
Published as a conference paper at ICLR 2024

FEDCOMPASS: EFFICIENT CROSS-SILO FEDERATED
LEARNING ON HETEROGENEOUS CLIENT DEVICES
USING A COMPUTING POWER-AWARE SCHEDULER

Zilinghan Li1,2,3, Pranshu Chaturvedi1,2,3, Shilan He1,2,3, Han Chen2, Gagandeep Singh2,4,
Volodymyr Kindratenko2,3, E. A. Huerta1,2,5, Kibaek Kim1, Ravi Madduri1
1Argonne National Laboratory, 2University of Illinois at Urbana-Champaign, 3National Center
for Supercomputing Applications, 4VMWare Research, 5The University of Chicago
{zl52, pranshu3, shilanh2, hanc7, ggnds, kindrtnk}@illinois.edu
{elihu, kimk, madduri}@anl.gov

ABSTRACT

Cross-silo federated learning offers a promising solution to collaboratively train
robust and generalized AI models without compromising the privacy of local
datasets, e.g., healthcare, financial, as well as scientific projects that lack a central-
ized data facility. Nonetheless, because of the disparity of computing resources
among different clients (i.e., device heterogeneity), synchronous federated learn-
ing algorithms suffer from degraded efficiency when waiting for straggler clients.
Similarly, asynchronous federated learning algorithms experience degradation in
the convergence rate and final model accuracy on non-identically and indepen-
dently distributed (non-IID) heterogeneous datasets due to stale local models and
client drift. To address these limitations in cross-silo federated learning with
heterogeneous clients and data, we propose FedCompass, an innovative semi-
asynchronous federated learning algorithm with a computing power-aware sched-
uler on the server side, which adaptively assigns varying amounts of training tasks
to different clients using the knowledge of the computing power of individual
clients. FedCompass ensures that multiple locally trained models from clients
are received almost simultaneously as a group for aggregation, effectively reduc-
ing the staleness of local models. At the same time, the overall training pro-
cess remains asynchronous, eliminating prolonged waiting periods from straggler
clients. Using diverse non-IID heterogeneous distributed datasets, we demonstrate
that FedCompass achieves faster convergence and higher accuracy than other
asynchronous algorithms while remaining more efficient than synchronous algo-
rithms when performing federated learning on heterogeneous clients. The source
code for FedCompass is available at https://github.com/APPFL/FedCompass.

1 INTRODUCTION

Federated learning (FL) is a model training approach where multiple clients train a global model
under the orchestration of a central server (Konečnỳ et al., 2016; McMahan et al., 2017; Yang et al.,
2019; Kairouz et al., 2021). In FL, there are m distributed clients solving the optimization problem:
minw∈Rd F (w) =

∑m
i=1 piFi(w), where pi is the importance weight of client i’s local data, and is

usually defined as the relative data sample size, and Fi(w) is the loss on client i’s local data. FL typ-
ically runs two steps iteratively: (i) the server distributes the global model to clients to train it using
their local data, and (ii) the server collects the locally trained models and updates the global model by
aggregating them. Federated Averaging (FedAvg) (McMahan et al., 2017) is the most popular FL
algorithm where each client trains a model using local data for Q local steps in each training round,
after which the server aggregates all local models by performing a weighted averaging and sends the
updated global model back to all clients for the next round of training. By leveraging the training
data from multiple clients without explicitly sharing, FL empowers the training of more robust and
generalized models while preserving the privacy of client data. The data in FL is generally hetero-
geneous, which means that client data is non-identically and independently distributed (non-IID).
FL is most commonly conducted in two settings: cross-device FL and cross-silo FL (Kairouz et al.,
2021). In cross-device FL, numerous mobile or IoT devices participate, but not in every training
round because of reliability issues (Mills et al., 2019). In cross-silo FL, a smaller number of reliable

1

https://github.com/APPFL/FedCompass

Published as a conference paper at ICLR 2024

clients contribute to training in each round, and the clients are often represented by large institutions
in domains such as healthcare or finance, where preserving data privacy is essential (Wang et al.,
2019; Wang, 2019; Kaissis et al., 2021; Pati et al., 2022; Hoang et al., 2023).

The performance of FL suffers from device heterogeneity, where the disparity of computing power
among participating client devices leads to significant variations in local training times. Classical
synchronous FL algorithms such as FedAvg, where the server waits for all client models before
global aggregation, suffer from compute inefficiency as faster clients have to wait for slower clients
(stragglers). Several asynchronous FL algorithms have been developed to immediately update the
global model after receiving one client model to improve computing resource utilization. The prin-
cipal shortcoming in asynchronous FL is that straggler clients may train on outdated global models
and obtain stale local models, which can potentially undermine the performance of the global model.
To deal with stale local models, various solutions have been proposed, including client selection,
weighted aggregation, and tiered FL. Client selection strategies such as FedAR (Imteaj & Amini,
2020) select a subset of clients according to their robustness or computing power. However, these
strategies may not be applicable for cross-silo FL settings, where all clients are expected to partic-
ipate to maintain the robustness of the global model. Algorithms such as FedAsync (Xie et al.,
2019) introduce a staleness factor to penalize the local models trained on outdated global models.
While the staleness factor alleviates the negative impact of stale local models, it may cause the
global model to drift away from the slower clients (client drift) even with minor disparities in client
computing power, resulting in a further decrease in accuracy on non-IID heterogeneous distributed
datasets. Tiered FL methods such as FedAT (Chai et al., 2021) group clients into tiers based on
their computing power, allowing each tier to update at its own pace. Nonetheless, the waiting time
inside each tier can be significant, and it is not resilient to sudden changes in computing power.
In this paper, we focus on improving the performance in cross-silo FL settings. Particularly, we pro-
pose a semi-asynchronous cross-silo FL algorithm, FedCompass, which employs a COMputing
Power-Aware Scheduler (Compass) to reduce client local model staleness and enhance FL effi-
ciency in cross-silo settings. Compass assesses the computing power of individual clients based
on their previous response times and dynamically assigns varying numbers of local training steps
to ensure that a group of clients can complete local training almost simultaneously. Compass is
also designed to be resilient to sudden client computing power changes. This enables the server to
perform global aggregation using the local models from a group of clients without prolonged wait-
ing times, thus improving computing resource utilization. Group aggregation leads to less global
update frequency and reduced local model staleness, thus mitigating client drift and improving the
performance on non-IID heterogeneous data. In addition, the design of FedCompass is orthog-
onal to and compatible with several server-side optimization strategies for further enhancement of
performance on non-IID data. In summary, the main contributions of this paper are as follows:

• A novel semi-asynchronous cross-silo FL algorithm, FedCompass, which employs a re-
silient computing power-aware scheduler to make client updates arrive in groups almost
simultaneously for aggregation, thus reducing client model staleness for enhanced perfor-
mance on non-IID heterogeneous distributed datasets while ensuring computing efficiency.

• A suite of convergence analyses which demonstrate that FedCompass can converge to a
first-order critical point of the global loss function with heterogeneous clients and data, and
offer insights into how the number of local training steps impacts the convergence rate.

• A suite of experiments with heterogeneous clients and datasets which demonstrate that
FedCompass converges faster than synchronous and asynchronous FL algorithms, and
achieves higher accuracy than other asynchronous algorithms by mitigating client drift.

2 RELATED WORK

Device Heterogeneity in Federated Learning. Device heterogeneity occurs when clients have
varying computing power, leading to varied local training times (Li et al., 2020; Xu et al., 2021).
For synchronous FL algorithms that wait for all local models before global aggregation, device het-
erogeneity leads to degraded efficiency due to the waiting time for slower clients, often referred
to as stragglers. Some methods address device heterogeneity by waiting only for some clients and
ignoring the stragglers (Bonawitz et al., 2019). However, this approach disregards the contributions
of straggler clients, resulting in wasted client computing resources and a global model significantly
biased towards faster clients. Other solutions explicitly select the clients that perform updates. Chen
et al. (2021) employs a greedy selection method with a heuristic based on client computing re-

