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A  Proofs

In this section, we prove the theorems presented in the paper through a series of lemmas. The proofs
here are an adaptation of proofs of similar results for zero-sum concurrent games with a single
discount factor [34].

A.1 Definitions

We first introduce some notation and definitions. Recall that we defined S1 = {(s,0) | 0 ¢ F,},
Sy ={(s,0) |0 € F,}and S = S; U S2. V = {V : S; — R} denotes the set of value functions
over Sy and V = {V : § — R} denotes the set of value functions over S. We use |-|| to denote the
lso-norm. Forany V € V, (s,0) € Sz and any ¢’ € 3, define

V1, (s,0) =D To(s' | )V(s', o).
s'eS
Note that for any (s, 0) € S, we have [V](s,0) = ming ex [V],. (s,0). Similarly, forany V € V,
(s,0) € Sy and a € A, let us define
FuV)(s,0) = R((s,0),a) +7- > P(s'| 5,a)[V](s', 0)
s’eS

with F(V)(s,0) = maxaea Fu(V)(s,0). Given any policy 71 : S — A; for agent 1 in G, we
define the resulting MDP G(m1) = (S, As, Pr,, Rr,,) with states S and actions Ay = ¥ as
follows. The transition probability function is given by

I _ p((slvg/) | (5’0)77r1(570)7a2) if (S,(T) (S Sl
Pl [ (5:0), 02) = {zsuesms" | )P((s ") | (5" ag), ma(s", as).az) i (s) € S

and the reward function is given by

o o) an) = { ~B(s:0),mi(s,0)) if (s,0) € S
Bri((5,0), 62) {—zs/esms’|s>R<<s',a2>7m<sca2>> if (5,0 € So.

Intuitively, the MDP G(7;) merges every step of G in which a change of subtask occurs with the
subsequent step in the environment, while using 71 to choose actions for agent 1. For any 5 € S, let

Dgg(m) (72) denote the distribution over infinite trajectories generated by 7o starting at 5 in G(m1).
Then we define the value function for the MDP G (1) using

Vgﬂ(irl)(g) NDQ(Wl) |:Z’Y R7r1 Stvat :|
forallmg : S — Ay and s € S.

A.2 Necessary Lemmas

We need a few intermediate results in order to prove the main theorems. We begin by analyzing the
operators [-] : V — Vand F : V — V defined in Section

Lemma A.1. Forany V1,V, € V, we have ||[V1] — [V2]]] = [|V1 — V2.

Proof. For any (s,0) € Sy, we have |[V1](s,0) — [V2](s,0)| = |Vi(s,0) — Va(s,0)|. For any
(s,0) € Sg and 0’ € ¥ we have

Vil (s:0) = Vel (s, 0)l = 1) Tols' [ )Va(s',0') = D Tuls' | s)Vals', o)l

s'eS s'eS
< ST, | 9IVAls o) — Vals', o)
s'eS
< Vi —Va.

Now we have [[V1](s,0) = [V2](s,0)| = [miny: [Vi],, (s, 0) — ming: [Vo] . (s, )] < [[V1 = V2|
which concludes the proof. O
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Now we are ready to show that F is a contraction.

Lemma A.2. F :V — V is a contraction mapping w.r.t the norm ||-||.
Proof. Let Vi, V5 € V. Then for any (s,0) € S; and a € A,

[Fa(Vi)(s,0) = Fa(Va)(s,0)| = |y Y P(s' | 5,a)[Vi](s's0) =7 Y P(s' | 5,0)[Va] (', 0)]

s'€S s'€S

<Y P(s' | s,a)[[Vi](s',0) = [Val(s', 0)]
s'eS

<A[Vi = Va

where the last inequality followed from Lemma Therefore, for any (s,0) € S7, we have
| F(V1)(s,0) — F(V2)(s,0)| = |max, Fo(V1)(s,0) — max, Fo(V2)(s,0)| < ~v||Vi — Val| show-
ing that F is a contraction. O

Now we connect the value function of the game G with that of the MDP G (7).

Lemma A3. Foranym : S — Ay, mp: S — Az and s € S, V™ (5) = =V (5).

Proof. Given an infinite trajectory p = 3paja3siaia? ... in G we define a corresponding trajectory
po = 51‘0%2052'1@%1 in G(m) as a subsequence where ig = 0 and 4,41 = i, + 1if 5;, € S; and
T441 = 9 + 21if 5;, € Sy. Then for any 5 € S we have

Vﬂ-lﬂw( )_ p~DY (7r1,7r2)|:z H St?a’t):|
t=0 k=0
0

1) _
8,8 ey | 7 i 62 )]
t=

@) S :
= B pg () [Z'YtRm(Staat)}

t=0

— Vg7r(2ﬂ—1 ) (g)

where (1) followed from the definitions of 5 and R, and the fact that R(5;,a}) = 0 if st € 9o,
and (2) followed from the fact that sampling a trajectory p by first sampling p from DY (m1,7m2)
and then constructing the subsequence p» is the same as sampling an infinite trajectory p from

DI (ry fil O

Lemma[A.2]shows that for any V' € V we have
lim F*(V) = Viim

n— oo

where Viiy,, € V is the unique fixed point of F. Now we define two policies 77 and 73 for agents 1
and 2 respectively, as follows. For (s, o) € S; we have

mi(s,0) € argmax,c 4 Fo(Viim)(s,0) (5)
and for (s, o) € Sy, we have
75 (s,0) € argming, [Viim],. (s,0). (6)

Note that the actions taken by 7§ in S3 and 73 in S; can be arbitrary since they do not affect the
transitions of the game G. Now we show that for any 5 € S, 7} maximizes V™7 (5) and 75
minimizes V717 (5).

