/components.py (Apache 2.0 License). (All
input images are reshaped to 32 by 32 pixels. No additional image transformations were used in train-
ing nor evaluation.) All models are trained for 50 epochs with batch size 128, Adam optimizer with
learning rate 1e-4. We set β = 10 in all cases. For all ReDecNN models, we use a max depth D = 8
and set α = 0.5 in all cases. To make for a fair comparison, for all naive ensemble networks, we train
8 copies of a neural network with different weight initializations. For baseline models using dropout
and MC-Dropout, we use 0.5 dropout probability. For weight uncertainty (i.e. BayesNN), we use
the Blitz library [7], https://github.com/piEsposito/blitz-bayesian-deep-learning
(GNU V3 License). All pretrained models used were ResNet-18 classifiers. Our ResNet classifier
implementation was adapted from torchvision. For each of the architectures, to support 32x32
images (which are smaller than the standard), we replace the first 7x7 convolutional layer with a
3x3 convolutional layer and reduce the first max pooling layer. We did not use their pretrained
weights from torchvision and instead trained them ourselves on MNIST, FashionMNIST,
and CelebA from scratch (again 50 epochs). All models were trained on a single Titan Xp
GPU with 4 CPUs for data loading. An average model takes 1 hours to train for MNIST and
FashionMNIST and 4 hours for CelebA, and speech experiments. In our experiments, we compute
uncertainty using 30 random samples (e.g. for ReDecNN, this is 30 paths; for MC-Dropout,
this is 30 different dropout configurations, etc.). ROC-AUC computation is done through
scikit-learn (BSD License). In CelebA, only a subset of 18 attributes are used, chosen for
visual distinctiveness as done in [37]. Conveniently, this removes many trivial features that are
mostly of a single class as well. In experiments, we utilize the PyTorch Lightning framework
[8] (Apache 2.0 License) and Weights and Biases (MIT License) for tracking. For speech
experiments, the AudioMNIST dataset is found at https://github.com/soerenab/AudioMNIST
(MIT License) and the Fluent dataset can be downloaded at https://fluent.ai/
fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/
(academic license). All speech spectrograms are normalized using a mean and standard deviation
computed from the training dataset. We use torchaudio and librosa to efficiently compute Mel
spectrograms.

A.2 Dataset & Task Details

We describe the setup for each set of results presented in the main text, paying close attention to the
data used, and any special setup required.

Table 1a For classification, we use datasets as in standard practice. MNIST and FashionMNIST
are both classification tasks with 10 classes. CelebA has 18 binary attributes, and we optimize an
objective containing the sum of 18 binary cross entropy terms, one for each attribute. Accuracy is
reported using the respective test set.

Table 1b Given all test examples, we make predictions and get uncertainty scores using the trained
model. We split the test set into two groups, those we correctly classified, and those we misclassified.
Then, we compute the ROC-AUC with uncertainty as the prediction score. An ROC-AUC of 1 would
mean that the model perfectly assigned high uncertainty to examples it misclassified.

Table 2 OOD detection experiments are very similar to the misclassification experiments except
we define groups differently. Generally, there is inlier group and an outlier group. We compute
uncertainty scores over both groups and then compute ROC-AUC with uncertainty as the prediction
score. An ROC-AUC of 1 would mean that the model perfectly assigned high uncertainty to outlier
examples. Table 2 has three different ways of defining inliers and outliers. First, fixing a dataset and
trained classifier, we can compute adversarial examples with FGSM on the test set. This serves as the
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outlier set while the original test set serves as the inlier. Second, for rows labeled OOD (XXX), we
take the test set from dataset XXX to be the outlier set while the test set from training dataset acts as
the inlier set. Finally, for corruptions, we compute image transformations on the test set (e.g. blur
all image in the test set) and treat this as the outlier set (again, the original test set acts as the inlier
set). We do this separately for each corruption transformation, and report the average and standard
deviation (over corruptions) in the main text.

Table 3 In Table 2, we limited OOD experiments to using a separate dataset as outliers. For
CelebA, we can consider a more difficult task by holding out all images with a positive label for a
single attribute. We consider three such attributes: hold out all people wearing a hat, all people with
blond hair, or all people who are bald. Because a model with uncertainty has not seen any images of
people wearing hats (for example), it should assign these images higher uncertainty. The difficulty
of this task comes from outlier and inlier inputs being very similar in features; they are now both
images of celebrities, rather than images of digits. In all cases, the inlier set is defined to be all test
set images without a positive label for the held out attribute.

Table 4a ECE is computed on predicted probabilities using the test set for MNIST, FashionMNIST,
and CelebA seperately. The labels used for binning are the standard dataset annotations.

Table 4b Same setup as in Table 2 but we vary the recursion depth for ReDecNN.

Table 5 Design of experiments in the Table are as described above for misclassification, OOD, and
calibration. We pretrain a linear model and a ResNet-18 model using the training set of MNIST and
CelebA, separately. For CelebA, pretrained models optimize a sum of 18 binary cross entropy terms.

Table 6 Same setup as in Table 5.