2

Published as a conference paper at ICLR 2024

sources. Hao et al. (2020) defines a priority function according to computing power and model
accuracy to select participating clients. FedAr (Imteaj & Amini, 2020) assigns each client a trust
score based on previous activities. FLNAP (Reisizadeh et al., 2022) starts from faster nodes and
gradually involves slower ones. FedCS (Nishio & Yonetani, 2019) queries client resource informa-
tion for client selection. SAFA (Wu et al., 2020) chooses the clients with lower crash probabilities.
However, these methods may not be suitable for cross-silo FL settings, where the participation of
every client is crucial for maintaining the robustness of the global model and there are stronger
assumptions with regard to the trustworthiness and reliability of clients.
Asynchronous Federated Learning. Asynchronous FL algorithms provide another avenue to mit-
igate the impact of stragglers. In asynchronous FL, the server typically updates the global model
once receiving one or few client models (Xie et al., 2019; Chen et al., 2020) or stores the local mod-
els in a size-K buffer (Nguyen et al., 2022; So et al., 2021), and then immediately sends the global
model back for further local training. Asynchronous FL offers significant advantages in heteroge-
neous client settings by reducing the idle time for each client. However, one of the key challenges
in asynchronous FL is the staleness of local models. In asynchronous FL, global model updates
can occur without waiting for all local models. This flexibility leads to stale local models trained
on outdated global models, which may negatively impact the accuracy of the global model. Var-
ious solutions aimed to mitigate these adverse effects have been proposed. One common strategy
is weighted aggregation, which is prevalent in numerous asynchronous FL algorithms (Xie et al.,
2019; Chen et al., 2019; 2020; Wang et al., 2021; Nguyen et al., 2022). This approach applies a
staleness weight factor to penalize outdated local models during the aggregation. While effective in
reducing the negative impact of stale models, this often causes the global model to drift away from
the local data on slower clients, and the staleness factor could significantly degrade the final model
performance in settings with minor computing disparities among clients. Tiered FL methods offer
another option for improvement. FedAT (Chai et al., 2021) clusters clients into several faster and
slower tiers, allowing each tier to update the global model at its own pace. However, the waiting
time within tiers can be substantial, and it becomes less effective when the client pool is small and
client heterogeneity is large. The tiering may also not get updated timely to become resilient to
speed changes. Similarly, CSAFL (Zhang et al., 2021) groups clients based on gradient direction
and computation time. While this offers some benefits, the fixed grouping can become a liability if
client computing speeds vary significantly over the course of training.

3 PROPOSED METHOD: FEDCOMPASS

The design choices of FedCompass are motivated by the shortcomings of other asynchronous FL
algorithms caused by the potential staleness of client local models. In FedAsync, as the global
model gets updated frequently, the client model is significantly penalized by a staleness weight
factor, leading to theoretically and empirically sub-optimal convergence characteristics, especially
when the disparity in computing power among clients is small. This can cause the global model
to gradually drift away from the data of slow clients and have decreased performance on non-IID
datasets. FedBuff attempts to address this problem by introducing a size-K buffer for client up-
dates to reduce the global update frequency. However, the optimal buffer size varies for different
client numbers and heterogeneity settings and needs to be selected heuristically. It is also possible
that one buffer contains several updates from the same client, or one client may train on the same
global model several times. Inspired by those shortcomings, we aim to group clients for global ag-
gregation to reduce model staleness and avoid repeated aggregation or local training. As cross-silo
FL involves a small number of reliable clients, this enables us to design a scheduler that can pro-
file the computing power of each client. The scheduler then dynamically and automatically creates
groups accordingly by assigning clients with different numbers of local training steps to allow clients
with similar computing power to finish local training in close proximity to each other. The scheduler
tries to strike a balance between the time efficiency of asynchronous algorithms and the objective
consistency of synchronous ones. Additionally, we keep the scheduler operations separated from the
global aggregation, thus making it possible to combine the benefits of aggregation strategies in other
FL algorithms, such as server-side optimizations for improving performance when training data are
non-IID (Hsu et al., 2019; Reddi et al., 2020) and normalized averaging to eliminates objective in-
consistency when clients perform various steps (Wang et al., 2020; Horváth et al., 2022). Further,
from the drawbacks of tiered FL methods such as FedAT, the scheduler is designed to cover mul-
tiple corner cases to ensure its resilience to sudden speed changes, especially those occasional yet
substantial changes that may arise in real-world cross-silo FL as a result of HPC/cloud auto-scaling.

3

Published as a conference paper at ICLR 2024

3.1 COMPASS: COMPUTING POWER-AWARE SCHEDULER

To address the aforementioned desiderata, we introduce Compass, a COMputing Power-Aware
Scheduler that assesses the computing power of individual clients according to their previous re-
sponse times. Compass then dynamically assigns varying numbers of local steps Q within a pre-
defined range [Qmin, Qmax] to different clients in each training round. This approach ensures that
multiple client models are received nearly simultaneously, allowing for a grouped server aggrega-
tion. By incorporating several local models in a single global update and coordinating the timing of
client responses, we effectively reduce the frequency of global model updates. This, in turn, reduces
client model staleness while keeping the client idle time to a minimum during the training process.

Client 1

Client 2

Client 3

Client 4

Client 5

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

∆$02: 00

∆%04: 00

∆&05: 00

∆'08: 00

∆(10: 00

Speed Record

𝑄 = 𝑄!)* = 100

𝓌02: 00

𝑄 = 40

𝓌04: 00

𝑄 = 28

𝓌05: 00

𝑄 = 35

𝓌08: 00

𝑄 = 24

𝓌10: 00
: AGGREGATE + CREATEGROUP

𝑇) = 12: 00
Arrival Group 1

𝑇) = 22: 00
Arrival Group 2

∆$12: 00

∆%12: 00

∆&12: 00

𝑄 = 100

𝓌12: 00

𝑄 = 50

𝓌12: 00

𝑄 = 40

𝓌12: 00

𝑇) = 22: 00
Arrival Group 2

∆$22: 00

∆%22: 00

∆&22: 00

∆'22: 00

∆(22: 00

𝑄!)* = 100

𝓌22: 00

$
% 𝑄!)* = 50

𝓌22: 00

%
(𝑄!)* = 40

𝓌22: 00

$
' 𝑄!)* = 25

𝓌22: 00

$
(𝑄!)* = 20

𝓌22: 00

𝑇) = 32: 00
Arrival Group 3

……

……

……

……

……

FedCompass
Server

FedCompass
Server

FedCompass
Server

𝑄 =
10
< 𝑄

!"
#

: AGGREGATE + JOINGROUP

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 1: Overview of an example FL run using Compass scheduler on five clients with the mini-
mum number of local steps Qmin = 20 and maximum number of local steps Qmax = 100.

Figure 1 illustrates an example run of federated learning using Compass on five clients with dif-
ferent computing power. For the sake of brevity, this illustration focuses on a simple scenario, and
more details are described in Section 3.2. All times in the figure are absolute wall-clock times from
the start of FL. First, all clients are initialized with Qmin = 20 local steps. When client 1 finishes
local training and sends the update ∆1 to the server at time 02:00, Compass records its speed and
creates the first arrival group with the expected arrival time Ta = 12:00, which is computed based
on the client speed and the assigned number of local steps Q = Qmax = 100. We assume negli-
gible communication and aggregation times in this example, so client 1 receives an updated global
model w immediately at 02:00 and begins the next round of training. Upon receiving the update
from client 2, Compass slots it into the first arrival group with Q = 40 local steps, aiming for
a completion time of Ta = 12:00 as well. Client 3 follows suit with 28 steps. When Compass
computes local steps for client 4 in order to finish by Ta = 12:00, it finds that Q = 10 falls below
Qmin = 20. Therefore, Compass creates a new arrival group for client 4 with expected arrival
time Ta = 22:00. Compass optimizes the value of Ta such that the clients in an existing arrival
group may join this newly created group in the future for group merging. After client 5 finishes,
it is assigned to the group created for client 4. When clients 1–3 finish their second round of local
training at 12:00, Compass assigns them to the arrival group of clients 4 and 5 (i.e., arrival group 2)
with the corresponding values of Q so that all the clients are in the same arrival group and expected
to arrive nearly simultaneously for global aggregation in the future. The training then achieves equi-
librium with a fixed number of existing groups and group assignments, and future training rounds
will proceed with certain values of Q for each client in the ideal case. The detailed implementation
and explanation of Compass can be found in Appendix A. We also provide analyses and empirical
results for non-ideal scenarios with client computing powering changes in Appendix G.2, where we
show how the design of Compass makes it resilient when clients experience speedup or slowdown
during the course of training, and compare it with the tiered FL method FedAT (Chai et al., 2021).

