
A Proofs425

In this section, we prove the theorems presented in the paper through a series of lemmas. The proofs426

here are an adaptation of proofs of similar results for zero-sum concurrent games with a single427

discount factor [34].428

A.1 Definitions429

We first introduce some notation and definitions. Recall that we defined S1 = {(s, σ) | σ /∈ Fσ},
S2 = {(s, σ) | σ ∈ Fσ} and S̄ = S1 ∪ S2. V = {V : S1 → R} denotes the set of value functions
over S1 and V̄ = {V : S̄ → R} denotes the set of value functions over S̄. We use ∥·∥ to denote the
ℓ∞-norm. For any V ∈ V , (s, σ) ∈ S2 and any σ′ ∈ Σ, define

JV Kσ′(s, σ) =
∑
s′∈S

Tσ(s
′ | s)V (s′, σ′).

Note that for any (s, σ) ∈ S2, we have JV K(s, σ) = minσ′∈Σ JV Kσ′(s, σ). Similarly, for any V ∈ V ,
(s, σ) ∈ S1 and a ∈ A, let us define

Fa(V )(s, σ) = R̄((s, σ), a) + γ ·
∑
s′∈S

P (s′ | s, a)JV K(s′, σ)

with F(V )(s, σ) = maxa∈A Fa(V )(s, σ). Given any policy π1 : S̄ → A1 for agent 1 in G, we
define the resulting MDP G(π1) = (S̄, A2, Pπ1 , Rπ1 , γ) with states S̄ and actions A2 = Σ as
follows. The transition probability function is given by

Pπ1((s
′, σ′) | (s, σ), a2) =

{
P̄ ((s′, σ′) | (s, σ), π1(s, σ), a2) if (s, σ) ∈ S1∑
s′′∈S Tσ(s

′′ | s)P̄ ((s′, σ′) | (s′′, a2), π1(s′′, a2), a2) if (s, σ) ∈ S2

and the reward function is given by

Rπ1
((s, σ), a2) =

{
−R̄((s, σ), π1(s, σ)) if (s, σ) ∈ S1

−
∑
s′∈S Tσ(s

′ | s)R̄((s′, a2), π1(s′, a2)) if (s, σ) ∈ S2.

Intuitively, the MDP G(π1) merges every step of G in which a change of subtask occurs with the
subsequent step in the environment, while using π1 to choose actions for agent 1. For any s̄ ∈ S̄, let
DG(π1)
s̄ (π2) denote the distribution over infinite trajectories generated by π2 starting at s̄ in G(π1).

Then we define the value function for the MDP G(π1) using

V π2

G(π1)
(s̄) = E

ρ∼DG(π1)
s̄ (π2)

[ ∞∑
t=0

γtRπ1
(s̄t, at)

]
for all π2 : S̄ → A2 and s̄ ∈ S̄.430

A.2 Necessary Lemmas431

We need a few intermediate results in order to prove the main theorems. We begin by analyzing the432

operators J·K : V → V̄ and F : V → V defined in Section 3.1.433

Lemma A.1. For any V1, V2 ∈ V , we have ∥JV1K− JV2K∥ = ∥V1 − V2∥.434

Proof. For any (s, σ) ∈ S1, we have |JV1K(s, σ)− JV2K(s, σ)| = |V1(s, σ)− V2(s, σ)|. For any435

(s, σ) ∈ S2 and σ′ ∈ Σ we have436

|JV1Kσ′(s, σ)− JV2Kσ′(s, σ)| = ∥
∑
s′∈S

Tσ(s
′ | s)V1(s′, σ′)−

∑
s′∈S

Tσ(s
′ | s)V2(s′, σ′)∥

≤
∑
s′∈S

Tσ(s
′ | s)|V1(s′, σ′)− V2(s′, σ′)|

≤ ∥V1 − V2∥.
Now we have |JV1K(s, σ)− JV2K(s, σ)| = |minσ′ JV1Kσ′(s, σ)−minσ′ JV2Kσ′(s, σ)| ≤ ∥V1 − V2∥437

which concludes the proof.438
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Now we are ready to show that F is a contraction.439