Table 7 Using the CelebA dataset, we discard all attributes except the “baldness” and “beardedness”
columns (note this does not change the size of the dataset). We fit a ResNet-18 model to predict
baldness only (here, we do not use the beardedness label). Following this, we train a ReDecNN
with Equation 8 to ignore the protected attribute (baldness) when predicting beardedness. We then
compute the F1, AP, and ECE scores separately for two groups, one containing images of all bald
individuals in the test set and one containing images of all non-bald individuals in the test set. These
two groups will not be equal in size but are sufficiently large to compute statistics.

Table 8 Given the CelebA dataset, we only use the “baldness” attribute. Given a trained model
(a standard neural network or a ReDecNN), we freeze its parameters, find the last hidden layer (the
L-th one), and initialize linear head on top. This linear head returns a binary prediction: bald or not
bald. We optimize this model with binary cross entropy and see if the frozen weights contain the
information to predict baldness.

Table 9 See Appendix A.1 for the dataset links for AudioMNIST and Fluent Speech Commands.
We preprocess waveforms in each to be mel spectrograms of fixed size 1x32x32, mimicking the
CIFAR10 setup (note that there is only 1 channel). See Figure 2 left-most column for three examples
of input spectrograms. AudioMNIST has 10 output labels whereas Fluent Speech Commands has 6
output labels. The task and data setup remain the same as in Table 2 for OOD, misclassification, and
calibration experiments.

Table 10 Given a dataset and model, we use the time.time function in Python to record the start
and end times for each epoch on a Titan X GPU. We do so for 10 contiguous epochs and report the
average (and standard deviation). Eight data workers are used to load images (increasing this will
decrease the cost per epoch).

Table 11 This is identical to Table 2 but does not report the average over corruption experiments,
but reports each individually.

Table 12 This is identical to Table 2 but replaces an MLP with stacked convolutional layers.

A.3 Visualizing Decodable Activations

The most straightforward application of decodable activations is that we can visualize them. Figure 3
shows randomly chosen examples taken from DecNNs trained on FashionMNIST and CelebA. In
each subfigure, the leftmost column is from the dataset while the remaining eight columns are decoded
activations from layer 1 to 8 (fθ is an MLP with L = 8 layers).

15



h1x h2 h3 h4 h5 h6 h7 h8
zero

one

two

three

four

five

six

seven

eight

nine

zero

one

two

three

four

five

six

seven

eight

nine

(a)

h1x h2 h3 h4 h5 h6 h7 h8
t-shirt/top

trouser

pullover

dress

coat

sandal

shirt

sneaker

bag

ankle boot

t-shirt/top

trouser

pullover

dress

coat

sandal

shirt

sneaker

bag

ankle boot

(b)

h1x h2 h3 h4 h5 h6 h7 h8
is baldis baldis bald

(c)

zero

zero

zero

h1x h2 h3 h4 h5 h6 h7 h8

one

one

two

two three

three

four

four

five

five

six

six

seven

seven

eight

nine

nine

(d)

h1x h2 h3 h4 h5 h6 h7 h8
t-shirt/top

trouser

pullover

dress

coat

sandal

shirt

sneaker

bag

ankle boot

trouser

trouser

dress

dress

dress

sandal

shirt

bag

bag

bag

(e)

h1x h2 h3 h4 h5 h6 h7 h8
no hathas hat

8

(f)

Figure 3: Visualizing activations: the top row shows decoded activations when the model correctly
classified examples; the bottom row shows misclassifications.

The top row of three subfigures shows decoded activations for correctly-classified examples whereas
the bottom row of three subfigures shows mis-classified examples, all randomly chosen. For correctly-
classified examples, we observe that the decoded activations tends toward class prototypes. Decoded
images from the 7th or 8th activation lose details (e.g. patterns, logos, or shoe straps disappear from
clothing). The top row of Figure 3b presents a good example: the tank-top (a rare form of the t-shirt)
is projected to a more prototypical t-shirt. Furthermore, we also find that mis-classified examples
morph into images of the incorrect class. The seventh row of Figure 3e morphs the two articles of
clothing that compose the dress to build a shirt. The seventh row of Figure 3f show the celebrity’s hat
transform into a background color.

Although we may be tempted to interpret these activations as revealing what the neural network
is learning, the objective (Equation 4) does not guarantee this, as reconstructions could appear
visually similar to the input x but map to completely different outputs y, and as such, serve as a
poor explanation as to what the underlying function f is doing. Future work could consider also
constraining reconstructions to map to the same label as f(x).

A.4 Extended OOD Results

We provide a more thorough breakdown of performance for the 14 different image corruptions. In
the main paper, we only show the average performance over all corruptions.