3.2 FEDCOMPASS: FEDERATED LEARNING WITH COMPASS

FedCompass is a semi-asynchronous FL algorithm that leverages the Compass scheduler to co-
ordinate the training process. It is semi-asynchronous as the server may need to wait for a group of
clients for global aggregation, but the Compass scheduler minimizes the waiting time by managing
to have clients within the same group finish local training nearly simultaneously, so the overall train-
ing process still remains asynchronous without long client idle times. The function FEDCOMPASS-

4

Published as a conference paper at ICLR 2024

Algorithm 1: FedCompass Algorithm
1 Function FEDCOMPASS-CLIENT(i, w, Q, ηℓ, B):

Input: Client id i, global model w, number of local steps Q, local learning rate ηℓ, batch size B
2 for q ∈ [1, . . . , Q] do
3 Bi,q := random training batch with batch size B;
4 wi,q := wi,q−1 − ηℓ∇fi(wi,q−1,Bi,q) ▷ wi,q is client i’s model after q steps, wi,0 = w;

5 Send ∆i := wi,0 − wi,Q to server;
6

7 Function FEDCOMPASS-SERVER(N , ηℓ, B, w):
Input: Number of comm. rounds N , local learning rate ηℓ, batch size B, initial model weight w

8 FEDCOMPASS-CLIENT(i, w,Qmin, ηℓ, B) for all client i’s;
9 Initialize client info dictionary C, group info dictionary G, and global model timestamp τg := 0;

10 for n ∈ [1, . . . , N] do
11 if receive update ∆i from client i then
12 Record client speed into C[i].S;
13 if client i has an arrival group g then
14 G[g].CL.remove(i), G[g].ACL.add(i) ▷ move client i to arrived client list;
15 if Tnow > G[g].Tmax then
16 ∆ := ∆+ st(τg − C[i].τ) ∗ pi ∗∆i; C[i].τ := τg; ▷ st(·) is staleness factor;
17 ASSIGNGROUP(i) ▷ this computes C[i].Q, details in Alg. 2 from Appendix;
18 FEDCOMPASS-CLIENT (i, w, C[i].Q, ηℓ, B);
19 delete G[g] if len(G[g].CL) = 0;
20 else
21 ∆

g
:= ∆

g
+ st(τg − C[i].τ) ∗ pi ∗∆i ▷ st(·) is staleness factor;

22 if len(G[g].CL = 0) then
23 GROUPAGGREGATE(g) ▷ details in Alg. 3 from Appendix; delete G[g];

24 else
25 w := w − st(τg − C[i].τ) ∗ pi ∗∆i; τg := τg + 1; C[i].τ := τg;
26 ASSIGNGROUP(i) ▷ this computes C[i].Q, details in Alg. 2 from Appendix;
27 FEDCOMPASS-CLIENT (i, w, C[i].Q, ηℓ, B);

CLIENT in Algorithm 1 outlines the client-side algorithm for FedCompass. The client performs Q
local steps using mini-batch stochastic gradient descent and sends the difference between the initial
and final models ∆i as the client update to the server.

The function FEDCOMPASS-SERVER in Algorithm 1 presents the server algorithm for
FedCompass. Initially, in the absence of prior knowledge of clients’ computing speeds, the server
assigns a minimum of Qmin local steps to all clients for a warm-up. Subsequently, client speed
information is gathered and updated each time a client responds with the local update. For each
client’s first response (lines 25 to 28), the server immediately updates the global model using the
client update and assigns it to an arrival group. All clients within the same arrival group are ex-
pected to arrive almost simultaneously at a specified time Ta for the next global group aggregation.
This is achieved by assigning variable local steps based on individual computing speeds. The AS-
SIGNGROUP function first attempts to assign the client to an existing group with local steps within
the range of [Qmin, Qmax]. If none of the existing groups have local step values that can accom-
modate the client, a new group is created for the client with a local step value that facilitates future
group merging opportunities. Further details for this function are elaborated in Appendix A.

After the initial arrivals, each client is expected to adhere to the group-specific arrival time Ta.
Nonetheless, to accommodate client speed fluctuations and potential estimation inaccuracies, a latest
arrival time Tmax per group is designated. If a client arrives prior to Tmax (as per lines 20 to 24),
the server stores the client update in a group-specific buffer ∆

g
, and checks whether this client is

the last within its group to arrive. If so, the server invokes GROUPAGGREGATE to update the global
model with contributions from all clients in the group and assign new training tasks to them with the
latest global model. The details of GROUPAGGREGATE are shown in Algorithm 3 in the Appendix.
If there remain pending clients within the group, the server will wait until the last client arrives or
the latest arrival time Tmax before the group aggregation. Client(s) that arrive after the latest time
Tmax and miss the group aggregation (lines 15 to 19), due to an unforeseen delay or slowdown,
have their updates stored in a general buffer ∆, and the server assigns the client to an arrival group

5

Published as a conference paper at ICLR 2024

immediately using the ASSIGNGROUP function for the next round of local training. The updates in
the general buffer ∆ will be incorporated into the group aggregation of the following arrival group.

4 CONVERGENCE ANALYSIS

We provide the convergence analysis of FedCompass for smooth and non-convex loss functions
Fi(w). We denote by ∇F (w) the gradient of global loss, ∇Fi(w) the gradient of client i’s local loss,
and ∇fi(w,Bi) the gradient of loss on batch Bi. With that, we make the following assumptions.
Assumption 1. Lipschitz smoothness. The loss function of each client i is Lipschitz smooth.
||∇Fi(w)−∇Fi(w

′)|| ≤ L||w − w′||.
Assumption 2. Unbiased client stochastic gradient. EBi

[∇fi(w,Bi))] = ∇Fi(w).
Assumption 3. Bounded gradient, and bounded local and global gradient variance. ||∇Fi(w)||2 ≤
M , EBi

[||∇fi(w,Bi))−∇Fi(w)||2] ≤ σ2
l , and E[||∇Fi(w)−∇F (w)||2] ≤ σ2

g .
Assumption 4. Bounded client heterogeneity and staleness. Suppose that client a is the fastest
client, and client b is the slowest, Ta and Tb are the times per one local step of these two clients,
respectively. We then assume that Tb/Ta ≤ µ. This assumption also implies that the staleness
(τg − C[i].τ) of each client model is also bounded by a number τmax.

Assumptions 1–3 are common assumptions in the convergence analysis of federated or distributed
learning algorithms (Stich, 2018; Li et al., 2019; Yu et al., 2019; Karimireddy et al., 2020; Nguyen
et al., 2022). Assumption 4 indicates that the speed difference among clients is finite and is equiva-
lent to the assumption that all clients are reliable, which is reasonable in cross-silo FL.

Theorem 1. Suppose that ηℓ ≤ 1
2LQmax

, Q = Qmax/Qmin, and µ′ = Q⌊logQ µ⌋. Then, after T

updates for global model w, FedCompass achieves the following convergence rate:

1

T

T−1∑
t=0

E∥∇F (w(t))∥2 ≤ 2γ2F
∗

ηℓQminT
+

2γ2ηℓm
2σ2

l LQ
2
max

γ2
1Qmin

+
6γ2mη2ℓσ

2L2Q3
max

γ1Qmin
(τ2max + 1),

(1)
where m is the number of clients, w(t) is the global model after t global updates, γ1 = 1+m−1

µ′ , γ2 =

1 + µ′(m− 1), F ∗ = F (w(0))− F (w∗), and σ2 = σ2
l + σ2

g +M .

Corollary 1. When Qmin ≤ Qmax/µ and ηℓ = O(1/Qmax

√
T) while satisfying ηℓ ≤ 1

2LQmax
, then

min
t∈[T]

E∥∇F (w(t))∥2 ≤ O
(mF ∗
√
T

)
+O

(mσ2
l L√
T

)
+O

(mτ2maxσ
2L2

T

)
. (2)

The proof is provided in Appendix C. Based on Theorem 1 and Corollary 1, we remark the following
algorithmic characteristics.

Worst-Case Convergence. Corollary 1 provides an upper bound for the expected squared norm of
the gradients of the global loss, which is monotonically decreasing with respect to the total number
of global updates T . This leads to the conclusion that FedCompass converges to a first-order sta-
tionary point in expectation, characterized by a zero gradient, of the smooth and non-convex global
loss function F (w) =

∑m
i=1 piFi(w). Specifically, the first term of equation 2 represents the influ-

ence of model initialization, and the second term accounts for stochastic noise from local updates.
The third term reflects the impact of device heterogeneity (τ2max) and data heterogeneity (σ2) on the
convergence process, which theoretically provides a convergence guarantee for FedCompass on
non-IID heterogeneous distributed datasets and heterogeneous client devices.

Effect of Number of Local Steps. Theorem 1 establishes the requirement ηℓ ≤ 1
2LQmax

, signifying
a trade-off between the maximum number of client local steps Qmax and the client learning rate
ηℓ. A higher Qmax necessitates a smaller ηℓ to ensure the convergence of FL training. The value
of Qmin also presents a trade-off: a smaller Qmin leads to a reduced µ′, causing an increase in γ1
and a decrease in γ2, which ultimately lowers the gradient bound. Appendix B shows that Qmin

also influences the grouping of FedCompass. There are at most ⌈logQ µ⌉ existing groups at the
equilibrium state, so a smaller Qmin results in fewer groups and a smaller τmax. However, since
Qmin appears in the denominator in equation 1, a smaller Qmin could potentially increase the gra-
dient bound. Corollary 1 represents an extreme case where the value of Qmin makes µ′ reach the

6

Published as a conference paper at ICLR 2024

minimum value of 1. We give empirical ablation study results on the effect of the number of local
steps in Section 5.2 and Appendix G.1. The ablation study results show that the performance of
FedCompass is not sensitive to the choice of the ratio Q = Qmax/Qmin, and a wide range of Q
still leads to better performance than other asynchronous FL algorithms such as FedBuff.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. To account for the dataset inherent statistical heterogeneity, we use two types of datasets:
(i) artificially partitioned MNIST (LeCun, 1998) and CIFAR-10 (Krizhevsky et al., 2009) datasets,
and (ii) two naturally split datasets from the cross-silo FL benchmark FLamby (Ogier du Terrail
et al., 2022), Fed-IXI and Fed-ISIC2019. Artificially partitioned datasets are created by dividing
classic datasets into client splits. We introduce class partition and dual Dirichlet partition strate-
gies. The class partition makes each client hold data of only a few classes, and the dual Dirichlet
parition employs Dirichlet distributions to model the class distribution within each client and the
variation in sample sizes across clients. However, these methods might not accurately capture the
intricate data heterogeneity in real federated datasets. Naturally split datasets, on the other hand, are
composed of federated datasets obtained directly from multiple real-world clients, which retain the
authentic characteristics and complexities of the underlying data distribution. The Fed-IXI dataset
takes MRI images as inputs to generate 3D brain masks, and the Fed-ISIC2019 dataset takes der-
moscopy images as inputs and aims to predict the corresponding melanoma classes. The details of
the partition strategies and the FLamby datasets are elaborated in Appendix D.