Lemma A.2. F : V → V is a contraction mapping w.r.t the norm ∥·∥.440

Proof. Let V1, V2 ∈ V . Then for any (s, σ) ∈ S1 and a ∈ A,441

|Fa(V1)(s, σ)−Fa(V2)(s, σ)| = |γ
∑
s′∈S

P (s′ | s, a)JV1K(s′, σ)− γ
∑
s′∈S

P (s′ | s, a)JV2K(s′, σ)|

≤ γ
∑
s′∈S

P (s′ | s, a)|JV1K(s′, σ)− JV2K(s′, σ)|

≤ γ∥V1 − V2∥

where the last inequality followed from Lemma A.1. Therefore, for any (s, σ) ∈ S1, we have442

|F(V1)(s, σ)−F(V2)(s, σ)| = |maxa Fa(V1)(s, σ)−maxa Fa(V2)(s, σ)| ≤ γ∥V1 − V2∥ show-443

ing that F is a contraction.444

Now we connect the value function of the game G with that of the MDP G(π1).445

Lemma A.3. For any π1 : S̄ → A1, π2 : S̄ → A2 and s̄ ∈ S̄, V π1,π2(s̄) = −V π2

G(π1)
(s̄).446

Proof. Given an infinite trajectory ρ̄ = s̄0a
1
0a

2
0s̄1a

1
1a

2
1 . . . in G we define a corresponding trajectory447

ρ̄2 = s̄i0a
2
i0
s̄i1a

2
i1

in G(π1) as a subsequence where i0 = 0 and it+1 = it + 1 if s̄it ∈ S1 and448

it+1 = it + 2 if s̄it ∈ S2. Then for any s̄ ∈ S̄ we have449

V π1,π2(s̄) = Eρ̄∼DG
s̄ (π1,π2)

[ ∞∑
t=0

( t−1∏
k=0

γ̄(s̄k)
)
R̄(s̄t, a

1
t )
]

(1)
= Eρ̄∼DG

s̄ (π1,π2)

[ ∞∑
t=0

γtRπ1
(s̄it , a

2
it)

]
(2)
= −E

ρ∼DG(π1)
s̄ (π2)

[ ∞∑
t=0

γtRπ1(s̄t, at)
]

= −V π2

G(π1)
(s̄)

where (1) followed from the definitions of γ̄ and Rπ1 and the fact that R̄(s̄t, a1t ) = 0 if s̄t ∈ S2,450

and (2) followed from the fact that sampling a trajectory ρ by first sampling ρ̄ from DG
s̄ (π1, π2)451

and then constructing the subsequence ρ̄2 is the same as sampling an infinite trajectory ρ from452

DG(π1)
s̄ (π2)

6.453

Lemma A.2 shows that for any V ∈ V we have

lim
n→∞

Fn(V ) = Vlim

where Vlim ∈ V is the unique fixed point of F . Now we define two policies π∗
1 and π∗

2 for agents 1454

and 2 respectively, as follows. For (s, σ) ∈ S1 we have455

π∗
1(s, σ) ∈ argmaxa∈A Fa(Vlim)(s, σ) (5)

and for (s, σ) ∈ S2, we have456

π∗
2(s, σ) ∈ argminσ′ JVlimKσ′(s, σ). (6)

Note that the actions taken by π∗
1 in S2 and π∗

2 in S1 can be arbitrary since they do not affect the457

transitions of the game G. Now we show that for any s̄ ∈ S̄, π∗
1 maximizes V π1,π

∗
2 (s̄) and π∗

2458

minimizes V π
∗
1 ,π2(s̄).459

Lemma A.4. For any s̄ ∈ S̄, V π
∗
1 ,π

∗
2 (s̄) = minπ2 V

π∗
1 ,π2(s̄) = JVlimK(s̄).460

6This can be shown formally by analyzing the probabilities assigned by the two distributions on cylinder
sets.
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Proof. Let G(π∗
1) = (S̄,A2, Pπ∗