Lemma A.4. Foranys € S, V™1™ (5) = ming, V™1™ (5) = [Viim] (3).

SThis can be shown formally by analyzing the probabilities assigned by the two distributions on cylinder
sets.
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Proof. Let G(m) = (S, Az, Prr, Rr: 7). Forany (s, 0) € Sz, we have

Miml(s,0) = min » | To(s" | )[Viim] (5", 0")

G/GES’ES
@ min > T (s’ | s)(R((s’,o’),a) +y- 3 P s,a)[[‘/iimﬂ(s”,al)> .
o'e a=my(s’,0’
s'es s"es e

2 min (—Rﬂ;((s,a),ag)—&-WZPﬁ(ﬂ (8,0),@2)[[Wimﬂ(§))
€S

where (3) followed from the definitions of Vjiy, and 7] and (4) followed from the definitions of
Ryy and Pps. Since —[Viin ] satisfies the Bellman equations for the MDP G(r7), the optimal value
function for G(n7) is given by V. —[Viim]- Now, from the definition of w5 we can conclude

* ) -
1 —
that 75 is an optimal policy for G(77). Therefore, Lemmaimplies that for any 5 € S,

: T2 (3 — min /72 S — ™
1171r12nV 1 (s)—nTlr12n Vg(ﬂ)(s) Vg (s

\(5) = VT (s).

Hence, we have proved the desired result. O

The following lemma can be shown using a similar argument and the proof is omitted.

Lemma A.5. Forany 5 € S, V™™ (5) = max,, V™™ (5) = [Viim] ().

The following lemma shows that it does not matter which agent picks its policy first.

Lemma A.6. For any policies 77 and 75 satisfying Equationslzland @ respectively, for all 5 € S,

VYT (8) = minmax V™™ (8) = maxmin V"™ (8) = V*(3).
o T T ™2

Proof. We have, for any 5 € S,
V*(s) = max rr71r12n VT2 (5)
> min VT2 (5)
@) i (5)
@ Ir71ralmx YT (3)

> min max V™2 (3)
™2 T

> max min V™2 ()
™1 T2

=V'(3)

where the (1) followed from Lemma[A:4]and (2) followed from Lemma[A3] O

A.3 Proof of Theorem 3.1]

Let II(my) = {n, | o € ¥} be the set of subtask policies defined by 7;. Let 7 = 0oy ... be a
task. Then we define a history-dependent policy 73 in G(1) which maintains an index ¢ denoting
the current subtask and picks ;11 upon reaching any state in So while simultaneously updating the
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index to 7 + 1. Then we have

oo

J(T(m)) = inf Bppn | 307" Ryt mrpi (50))|
t=0

(o9}
@ . Z _

= ;Ielg_EgNﬁ |:Ep~fD§g(7"1)(ﬂ.;) [ - par ’thTrl (St7 Clt):l:|
= il By [VZE 9]

> Esun|[— sup 1754 5)
77[ Te€T g(ﬂ-l)( ]

D By oy [min Vo2 (5)]
T2

= Jg(m)
where (1) followed from the definitions of 77 and G(71), (2) followed from the fact that there is an
optimal stationary policy maximizing V¢ )(§) and (3) followed from Lemma

(m1
A.4 Proof of Theorem

Since V* = [Viim], for all (s,0) € S we have 7} (s, 0) € argmax,e 4 Fao(Viim)(s,0). Now for

any 75 satisfying Equation @, we can conclude from Lemmathat, forany s € 5,

Jg(m1) = Esq[min VTR (5)]

s [V (5)]

E
Esz[maxmin V™72 (5)]
™1 T2

vV

max Ez5[min V772 (5)]
™1 ™2
= max Jg(m1)
T
which shows that 77 maximizes Jg (1 ). O

A.5 Proof of Theorem

From Lemmal[A-2] we can conclude that F is a contraction over V) w.r.t. the £,-norm. Lemmas[A.6]
and [A.4] gives us that V* |g,= Viim. Now the definition of Vji,, implies that lim,,_,oc F™(V) =
V* g forall vV e V. O

A.6 Proof of Theorems[3.4land

This proof is similar to the proof of convergence of asynchronous value iteration for MDPs presented
in [7]. It is easy to see that, for any V' € V and o € %, the operators [-], F, Fasync, and F, v are
monotonic. Recall that, for any V' € V and ¢ € 3, we defined the corresponding V,, € V, using
Vo(s) = [VI(s,0) if s € S and V(L) = 0. Also, we have F(V)(s,0) = Fov(V,)(s) =
F1(V)(s,0) forall (s,0) € Si.