Client Heterogeneity Simulation. To simulate client heterogeneity, let ti be the average time for
client i to finish one local step, and assume that ti follows a random distribution. We use three
different distributions in the experiments: normal distribution ti ∼ N (µ, σ2) with σ = 0 (i.e.,
homogeneous clients), normal distribution ti ∼ N (µ, σ2) with σ = 0.3µ, and exponential distri-
bution ti ∼ Exp(λ). The client heterogeneity increases accordingly for these three heterogeneity
settings. The mean values of the distributions (µ or 1/λ) for different experiment datasets are given
in Appendix E.1. Additionally, to account for the variance in training time within each client across
different training rounds, we apply another normal distribution t

(k)
i ∼ N (ti, (0.05ti)

2) with smaller
variance. This distribution simulates the local training time per step for client i in the training round
k, considering the variability experienced by the client during different training rounds. The combi-
nation of distributions adequately captures the client heterogeneity in terms of both average training
time among clients and the variability in training time within each client across different rounds.

Training Settings. We employ a convolutional neural network (CNN) for the partitioned MNIST
dataset, and a ResNet-18 (He et al., 2016) for the partitioned CIFAR-10 dataset. For both datasets,
we conduct experiments with m={5, 10, 20} clients and the three client heterogeneity settings above,
using the class partition and dual Dirichlet partition strategies. For datasets Fed-IXI and Fed-
ISIC2019 from FLamby, we use the default experiment settings provided by FLamby. We list the
detailed model architectures and experiment hyperparameters in Appendix E.

5.2 EXPERIMENT RESULTS

Performance Comparison. Table 1 shows the relative wall-clock time for various FL algorithms
to first reach the target validation accuracy on the partitioned MNIST and CIFAR-10 datasets with
different numbers of clients and client heterogeneity settings. Table 2 reports the relative wall-
clock time to reach 0.98 DICE accuracy (Dice, 1945) on the Fed-IXI dataset and 50% balanced
accuracy on the Fed-ISIC2019 dataset in three heterogeneity settings. The numbers are the aver-
age results of ten runs with different random seeds, and the wall-clock time for FedCompass is
used as a baseline. A dash “-” signifies that a certain algorithm cannot reach the target accuracy
in at least half of the experiment runs. The dataset target accuracy is carefully selected based on
each algorithm’s top achievable accuracy during training (given in Appendix F). Among the bench-
marked algorithms, FedAvg (McMahan et al., 2017) is the most commonly used synchronous FL
algorithm, and FedAvgM (Hsu et al., 2019) is a variant of FedAvg using server-side momentum
to address non-IID data. FedAsync (Xie et al., 2019) and FedBuff (Nguyen et al., 2022) are
two popular asynchronous FL algorithms, and FedAT (Chai et al., 2021) is a tiered FL algorithm.
Since the Compass scheduler is separated from global aggregation, making FedCompass com-
patible with server-side optimization strategies, we also benchmark the performance of using server-
side momentum and normalized averaging (Wang et al., 2020) in FedCompass (FedCompass+M

7

Published as a conference paper at ICLR 2024

Table 1: Relative wall-clock time to first reach the target validation accuracy on different datasets
for various FL algorithms with different numbers of clients and client heterogeneity settings.

Client number m = 5 m = 10 m = 20

Dataset Method homo normal exp homo normal exp homo normal exp

FedAvg 1.35× 2.82× 4.32× 1.25× 2.10× 5.01× 1.44× 4.20× 9.03×
FedAvgM 1.27× 2.75× 4.23× 1.50× 2.51× 6.01× 2.20× 5.36× 13.73×
FedAsync 2.15× 2.34× 2.35× - 2.17× 1.32× - 4.44× 1.32×

MNIST-Class FedBuff 1.30× 1.57× 1.81× 1.58× 1.39× 1.43× 1.37× 1.18× 1.39×
Partition (90%) FedAT 1.36× 2.16× 3.07× 1.13× 1.77× 2.46× 0.97× 1.58× 4.32×

FedCompass 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
FedCompass+M 1.10× 1.19× 0.81× 1.18× 0.99× 0.81× 1.10× 1.09× 1.08×
FedCompass+N 0.89× 1.24× 0.94× 1.44× 1.28× 0.92× 0.94× 1.01× 1.09×
FedAvg 0.91× 1.85× 4.90× 1.18× 2.44× 5.68× 1.14× 2.48× 5.94×
FedAvgM 0.91× 1.85× 4.89× 1.22× 2.45× 5.83× 1.21× 2.70× 6.12×
FedAsync 1.78× 1.68× 2.01× - 2.28× 1.29× - - 1.76×

MNIST-Dirichlet FedBuff 1.23× 1.52× 1.86× 1.81× 1.51× 1.49× 2.77× 1.22× 1.40×
Partition (90%) FedAT 1.29× 1.97× 2.08× 1.08× 1.70× 2.44× 1.02× 1.83× 2.83×

FedCompass 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
FedCompass+M 0.72× 0.92× 0.95× 0.93× 0.91× 0.88× 0.87× 1.31× 0.81×
FedCompass+N 0.92× 1.55× 1.26× 0.99× 1.12× 0.95× 0.93× 0.90× 1.08×
FedAvg 1.84× 2.64× 9.40× 3.18× 4.18× 11.51× 3.20× 3.24× 7.13×
FedAvgM 2.57× 3.73× 13.12× 2.19× 2.88× 9.04× 3.13× 3.19× 6.91×
FedAsync - 3.18× 3.07× - - 5.18× - - -

CIFAR10-Class FedBuff 1.68× 2.18× 2.47× - - 2.62× - - 4.62×
Partition (60%) FedAT 1.05× 1.42× 2.33× 1.21× 1.83× 3.21× 1.20× 1.23× 2.21×

FedCompass 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
FedCompass+M 0.82× 0.82× 0.95× 0.89× 0.78× 0.96× 0.78× 0.81× 0.83×
FedCompass+N 0.98× 1.01× 1.18× 0.99× 1.22× 1.49× 1.32× 1.19× 1.16×
FedAvg 2.19× 2.81× 10.86× 4.55× 5.05× 11.47× 5.88× 5.83× 9.05×
FedAvgM 2.17× 2.97× 10.77× 3.77× 4.21× 11.06× 5.19× 5.44× 8.63×
FedAsync - 3.18× 1.70× - - 5.35× - - -

CIFAR10-Dirichlet FedBuff 1.62× 1.99× 1.67× - - 2.42× - - -
Partition (50%) FedAT 1.04× 1.69× 2.90× 1.36× 1.66× 2.30× 1.45× 1.58× 2.21×

FedCompass 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
FedCompass+M 0.82× 0.80× 1.03× 1.07× 0.85× 0.94× 0.86× 0.69× 0.98×
FedCompass+N 1.05× 0.98× 1.65× 0.89× 1.29× 1.45× 0.77× 0.87× 1.23×

Table 2: Relative wall-clock time to first reach the target validation accuracy on the Fed-IXI and
Fed-ISIC2019 datasets for various FL algorithms in different client heterogeneity settings.

Fed-IXI (0.98) Fed-ISIC2019 (50%)

Method homo normal exp homo normal exp

FedAvg 1.18× 1.80× 2.20× 1.35× 2.00× 1.90×
FedAvgM 1.14× 1.83× 2.20× 2.74× 2.74× 4.65×
FedAsync 1.40× 1.31× 1.45× 1.50× 1.75× 1.69×
FedBuff 1.20× 1.25× 1.38× 2.59× 3.76× 1.03×
FedAT 1.07× 1.30× 1.35× 1.08× 1.65× 2.64×
FedCompass 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
FedCompass+M 1.00× 0.98× 1.02× 2.22× 2.02× 2.03×
FedCompass+N 0.98× 0.97× 1.03× 1.04× 0.84× 0.97×

0 100 200 300 400 500 600
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(a) MNIST Dirichlet - Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 100 200 300 400 500 600 700 800
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(b) MNIST Dirichlet - Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 200 400 600 800 1000 1200 1400
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(c) MNIST Dirichlet - Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 500 1000 1500 2000 2500 3000
Time (sec)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

(d) CIFAR10 Class - Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 1000 2000 3000 4000
Time (sec)

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

(e) CIFAR10 Class - Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 2000 4000 6000 8000 10000
Time (sec)

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

(f) CIFAR10 Class - Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 2: Change in validation accuracy and standard deviation for different FL algorithms on the
dual Dirichlet partitioned MNIST dataset and the class partitioned CIFAR-10 dataset with five
clients and three client heterogeneity settings. (Synchronous algorithms take the same amount of
time, and asynchronous algorithms take the same amount of time in the same experiment setting.)