1
, Rπ∗

1
, γ). For any (s, σ) ∈ S2, we have461

JVlimK(s, σ) = min
σ′∈Σ

∑
s′∈S

Tσ(s
′ | s)JVlimK(s′, σ′)

(3)
= min

σ′∈Σ

∑
s′∈S

Tσ(s
′ | s)

(
R̄((s′, σ′), a) + γ ·

∑
s′′∈S

P (s′ | s, a)JVlimK(s′′, σ′)
)∣∣∣
a=π∗

1 (s
′,σ′)

(4)
= min

a2∈A2

(
−Rπ∗

1
((s, σ), a2) + γ

∑
s̄∈S̄

Pπ∗
1
(s̄ | (s, σ), a2)JVlimK(s̄)

)
where (3) followed from the definitions of Vlim and π∗

1 and (4) followed from the definitions of
Rπ∗

1
and Pπ∗

1
. Since −JVlimK satisfies the Bellman equations for the MDP G(π∗

1), the optimal value
function for G(π∗

1) is given by V ∗
G(π∗

1 )
= −JVlimK. Now, from the definition of π∗

2 we can conclude
that π∗

2 is an optimal policy for G(π∗
1). Therefore, Lemma A.3 implies that for any s̄ ∈ S̄,

min
π2

V π
∗
1 ,π2(s̄) = min

π2

−V π2

G(π∗
1 )
(s̄) = −V π

∗
2

G(π∗
1 )
(s̄) = V π

∗
1 ,π

∗
2 (s̄).

Hence, we have proved the desired result.462

The following lemma can be shown using a similar argument and the proof is omitted.463

Lemma A.5. For any s̄ ∈ S̄, V π
∗
1 ,π

∗
2 (s̄) = maxπ1

V π1,π
∗
2 (s̄) = JVlimK(s̄).464

The following lemma shows that it does not matter which agent picks its policy first.465

Lemma A.6. For any policies π∗
1 and π∗

2 satisfying Equations 5 and 6 respectively, for all s̄ ∈ S̄,

V π
∗
1 ,π

∗
2 (s̄) = min

π2

max
π1

V π1,π2(s̄) = max
π1

min
π2

V π1,π2(s̄) = V ∗(s̄).

Proof. We have, for any s̄ ∈ S̄,466

V ∗(s̄) = max
π1

min
π2

V π1,π2(s̄)

≥ min
π2

V π
∗
1 ,π2(s̄)

(1)
= V π

∗
1 ,π

∗
2 (s̄)

(2)
= max

π1

V π1,π
∗
2 (s̄)

≥ min
π2

max
π1

V π1,π2(s̄)

≥ max
π1

min
π2

V π1,π2(s̄)

= V ∗(s̄)

where the (1) followed from Lemma A.4 and (2) followed from Lemma A.5.467

A.3 Proof of Theorem 3.1468

Let Π(π1) = {πσ | σ ∈ Σ} be the set of subtask policies defined by π1. Let τ = σ0σ1 . . . be a469

task. Then we define a history-dependent policy πτ2 in G(π1) which maintains an index i denoting470

the current subtask and picks σi+1 upon reaching any state in S2 while simultaneously updating the471
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index to i+ 1. Then we have472

J(Π(π1)) = inf
τ∈T

Eρ∼DΠ
τ

[ ∞∑
t=0

γtRτ [it](st, πτ [it](st))
]

(1)
= inf

τ∈T
Es̄∼η̄

[
E
ρ∼DG(π1)

s̄ (πτ
2 )

[
−

∞∑
t=0

γtRπ1
(s̄t, at)

]]
= inf
τ∈T

Es̄∼η̄[−V
πτ
2

G(π1)
(s̄)]

≥ Es̄∼η̄[− sup
τ∈T

V
πτ
2

G(π1)
(s̄)]

(2)

≥ Es̄∼η̄[−max
π2

V π2

G(π1)
(s̄)]

(3)
= Es̄∼η̄[min

π2

V π1,π2(s̄)]