Now let V' € V be a value function such that (V) < V. Then we have F, v (V)
o € X. Therefore, using monotonicity of F, 1/, we get that ;’}V(Vg) < .7-";_7?; 1(V,,)
m > 0 which implies F,,,(V) < F,,_1(V) < V. Hence, for any (s,0) € S1,

Fuopne(V)(5,0) = Wo(V)(s) = lim_F7(Vo)(s)
< Fov(Vo)(s) = F(V)(s,0).

Furthermore, letting V'™ = F,,, (V') we get that [V"™] < [V] and hence V;* < F™,(V;) forall o €
5. Also, for (s,0) € Sy, F(V™)(s,0) = Foym(VI)(s) < Fov (VI)(s) < F (Vo)(s) =

V, for all

<
<V, for all
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V™tl(s, o). Therefore, using continuity of F, we have F(Fasync(V)) = F(limy—oo V™) =
lim,, oo F(V™) < limyp—yoo V™ = Fagync (V). Now we can show by induction on n that, for

any V € V with F(V) < Vand n > 1, we have F(Fi;n. (V) < Fognc (V) and

Viim S ]::sync(v) S ]:n(v)
Taking the limit as n — oo gives us that limy, 00 Foaginc(V) = Viim if F(V) < V. Using a
symmetric argument, we get that lim,, fg‘sync(V) =Vim if F(V) > V.

Let I € V be defined by I(s,0) = 1forall (s,0) € S;. Fora general V € V, wecanfindad > 0
such that we have V=™ = Vi, =61 <V < Vi +6I = VT and F(V™) > V- and F(VT) < VT,
Therefore, using monotonicity of Faeync We get

Faeyne(V7T) < Flyme V")
for all n > 0. Taking the limit as n tends to oo gives us the required result. Theorem [3.5] follows
from a similar argument.

(V) < FL

async

A.7 Proof of Theorem [d.1]
Given a function @ : S; X A — R we define a new function H(Q) using

H(Q)(s,0.a) = R((s,0),a) +7 Y_ P(s' | 5,0)[Vol(s', 0)

s'eS
forall (s,0) € S; and a € A. Then, Robust Option ()-learning is of the form

Qui1(5,0,a) = (1 — au(s, 0,a))Qu(s, 0, a) + (s, 0, a) (H(Qt)(s, 7,a) + wi(s, 0, a))

where the noise factor is defined by

wi(s,0,0) = 7[Vo,[(5,0) =7 Y P(s'| 5,a)[Vol(s', 0)
s'eS
with § ~ P(- | s,a) being the observed sample. Let X; denote the measure space generated by
the set of random vectors {Qq, Q1, ..., Qs Wo, . .., Wi—1,Qg, ..., }. Then, for all (s,0) € S,
a € Aandt > 0, we have
E[wt(S,U, a) ‘ Xt] =0
and
2
S| 10 4 g (VP ) <7 oy {00,000}

Furthermore, using Lemmas [A;f] and @] and the definition of Vi; we can conclude that # is a
contraction w.r.t the £,,-norm and Q* is the unique fixed point of . Therefore, the random sequence
of Q-functions {Q; }+>¢ satisfies all assumptions in Proposition 4.4 of [7] implying that ); — Q*
as t — oo with probability 1. O

B Experimental Details

All experiments were run on a 48-core machine with 512GB of memory and 8 GPUs. In all ap-
proaches (ours and baselines) except for MADDPG, the policy consists of one fully-connected NN
per subtask, each with two hidden layers. MADDPG consists of two policies, one for the agent and
one for the adversary, each with two hidden layers. In the case of MADDPG, the subtask is encoded
in the observation using a one-hot vector. All hyperparameters were computed by grid search over
a small set of values.

Rooms environment. The hidden dimension used is 64 for all approaches except MADDPG for
which we uses 128 dimensional hidden layers. For DAGGER, NAIVE and AROSAC we run SAC with
Adam optimizer (learning rate of o = 0.02), entropy weight 5 = 0.05, Polyac rate 0.005 and batch
size of 100. In each iteration of AROSAC and DAGGER, SAC is run for N = 10000 steps. Similarly,
ROSAC is run with Adam optimizer (learning rates ay, = g = 0.02), entropy weight 3 = 0.05,
Polyac rate 0.005 and batch size of 300. The MADDPG baseline uses a learning rate of 0.0003 and
batch size of 256.
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F1/10th environment. The hidden dimension used is 64 for all approaches. For DAGGER, NAIVE
and AROSAC we run SAC with Adam optimizer (learning rate of o = 0.0003), entropy weight
B = 0.01, Polyac rate 0.005 and batch size of 256. In each iteration of AROSAC and DAGGER,
SAC is run for N = 10000 steps. Similarly, ROSAC is run with Adam optimizer (learning rates
oy = ag = 0.0003), entropy weight 3 = 0.01, Polyac rate 0.005 and batch size of 5 x 256. The
MADDPG baseline uses a learning rate of 0.0003 and batch size of 256.