8

Published as a conference paper at ICLR 2024

and FedCompass+N). From the table we obtain the following key observations: (i) The speedup
provided by asynchronous FL algorithms increases as client heterogeneity increases. (ii) FedAT
converges slower as client heterogeneity increases due to non-negligible inner-tier waiting time,
while FedCompass minimizes inner-group waiting time by dynamic local step assignment and
the usage of the latest arrival time. (iii) Similar to synchronous FL where server-side optimizations
can sometimes speed up the convergence, applying server momentum or normalized averaging to
FedCompass in group aggregation can sometimes speed up the convergence as well. This indi-
cates that the design of FedCompass allows it to easily take advantage of other FL strategies. (iv)
Because of client drift and model staleness, FedAsync and FedBuff occasionally fail to achieve
the target accuracy, particularly in settings with minimal client heterogeneity and unnecessary appli-
cation of the staleness factor. On the other hand, FedCompass can quickly converge in all cases,
as Compass dynamically and automatically groups clients for global aggregation, reducing client
model staleness and mitigating the client drift problem. This shows that FedCompass outper-
forms other asynchronous algorithms on heterogeneous non-IID data without any prior knowledge
of clients. Additionally, Figure 2 illustrates the change in validation accuracy during the training for
different FL algorithms on the dual Dirichlet partitioned MNIST dataset (subplots a to c) and the
class partitioned CIFAR-10 dataset (subplots d to f) with five clients and three client heterogene-
ity settings. In the plots, synchronous algorithms take the same amount of time, and asynchronous
algorithms take the same amount of time in the same experiment setting. These plots further illus-
trate how FedCompass converges faster than other algorithms and also achieves higher accuracy
than other asynchronous algorithms. For example, subplots d and e explicitly demonstrate that
FedAsync and FedBuff only converge to much lower accuracy in low-heterogeneity settings,
mainly because of client drift from unnecessary staleness factors. More plots of the training process
and the maximum achievable accuracy for each FL algorithm are given in Appendix F.

Effect of Number of Local Steps. We conduct ablation studies on the values of 1/Q = Qmin/Qmax

to investigate its impact on FedCompass’s performance, with results listed in Table 3. From the
table, we observe that smaller 1/Q values (ranging from 0.05 to 0.2) usually lead to faster conver-
gence speed. Additionally, a wide range of 1/Q (ranging from 0.05 to 0.8) can achieve a reasonable
convergence rate compared with FedBuff or FedAT, which showcases that FedCompass is not
sensitive to the value of Q. Therefore, users do not need to heuristically select Q for different client
numbers and heterogeneity settings. In the extreme case that Q = 1, i.e. Qmin = Qmax, there is a
significant performance drop for FedCompass, as Compass loses the flexibility to assign different
local steps to different clients. Therefore, each client has its own arrival group, and FedCompass
becomes equivalent to FedAsync. More ablation study results are given in Appendix G.1.
Table 3: Relative wall-clock time for FedCompass to first reach the target validation accuracy on
the dual Dirichlet partitioned MNIST/CIFAR10 datasets for various values of 1/Q = Qmin/Qmax.

Client number m = 5 m = 10 m = 20

Dataset 1/Q homo normal exp homo normal exp homo normal exp

0.05 0.89/1.27× 1.01/0.97× 0.85/0.76× 0.96/1.05× 0.97/0.98× 0.82/1.19× 1.00/1.05× 1.02/0.97× 0.96/0.90×
MNIST / 0.10 0.91/1.15× 1.05/1.01× 0.92/0.73× 0.96/0.98× 0.95/1.11× 0.85/1.27× 0.97/1.01× 1.02/1.04× 0.96/1.01×
CIFAR10 0.20 1.00/1.00× 1.00/1.00× 1.00/1.00× 1.00/1.00× 1.00/1.00× 1.00/1.00× 1.00/1.00× 1.00/1.00× 1.00/1.00×
Dirichlet 0.40 1.02/1.28× 1.03/1.06× 1.70/1.36× 1.04/1.02× 1.05/1.06× 1.28/2.19× 1.00/0.96× 1.14/1.14× 1.25/1.08×
Partition 0.60 1.04/1.23× 1.01/0.99× 1.83/1.65× 1.00/0.97× 1.01/1.61× 1.19/2.52× 0.92/1.11× 1.11/1.06× 1.16/1.74×

(90%/50%) 0.80 1.04/1.23× 1.13/1.24× 1.58/1.64× 0.91/1.32× 1.25/1.91× 1.22/3.44× 0.86/1.33× 1.22/2.95× 1.21/1.64×
1.00 1.78×/- 1.68/3.18× 2.01/1.70× -/- 2.28×/- 1.29/5.35× -/- -/- 1.76×/-

FedBuff 1.23/1.62× 1.52/1.99× 1.86/1.67× 1.81×/- 1.51×/- 1.49/2.42× 2.77×/- 1.22×/- 1.40×/-
FedAT 1.29/1.04× 1.97/1.69× 2.08/2.90× 1.08/1.36× 1.70/1.66× 2.44/2.30× 1.02/1.45× 1.83/1.58× 2.83/2.21×

6 CONCLUSION

This paper introduces FedCompass, which employs a novel computing power-aware scheduler
to make several client models arrive almost simultaneously for group aggregation to reduce global
aggregation frequency and mitigate the stale local model issues in asynchronous FL. FedCompass
thus enhances the FL training efficiency with heterogeneous client devices and improves the per-
formance on non-IID heterogeneous distributed datasets. Through a comprehensive suite of experi-
ments, we have demonstrated that FedCompass achieves faster convergence than other prevalent
FL algorithms in various training tasks with heterogeneous training data and clients. This new ap-
proach opens up new pathways for the development and use of robust AI models in settings that
require privacy, with the additional advantage that it can readily leverage the existing disparate com-
puting ecosystem.

9

Published as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

The source code and instructions to reproduce all the experiment results can be found in the sup-
plemental materials. The details of the classic dataset partition strategies are provided in Appendix
D, and the corresponding implementations are included in the source code. The setups and hyper-
parameters used in the experiments are given in Appendix E. Additionally, the proofs of Theorem 1
and Corollary 1 are provided in Appendix C.

ACKNOWLEDGMENTS

This work was supported by Laboratory Directed Research and Development (LDRD) funding from
Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of
Energy under Contract No. DE-AC02-06CH11357. This research is also part of the Delta research
computing project, which is supported by the National Science Foundation (award OCI 2005572),
and the State of Illinois. Delta is a joint effort of the University of Illinois at Urbana-Champaign and
the National Center for Supercomputing Applications. E.A.H. was partially supported by National
Science Foundation awards OAC-1931561 and OAC-2209892.

REFERENCES

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. Towards
federated learning at scale: System design. Proceedings of Machine Learning and Systems, 1:
374–388, 2019.

Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rangwala. FedAT:
A high-performance and communication-efficient federated learning system with asynchronous
tiers. In Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pp. 1–16, 2021.

Yang Chen, Xiaoyan Sun, and Yaochu Jin. Communication-efficient federated deep learning with
layerwise asynchronous model update and temporally weighted aggregation. IEEE transactions
on neural networks and learning systems, 31(10):4229–4238, 2019.

Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. Asynchronous online federated
learning for edge devices with non-iid data. In 2020 IEEE International Conference on Big Data
(Big Data), pp. 15–24. IEEE, 2020.

Zheyi Chen, Weixian Liao, Kun Hua, Chao Lu, and Wei Yu. Towards asynchronous federated learn-
ing for heterogeneous edge-powered internet of things. Digital Communications and Networks, 7
(3):317–326, 2021.

Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3D U-
Net: learning dense volumetric segmentation from sparse annotation. In Medical Image Comput-
ing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens,
Greece, October 17-21, 2016, Proceedings, Part II 19, pp. 424–432. Springer, 2016.

Noel CF Codella, David Gutman, M Emre Celebi, Brian Helba, Michael A Marchetti, Stephen W
Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, et al. Skin lesion anal-
ysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical
imaging (ISBI), hosted by the international skin imaging collaboration (isic). In 2018 IEEE 15th
international symposium on biomedical imaging (ISBI 2018), pp. 168–172. IEEE, 2018.