= JG(π1)

where (1) followed from the definitions of πτ2 and G(π1), (2) followed from the fact that there is an473

optimal stationary policy maximizing V π2

G(π1)
(s̄) and (3) followed from Lemma A.4.474

A.4 Proof of Theorem 3.2475

Since V ∗ = JVlimK, for all (s, σ) ∈ S̄ we have π∗
1(s, σ) ∈ argmaxa∈A Fa(Vlim)(s, σ). Now for476

any π∗
2 satisfying Equation 6, we can conclude from Lemma A.6 that, for any s̄ ∈ S̄,477

JG(π
∗
1) = Es̄∼η̄[min

π2

V π
∗
1 ,π2(s̄)]

= Es̄∼η̄[V π
∗
1 ,π

∗
2 (s̄)]

= Es̄∼η̄[max
π1

min
π2

V π1,π2(s̄)]

≥ max
π1

Es̄∼η̄[min
π2

V π1,π2(s̄)]

= max
π1

JG(π1)

which shows that π∗
1 maximizes JG(π1).478

A.5 Proof of Theorem 3.3479

From Lemma A.2, we can conclude that F is a contraction over V w.r.t. the ℓ∞-norm. Lemmas A.6480

and A.4 gives us that V ∗ ↓S1
= Vlim. Now the definition of Vlim implies that limn→∞ Fn(V ) =481

V ∗ ↓S1
for all V ∈ V .482

A.6 Proof of Theorems 3.4 and 3.5483

This proof is similar to the proof of convergence of asynchronous value iteration for MDPs presented484

in [7]. It is easy to see that, for any V ∈ V and σ ∈ Σ, the operators J·K, F , Fasync, and Fσ,V are485

monotonic. Recall that, for any V ∈ V and σ ∈ Σ, we defined the corresponding Vσ ∈ Vσ using486

Vσ(s) = JV K(s, σ) if s ∈ S and Vσ(⊥) = 0. Also, we have F(V )(s, σ) = Fσ,V (Vσ)(s) =487

F1(V )(s, σ) for all (s, σ) ∈ S1.488

Now let V ∈ V be a value function such that F(V ) ≤ V . Then we have Fσ,V (Vσ) ≤ Vσ for all489

σ ∈ Σ. Therefore, using monotonicity of Fσ,V , we get that Fmσ,V (Vσ) ≤ F
m−1
σ,V (Vσ) ≤ Vσ for all490

m > 0 which implies Fm(V ) ≤ Fm−1(V ) ≤ V . Hence, for any (s, σ) ∈ S1,491

Fasync(V )(s, σ) =Wσ(V )(s) = lim
m→∞

Fmσ,V (Vσ)(s)

≤ Fσ,V (Vσ)(s) = F(V )(s, σ).

Furthermore, letting V m = Fm(V ) we get that JV mK ≤ JV K and hence V mσ ≤ Fmσ,V (Vσ) for all σ ∈
Σ. Also, for (s, σ) ∈ S1, F(V m)(s, σ) = Fσ,Vm(V mσ )(s) ≤ Fσ,V (V mσ )(s) ≤ Fm+1

σ,V (Vσ)(s) =
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V m+1(s, σ). Therefore, using continuity of F , we have F(Fasync(V )) = F(limm→∞ V m) =
limm→∞ F(V m) ≤ limm→∞ V m+1 = Fasync(V ). Now we can show by induction on n that, for
any V ∈ V with F(V ) ≤ V and n ≥ 1, we have F(Fnasync(V )) ≤ Fnasync(V ) and

Vlim ≤ Fnasync(V ) ≤ Fn(V ).