A.5 Visualizing OOD Examples

In the main paper, we present OOD results using ROC-AUC. Here, we visually inspect some examples
the model deems as OOD. Figure 4 shows one image from each class (of MNIST, FashionMNIST,
and CIFAR10) with low and high uncertainty. We observe that high uncertainty images are less
prototypical. For example, the high uncertainty digits in Figure 4d have accented curvature, whereas
the high uncertainty clothing in Figure 4e have more atypical designs, and the high uncertainty images
of celebrities in Figure 4f, although annotated as not bald, are wearing hats or have thin hairlines and
exposed foreheads. On the other hand, low uncertainty images in all datasets look more prototypical.
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MNIST FashionMNIST CelebA
ReDecNN MC Ensemble ReDecNN MC Ensemble ReDecNN MC Ensemble

Adversarial (FGSM) 0.787 0.817 0.540 0.711 0.760 0.589 todo todo todo
OOD (MNIST) - - - 0.793 0.864 0.501 0.647 0.548 0.591
OOD (FashionMNIST) 0.812 0.888 0.534 - - - 0.641 0.572 0.599
OOD (CelebA) 0.893 0.943 0.675 0.753 0.793 0.704 - - -
Corrupt (Brightness) 0.851 0.955 0.702 0.732 0.667 0.816 0.653 0.558 0.623
Corrupt (Dotted Line) 0.672 0.684 0.546 0.602 0.589 0.535 0.647 0.559 0.626
Corrupt (Glass Blur) 0.664 0.718 0.515 0.617 0.584 0.525 0.641 0.596 0.652
Corrupt (Impulse Noise) 0.702 0.848 0.551 0.702 0.746 0.642 0.683 0.555 0.640
Corrupt (Rotate) 0.689 0.714 0.523 0.754 0.839 0.600 0.645 0.585 0.652
Corrupt (Shear) 0.685 0.661 0.502 0.611 0.809 0.543 0.750 0.581 0.636
Corrupt (Spatter) 0.647 0.683 0.502 0.617 0.615 0.534 0.715 0.569 0.641
Corrupt (Translate) 0.809 0.889 0.511 0.725 0.826 0.555 0.673 0.577 0.610
Corrupt (Canny Edges) 0.696 0.824 0.521 0.703 0.807 0.571 0.649 0.569 0.650
Corrupt (Fog) 0.868 0.940 0.732 0.748 0.670 0.810 0.729 0.608 0.643
Corrupt (Scale) 0.768 0.846 0.535 0.808 0.805 0.521 0.750 0.562 0.632
Corrupt (Shot Noise) 0.617 0.559 0.526 0.541 0.537 0.528 0.685 0.542 0.592
Corrupt (Stripe) 0.804 0.892 0.755 0.684 0.522 0.772 0.674 0.563 0.628
Corrupt (Zigzag) 0.709 0.785 0.514 0.626 0.658 0.532 0.714 0.555 0.627
Corrupt (Mean) 0.727 0.785 0.566 0.676 0.691 0.606 0.686 0.569 0.632
Corrupt (Stdev) 0.075 0.113 0.087 0.072 0.108 0.106 0.038 0.017 0.016

Table 11: We report the ROC-AUC of predicting which examples are out-of-distribution (OOD) using uncer-
tainty. We vary OOD examples to be adversarial, corrupted, or taken from a different dataset.

(a) MNIST (certain) (b) FashionMNIST (certain) (c) Not Bald (certain)

(d) MNIST (uncertain) (e) FashionMNIST (uncertain) (f) Not Bald (uncertain)

Figure 4: Randomly sampled images with low and high uncertainty. Images with high uncertainty appear less
“prototypical”. Figure 4(c,h) shows images from CelebA annotated as “not bald”. We observe images that the
model is uncertain about depict indviduals with a thin hair line, exposed foreheads, or wearing helmets.

A.6 Extensions to CNN Architectures

In the main text, we limited the experiments to MLP architectures for simplicity. Here, we include a
subset of the experiments in Section 4, replacing the MLP with stacked convolutional layers.

For this experiment, we use architectures of 8 total convolutional layers with ReLU nonlinearity and
64 filters. We use a U-Net decoder (again with 64 filters) as the generative model, which is better
suited to convolutional activations (which are now three dimensional rather than two). Like before,
we optimize for 50 epochs, batch size 128, learning rate 1e-4, and use Adam. For a baseline, we
compare against MC-Dropout, the most competitive baseline from the main text.

Method Acc. Misclass. OOD (MNIST) OOD (CelebA) Corruption (Mean) Calibration (ECE)

Standard 90.2 - - - - 1.848
DecNN 90.6 - - - - -
ReDecNN 89.5 0.876 0.883 0.844 0.712 0.837
MC-Dropout 85.9 0.863 0.776 0.895 0.723 0.889

Table 12: DecNN with convolutional layers trained on FashionMNIST.

From Table 12, we see similar findings to the MLP results, although overall performance is higher due
to a more expressive architecture. Namely, ReDecNN, DecNN, and a standard NN have similar test
accuracy whereas MC-Dropout has a 4 point lower accuracy. When using the uncertainty score to de-
tect misclassification, OOD, and corruption, we find much closer performance between MC-Dropout
and ReDecNN (whereas in the paper, MC-Dropout outperformed ReDecNN on FashionMNIST
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consistently), which is promising. Finally, for calibration, MC-Dropout and ReDecNN are again
comparable, with the latter having a slightly lower ECE score.
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