Marc Combalia, Noel CF Codella, Veronica Rotemberg, Brian Helba, Veronica Vilaplana, Ofer
Reiter, Cristina Carrera, Alicia Barreiro, Allan C Halpern, Susana Puig, et al. Bcn20000: Dermo-
scopic lesions in the wild. arXiv preprint arXiv:1908.02288, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference on Computer Vision and Pattern Recognition,
pp. 248–255. Ieee, 2009.

10

Published as a conference paper at ICLR 2024

Lee R Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):
297–302, 1945.

Jiangshan Hao, Yanchao Zhao, and Jiale Zhang. Time efficient federated learning with semi-
asynchronous communication. In 2020 IEEE 26th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 156–163. IEEE, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Trung-Hieu Hoang, Jordan Fuhrman, Ravi Madduri, Miao Li, Pranshu Chaturvedi, Zilinghan Li,
Kibaek Kim, Minseok Ryu, Ryan Chard, EA Huerta, et al. Enabling end-to-end secure federated
learning in biomedical research on heterogeneous computing environments with appflx. arXiv
preprint arXiv:2312.08701, 2023.

Samuel Horváth, Maziar Sanjabi, Lin Xiao, Peter Richtárik, and Michael Rabbat. Fedshuffle:
Recipes for better use of local work in federated learning. arXiv preprint arXiv:2204.13169,
2022.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Ahmed Imteaj and M Hadi Amini. Fedar: Activity and resource-aware federated learning model
for distributed mobile robots. In 2020 19th IEEE International Conference on Machine Learning
and Applications (ICMLA), pp. 1153–1160. IEEE, 2020.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Georgios Kaissis, Alexander Ziller, Jonathan Passerat-Palmbach, Théo Ryffel, Dmitrii Usynin, An-
drew Trask, Ionésio Lima Jr, Jason Mancuso, Friederike Jungmann, Marc-Matthias Steinborn,
et al. End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nature
Machine Intelligence, 3(6):473–484, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Zilinghan Li, Shilan He, Pranshu Chaturvedi, Trung-Hieu Hoang, Minseok Ryu, EA Huerta,
Volodymyr Kindratenko, Jordan Fuhrman, Maryellen Giger, Ryan Chard, et al. APPFLx:
Providing privacy-preserving cross-silo federated learning as a service. arXiv preprint
arXiv:2308.08786, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

11

Published as a conference paper at ICLR 2024

Xiaodong Ma, Jia Zhu, Zhihao Lin, Shanxuan Chen, and Yangjie Qin. A state-of-the-art survey on
solving non-iid data in federated learning. Future Generation Computer Systems, 135:244–258,
2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Jed Mills, Jia Hu, and Geyong Min. Communication-efficient federated learning for wireless edge
intelligence in IoT. IEEE Internet of Things Journal, 7(7):5986–5994, 2019.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pp. 3581–3607. PMLR, 2022.

Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous
resources in mobile edge. In ICC 2019-2019 IEEE international Conference on Communications
(ICC), pp. 1–7. IEEE, 2019.

Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg, Chaoyang He, Regis
Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum Mushtaq, et al. Flamby:
Datasets and benchmarks for cross-silo federated learning in realistic healthcare settings. Ad-
vances in Neural Information Processing Systems, 35:5315–5334, 2022.

Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-Han Wang, G Anthony Reina,
Patrick Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, et al. Federated learning
enables big data for rare cancer boundary detection. Nature Communications, 13(1):7346, 2022.

Fernando Pérez-Garcı́a, Rachel Sparks, and Sébastien Ourselin. TorchIO: a Python library for effi-
cient loading, preprocessing, augmentation and patch-based sampling of medical images in deep
learning. Computer Methods and Programs in Biomedicine, 208:106236, 2021.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Amirhossein Reisizadeh, Isidoros Tziotis, Hamed Hassani, Aryan Mokhtari, and Ramtin Pedarsani.
Straggler-resilient federated learning: Leveraging the interplay between statistical accuracy and
system heterogeneity. IEEE Journal on Selected Areas in Information Theory, 3(2):197–205,
2022.

Minseok Ryu, Youngdae Kim, Kibaek Kim, and Ravi K Madduri. APPFL: open-source software
framework for privacy-preserving federated learning. In 2022 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 1074–1083. IEEE, 2022.

Jinhyun So, Ramy E Ali, Başak Güler, and A Salman Avestimehr. Secure aggregation for buffered
asynchronous federated learning. arXiv preprint arXiv:2110.02177, 2021.

Sebastian U Stich. Local SGD converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on Machine Learning, pp. 6105–6114. PMLR, 2019.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The HAM10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1):
1–9, 2018.

Guan Wang. Interpret federated learning with shapley values. arXiv preprint arXiv:1905.04519,
2019.

Guan Wang, Charlie Xiaoqian Dang, and Ziye Zhou. Measure contribution of participants in fed-
erated learning. In 2019 IEEE international conference on Big Data (Big Data), pp. 2597–2604.
IEEE, 2019.

12

Published as a conference paper at ICLR 2024

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in Neural Information
Processing Systems, 33:7611–7623, 2020.

Qizhao Wang, Qing Li, Kai Wang, Hong Wang, and Peng Zeng. Efficient federated learning for
fault diagnosis in industrial cloud-edge computing. Computing, 103(10):2319–2337, 2021.

Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen Jarvis. SAFA: A semi-
asynchronous protocol for fast federated learning with low overhead. IEEE Transactions on Com-
puters, 70(5):655–668, 2020.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934, 2019.

Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. Asynchronous federated learning on
heterogeneous devices: A survey. arXiv preprint arXiv:2109.04269, 2021.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted with faster convergence and less com-
munication: Demystifying why model averaging works for deep learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 5693–5700, 2019.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
tional conference on machine learning, pp. 7252–7261. PMLR, 2019.

Yu Zhang, Morning Duan, Duo Liu, Li Li, Ao Ren, Xianzhang Chen, Yujuan Tan, and Chengliang
Wang. CSAFL: A clustered semi-asynchronous federated learning framework. In 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–10. IEEE, 2021.

13

Published as a conference paper at ICLR 2024

A DETAILED IMPLEMENTATION OF FEDCOMPASS

Table 4 lists all frequently used notations and their corresponding explanations in the algorithm
description of FedCompass.

Table 4: Summary of notations used in algorithm description of FedCompass.

Notation Explanation

C client information dictionary
G arrival group information dictionary
G index of the arrival group for a client
Q number of local steps for a client
S estimated computing speed for a client
Tstart start time of current local training round for a client
CL list of non-arrived clients for an arrival group
ACL list of arrived clients for an arrival group
Ta expected arrival time for an arrival group
Tmax latest arrival time for an arrival group
Tnow current time
Qmax maximum number of local steps for clients
Qmin minimum number of local steps for clients
λ latest time factor
ηℓ client learning rate
N total number of communication rounds
B batch size for local training
st(·) staleness function
τ timestamp of the global model that a client trained on
τg timestamp of the global model
pi importance weight of client i
∆i the difference between the original model and the trained model of client i
∆

g
client update buffer for group g

∆ general client update buffer
w global model
wi,q local model of client i after q local steps

Compass utilizes the concept of arrival group to determine which clients are supposed to arrive
together. To manage the client arrival groups, Compass employs two dictionaries: C for client
information and G for arrival group information. Specifically, for client i, C[i].G, C[i].Q, C[i].S,
and C[i].Tstart represent the arrival group, number of local steps, estimated computing speed (time
per step), and start time of current communication round of client i. C[i].τ represents the timestamp
of the global model upon which client i trained (i.e., client local model timestamp). For arrival
group g, G[g].CL, G[g].ACL, G[g].Ta, and G[g].Tmax represent the list of non-arrived and
arrived clients, expected arrival time for clients in the group, and latest arrival time for clients in
the group. According to the client speed estimation, all clients in group g are expected to finish
local training and send the trained local updates back to the server before G[g].Ta, however, to
account for potential errors in speed estimation and variations in computing speed, the group can
wait until the latest arrival time G[g].Tmax for the clients to send their trained models back. The
difference between G[g].Tmax and the group creation time is λ times longer than the difference
between G[g].Ta and the group creation time.