Taking the limit as n → ∞ gives us that limn→∞ Fnasync(V ) = Vlim if F(V ) ≤ V . Using a492

symmetric argument, we get that limn→∞ Fnasync(V ) = Vlim if F(V ) ≥ V .493

Let I ∈ V be defined by I(s, σ) = 1 for all (s, σ) ∈ S1. For a general V ∈ V , we can find a δ > 0
such that we have V − = Vlim− δI ≤ V ≤ Vlim+ δI = V + and F(V −) ≥ V − and F(V +) ≤ V +.
Therefore, using monotonicity of Fasync we get

Fnasync(V −) ≤ Fnasync(V ) ≤ Fnasync(V +)

for all n ≥ 0. Taking the limit as n tends to∞ gives us the required result. Theorem 3.5 follows494

from a similar argument.495

A.7 Proof of Theorem 4.1496

Given a function Q : S1 ×A→ R we define a new functionH(Q) using

H(Q)(s, σ, a) = R̄((s, σ), a) + γ
∑
s′∈S

P (s′ | s, a)JVQK(s′, σ)

for all (s, σ) ∈ S1 and a ∈ A. Then, Robust Option Q-learning is of the form

Qt+1(s, σ, a) = (1− αt(s, σ, a))Qt(s, σ, a) + αt(s, σ, a)
(
H(Qt)(s, σ, a) + wt(s, σ, a)

)
where the noise factor is defined by

wt(s, σ, a) = γJVQt
K(s̃, σ)− γ

∑
s′∈S

P (s′ | s, a)JVQK(s′, σ)

with s̃ ∼ P (· | s, a) being the observed sample. Let Xt denote the measure space generated by
the set of random vectors {Q0, Q1, . . . , Qt, w0, . . . , wt−1, α0, . . . , αt}. Then, for all (s, σ) ∈ S1,
a ∈ A and t ≥ 0, we have

E[wt(s, σ, a) | Xt] = 0

and

E[w2
t (s, σ, a) | Xt] ≤ 4γ2 max

s′∈S

{
JVQtK

2
(s′, σ)

}
≤ 4γ2 max

(s′,σ′)∈S1,a′∈A

{
Q2
t (s

′, σ′, a′)
}
.

Furthermore, using Lemmas A.1 and A.2 and the definition of VQ we can conclude that H is a497

contraction w.r.t the ℓ∞-norm andQ∗ is the unique fixed point ofH. Therefore, the random sequence498

of Q-functions {Qt}t≥0 satisfies all assumptions in Proposition 4.4 of [7] implying that Qt → Q∗499

as t→∞ with probability 1.500

B Experimental Details501

All experiments were run on a 48-core machine with 512GB of memory and 8 GPUs. In all ap-502

proaches (ours and baselines) except for MADDPG, the policy consists of one fully-connected NN503

per subtask, each with two hidden layers. MADDPG consists of two policies, one for the agent and504

one for the adversary, each with two hidden layers. In the case of MADDPG, the subtask is encoded505

in the observation using a one-hot vector. All hyperparameters were computed by grid search over506

a small set of values.507

Rooms environment. The hidden dimension used is 64 for all approaches except MADDPG for508

which we uses 128 dimensional hidden layers. For DAGGER, NAIVE and AROSAC we run SAC with509

Adam optimizer (learning rate of α = 0.02), entropy weight β = 0.05, Polyac rate 0.005 and batch510

size of 100. In each iteration of AROSAC and DAGGER, SAC is run for N = 10000 steps. Similarly,511

ROSAC is run with Adam optimizer (learning rates αψ = αθ = 0.02), entropy weight β = 0.05,512

Polyac rate 0.005 and batch size of 300. The MADDPG baseline uses a learning rate of 0.0003 and513

batch size of 256.514
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F1/10th environment. The hidden dimension used is 64 for all approaches. For DAGGER, NAIVE515

and AROSAC we run SAC with Adam optimizer (learning rate of α = 0.0003), entropy weight516

β = 0.01, Polyac rate 0.005 and batch size of 256. In each iteration of AROSAC and DAGGER,517

SAC is run for N = 10000 steps. Similarly, ROSAC is run with Adam optimizer (learning rates518

αψ = αθ = 0.0003), entropy weight β = 0.01, Polyac rate 0.005 and batch size of 5 × 256. The519

MADDPG baseline uses a learning rate of 0.0003 and batch size of 256.520
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