Algorithm 2 presents the process through which Compass assigns a client to an arrival group. The
dictionaries C and G along with the constant parameters Qmax, Qmin, and λ are assumed to be
available implicitly and are not explicitly passed as algorithm inputs. When Compass assigns a
client to a group, it first checks whether it can join an existing arrival group (function JOINGROUP,
lines 5 to 16). For each group, Compass uses the current time, group expected arrival time, and
estimated client speed to calculate a tentative local step number q (line 8). To avoid large disparity in
the number of local steps, Compass uses two parameters Qmax and Qmin to specify a valid range
of local steps. If Compass can find the largest q within the range [Qmin, Qmax], it assigns the client
to the corresponding group. Otherwise, Compass creates a new arrival group for the client. When

14

Published as a conference paper at ICLR 2024

Algorithm 2: ASSIGNGROUP

1 Function ASSIGNGROUP(i): Input: Client id i
2 if JOINGROUP(i) = False then
3 CREATEGROUP(i);
4

5 Function JOINGROUP(i): Input: Client id i
6 Initialization: Gassign, Qassign := −1,−1;
7 for g ∈ G do
8 q := ⌊(G[g].Ta − Tnow)/C[i].S⌋;
9 if q ≥ Qmin and q ≥ Qassign and q ≤ Qmax then

10 Gassign, Qassign := g, q;

11 if Gassign ̸= −1 then
12 C[i].(G,Q, Tstart) := (Gassign, Qassign, Tnow);
13 G[g].CL.add(i);
14 return True;
15 else
16 return False
17

18 Function CREATEGROUP(i): Input: Client id i
19 Initialization: Qassign := −1;
20 for g ∈ G do
21 if Tnow < G[g].Ta then
22 S := speed of the fastest client in group g;
23 Texp := G[g].Ta + S ∗Qmax;
24 Qassign := max(Qassign, ⌊(Texp − Tnow)/C[i].S⌋);

25 if Qassign ≥ 0 and Qassign < Qmin then
26 Qassign := Qmin;
27 else
28 if Qassign < 0 or Qassign > Qmax then
29 Qassign := Qmax;

30 Gnew := a unique id for the new group;
31 G[Gnew].(CL,ACL) := ([i],[]);
32 G[Gnew].Ta := Tnow +Qassign ∗ C[i].S;
33 G[Gnew].Tmax := Tnow +Qassign ∗ C[i].S ∗ λ;
34 C[i].(G,Q, Tstart) := (Gnew, Qassign, Tnow);
35 Add a timer event at G[Gnew].Tmax to invoke GROUPAGGREGATE(Gnew);

Algorithm 3: GROUPAGGREGATE Algorithm
1 Function GROUPAGGREGATE(g):

Input: group index g
2 if g ∈ G then
3 w := w −∆g −∆; ∆ := 0; τg := τg + 1;
4 sort G[g].ACL from fastest client to slowest client;
5 for i ∈ G[g].ACL do
6 C[i].τ := τg;
7 ASSIGNGROUP(i) ;
8 FEDCOMPASS-CLIENT(i, w, C[i].Q, ηℓ, B);

creating this new group, Compass aims to ensure that a specific existing arrival group can join the
newly created group for group merging once all of its clients have arrived, as described in function
CREATEGROUP (lines 18 to 35). To achieve this, Compass first identifies the computing speed S
of the fastest client in group g. It assumes that all clients in the group will arrive at the expected
time G[g].Ta and the fastest client will perform Qmax local steps in the next round. Subsequently,

15

Published as a conference paper at ICLR 2024

Compass utilizes the expected arrival time in the next round (line 23) to determine the appropriate
number of local steps (line 24). It then selects the largest number of local steps while ensuring that
it is within the range [Qmin, Qmax]. In cases where Compass is unable to set the number of local
steps in a way that allows any existing group to be suitable for joining in the next round, it assigns
Qmax to the client upon creating the group. Whenever a new group is created, Compass sets up
a timer event to invoke the GROUPAGGREGATE function (Algorithm 3) to aggregate the group of
client updates after passing the group’s latest arrival time G[g].Tmax. In GROUPAGGREGATE, the
server updates the global model using the group-specific buffer ∆

g
, containing updates from clients

in arrival group g, and the general buffer ∆, containing updates from clients arriving late in other
groups. After the global update, the server updates the global model timestamp and assigns new
training tasks to all arriving clients in group g.

B UPPER BOUND ON THE NUMBER OF GROUPS

If the client speeds do not have large variations for a sufficient number of global updates, then
FedCompass can reach an equilibrium state where the arrival group assignment for clients is
fixed and the total number of existing groups (denoted by #g) is bounded by ⌈logQ µ⌉, where
Q = Qmax/Qmin and µ is the ratio of the time per local step between the slowest client and the
fastest client.

Consider one execution of FedCompass with a list of sorted client local computing times
{T1, T2, · · · , Tm}, where Ti represents the time for client i to complete one local step and Ti ≤ Tj
if i < j. Let G1 = {i | Ti

T1
≤ Qmax

Qmin
} = {1, · · · , g1} be the first group of clients. Then

all the clients i ∈ G1 will be assigned to the same arrival group at the equilibrium state with
Qi = T1

Ti
Qmax ∈ [Qmin, Qmax]. Similarly, if g1 < m, we can get the second group of clients

G2 = {i | Ti

Tg1+1
≤ Qmax

Qmin
} = {g1 + 1, · · · , g2} where the clients in G2 will be assigned to another

arrival group at the equilibrium state. Therefore, the maximum number of existing arrival groups at
the equilibrium state is equal to the smallest integer such that(Qmax

Qmin

)#g

= Q#g ≤ Tm
T1

= µ =⇒ #g ≤ ⌈logQ µ⌉. (3)

Additionally, this implies that the maximum ratio of time for two different clients to finish one
communication round at the equilibrium state is bounded by µ′ = Q⌊logQ µ⌋. First, we can assume
that the maximum ratio of time for two different clients to finish one communication round is the
same as that for two different arrival groups to finish one communication round. In the extreme case
that there are maximum ⌈logQ µ⌉ arrival groups. Then the time ratio between the slowest group and
fastest group is bounded by Q⌈logQ µ⌉−1 = Q⌊logQ µ⌋.

16

Published as a conference paper at ICLR 2024

C FEDCOMPASS CONVERGENCE ANALYSIS

C.1 LIST OF NOTATIONS

Table 5 lists frequently used notations in the convergence analysis of FedCompass.

Table 5: Frequently used notations in the convergence analysis of FedCompass.

Notation Explanation

m total number of clients
ηℓ client local learning rate
L Lipschitz constant
µ ratio of the time per local step between the slowest client and the fastest client
σl bound for local gradient variance
σg bound for global gradient variance
M bound for gradient
Qmin minimum number of client local steps in each training round
Qmax maximum number of client local steps in each training round
Q ratio between Qmax and Qmin, i.e., Qmax/Qmin

Qi,t number of local steps for client i in round t
w(t) global model after t global updates

w
(t−τi,t)
i,q

local model of client i after q local steps, where the original model has
timestamp t− τi,t

Bi,q a random training batch that client i uses in the q-th local step
F (w) global loss for model w
Fi(w) client i’s local loss for model w
fi(w,Bi) loss for model w evaluated on batch Bi from client i
∇F (w) gradient of global loss w.r.t. w
∇Fi(w) gradient of client i’s local loss w.r.t. w
∇fi(w,Bi) gradient of loss evaluated on batch Bi w.r.t. w
St set of arriving clients at timestamp t

∆
(t−τi,t)
i update from client i at timestamp t trained on global model with staleness τi,t

∆
(t) aggregated local updates from clients for updating the global model at

timestamp t

C.2 PROOF OF THEOREM 1

Lemma 1. E
[
∥∇fi(w,Bi)∥2

]
≤ 3(σ2

l + σ2
g +M) for any model w.

Proof of Lemma 1.

E
[
∥∇fi(w,Bi)∥2

]
= E

[
∥∇fi(w,Bi)−∇Fi(w) +∇Fi(w)−∇F (w) +∇F (w)∥2

]
(a)
≤ 3E

[
∥∇fi(w,Bi)−∇Fi(w)∥2 + ∥∇Fi(w)−∇F (w)∥2 + ∥∇F (w)∥2

]
(b)
≤ 3(σ2

l + σ2
g +M),

(4)
where step (a) utilizes Cauchy-Schwarz inequality, and step (b) utilizes Assumption 3.

Lemma 2. When a function F : Rn → R is Lipschitz smooth, then we have

F (w′) ≤ F (w) + ⟨∇F (w), w′ − w⟩+ L

2
∥w′ − w∥2. (5)

Proof of Lemma 2.

17

Published as a conference paper at ICLR 2024

Let wt = w + t(w′ − w) for t ∈ [0, 1]. Then according to the definition of gradient, we have

F (w′) = F (w) +

∫ 1

0

⟨∇F (wt), w
′ − w⟩dt

= F (w) + ⟨∇F (w), w′ − w⟩+
∫ 1

0

⟨∇F (wt)−∇F (w), w′ − w⟩dt

(a)
≤ F (w) + ⟨∇F (w), w′ − w⟩+

∫ 1

0

∥∇F (wt)−∇F (w)∥ · ∥w′ − w∥dt

(b)
≤ F (w) + ⟨∇F (w), w′ − w⟩+ L

∫ 1

0

∥wt − w∥ · ∥w′ − w∥dt

= F (w) + ⟨∇F (w), w′ − w⟩+ L∥w′ − w∥2
∫ 1

0

tdt

= F (w) + ⟨∇F (w), w′ − w⟩+ L

2
∥w′ − w∥2,

(6)

where step (a) utilizes Cauchy-Schwarz inequality ⟨u, v⟩ ≤ |⟨u, v⟩| ≤ ∥u∥ · ∥v∥, and step (b)
utilizes the definition of Lipschitz smoothness.

Proof of Theorem 1.

According to Lemma 2, we have

F (w(t+1)) ≤ F (w(t)) + ⟨∇F (w(t)), w(t+1) − w(t)⟩+ L

2
∥w(t+1) − w(t)∥2

≤ F (w(t))− ⟨∇F (w(t)),∆
(t)⟩+ L

2
∥∆(t)∥2

= F (w(t))− 1

m

∑
k∈St

⟨∇F (w(t)),∆
(t−τk,t)
k ⟩︸ ︷︷ ︸

P1

+
L

2m2

∥∥∥ ∑
k∈St

∆
(t−τk,t)
k

∥∥∥2︸ ︷︷ ︸
P2

,

(7)

where St represents the set of clients arrived at timestamp t, and ∆
(t−τk,t)
k represents the update

from client k trained on the global model with staleness τk,t. Rearranging part P1,

P1 = − 1

m

∑
k∈St

⟨∇F (w(t)),∆
(t−τk,t)
k ⟩ = −ηℓ

m

∑
k∈St

〈
∇F (w(t)),

Qk,t−1∑
q=0

∇fk(w
(t−τk,t)
k,q ,Bk,q)

〉
,

(8)
where Qk,t represents the number of local steps client k has taken before sending the update to the
server at timestamp t, w(t−τk,t)

k,q represents the model of client k in local step q, and Bk,q represents
a random training batch that the client k uses in local step q. To compute an upper bound for the ex-
pectation of part P1, we utilize conditional expectation: E[P1] = EHE{i}∼[m]|HEBi|{i}∼[m],H[P1].
Specifically, EH is the expectation over the history H of iterates up to timestamp t, E{i}∼[m]|H is
the expectation over the random group of clients arriving at timestamp t, and EBi|{i}∼[m],H is the
expectation over the mini-batch stochastic gradient on client i.

18

Published as a conference paper at ICLR 2024

E[P1] =− ηℓ
m
E
[∑
k∈St

〈
∇F (w(t)),

Qk,t−1∑
q=0

∇fk(w
(t−τk,t)
k,q ,Bk,q)

〉]
(a)
=− ηℓ

m
E
[∑
k∈St

Qk,t−1∑
q=0

〈
∇F (w(t)),∇Fk(w

(t−τk,t)
k,q)

〉]
,

(b)
= − ηℓ

2m
E
[∑
k∈St

Qk,t−1∑
q=0

(
∥∇F (w(t))∥2 − ∥∇F (w(t))−∇Fk(w

(t−τk,t)
k,q)∥2

)]

− ηℓ
2m

E
[∑
k∈St

Qk,t−1∑
q=0

∥∇Fk(w
(t−τk,t)
k,q)∥2

]
(c)
=− ηℓ

2m
EH

[m∑
i=1

πi

Qi,t−1∑
q=0

(
∥∇F (w(t))∥2 − ∥∇F (w(t))−∇Fi(w

(t−τi,t)
i,q)∥2

)]

− ηℓ
2m

E
[∑
k∈St

Qk,t−1∑
q=0

∥∇Fk(w
(t−τk,t)
k,q)∥2

]

=− ηℓP
2m

EH

[m∑
i=1

π′
i

Qi,t−1∑
q=0

∥∇F (w(t))∥2
]

+
ηℓP
2m

EH

[m∑
i=1

π′
i

Qi,t−1∑
q=0

∥∇F (w(t))−∇Fi(w
(t−τi,t)
i,q)∥2

]

− ηℓ
2m

E
[∑
k∈St

Qk,t−1∑
q=0

∥∇Fk(w
(t−τk,t)
k,q)∥2

]

≤− ηℓ
2m

EH

[m∑
i=1

π′
i

Qi,t−1∑
q=0

∥∇F (w(t))∥2
]

+
ηℓ
2
EH

[m∑
i=1

π′
i

Qi,t−1∑
q=0

∥∇F (w(t))−∇Fi(w
(t−τi,t)
i,q)∥2

]

− ηℓ
2m

E
[∑
k∈St

Qk,t−1∑
q=0

∥∇Fk(w
(t−τk,t)
k,q)∥2

]
,

(9)

where step (a) utilizes Assumption 2, step (b) utilizes the identity ⟨u, v⟩ = 1
2 (∥u∥

2 + ∥v∥2 − ∥u−
v∥2), and step (c) utilizes conditional expectation with the probability πi of client i to arrive at

timestamp t. We let P =
m∑
i=1

πi ∈ [1,m] and π′
i := πi/P such that

m∑
i=1

π′
i = 1.

To derive the upper and lower bounds of π′
i, according to the conclusion we get in Appendix B, we

have π′
max/π

′
min ≤ Q⌊logQ µ⌋ = µ′, i.e., π′

min ≥ 1
µ′π

′
max. Therefore, we can derive the upper and

lower bounds of π′
i as follows.

1 =

m∑
i=1

π′
i ≥ π′

max + (m− 1)π′
min ≥ π′

max +
m− 1

µ′ π′
max

π′
max ≤ 1

1 + m−1
µ′

(10)

19

Published as a conference paper at ICLR 2024

1 =

m∑
i=1

π′
i ≤ π′

min + (m− 1)π′
max ≤ π′

min + µ′(m− 1)π′
min

π′
min ≥ 1

1 + µ′(m− 1)

(11)

Let γ1 = 1 + m−1
µ′ and γ2 = 1 + µ′(m− 1). We have π′

i ∈ [1
γ2
, 1
γ1
]. Then,

E[P1] ≤− ηℓQmin

2γ2
E
[
∥∇F (w(t))∥2

]
− ηℓ

2m
E
[∑
k∈St

Qk,t−1∑
q=0

∥∇Fk(w
(t−τk,t)
k,q)∥2

]

+
ηℓ
2γ1

EH

[m∑
i=1

Qmax−1∑
q=0

∥∇F (w(t))−∇Fi(w
(t−τi,t)
i,q)∥2

]
︸ ︷︷ ︸

P3

.
(12)

For part P3, by utilizing Assumption 1, we can get

P3 =
ηℓ
2γ1

EH

[m∑
i=1

Qmax−1∑
q=0

∥∇F (w(t))−∇Fi(w
(t−τi,t)
i,q)∥2

]

≤ ηℓ
γ1

EH

[m∑
i=1

Qmax−1∑
q=0

(
∥∇Fi(w

(t))−∇Fi(w
(t−τi,t))∥2 + ∥∇Fi(w

(t−τi,t))−∇Fi(w
(t−τi,t)
i,q)∥2

)]

≤ ηℓL
2

γ1
EH

[m∑
i=1

Qmax−1∑
q=0

(
∥w(t) − w(t−τi,t)∥2 + ∥w(t−τi,t) − w

(t−τi,t)
i,q ∥2

)]
.

(13)

For ∥w(t) − w(t−τi,t)∥2, we derive its upper bound in the following way, with step (a) utilizing
Cauchy-Schwarz inequality and step (b) utilizing Lemma 1.

∥w(t) − w(t−τi,t)∥2 =

∥∥∥∥∥
t∑

ρ=t−τi,t

(w(ρ+1) − w(ρ))

∥∥∥∥∥
2

=

∥∥∥∥∥
t∑

ρ=t−τi,t

1

m

∑
k∈Sρ

∆
(ρ−τk,ρ)
k

∥∥∥∥∥
2

=
η2ℓ
m2

∥∥∥∥∥
t∑

ρ=t−τi,t

∑
k∈Sρ

Qk,ρ−1∑
q=0

∇fk(w
(ρ−τk,ρ)
k,q ,Bk,q)

∥∥∥∥∥
2

(a)
≤ η2ℓ τmaxQmax

m

t∑
ρ=t−τi,t

∑
k∈Sρ

Qk,ρ−1∑
q=0

∥∥∥∇fk(w
(ρ−τk,ρ)
k,q ,Bk,q)

∥∥∥2
(b)
≤ 3η2ℓ τ

2
maxQ

2
max(σ

2
l + σ2

g +M)

(14)

For ∥w(t−τi,t) − w
(t−τi,t)
i,q ∥2, we derive its upper bound also using Lemma 1.

∥w(t−τi,t) − w
(t−τi,t)
i,q ∥2 = η2ℓ

∥∥∥ q−1∑
e=0

∇fi(w
(t−τi,t)
i,e ,Bi,e)

∥∥∥2 ≤ 3η2ℓQ
2
max(σ

2
l + σ2

g +M) (15)

Combining equation 14 and equation 15, we can obtain the upper bound of P3:

P3 ≤ 3mL2η3ℓQ
3
max

γ1
(τ2max + 1)(σ2

l + σ2
g +M). (16)

20

Published as a conference paper at ICLR 2024

Putting the upper bound of P3 (equation 16) into equation 12, we can get:

E[P1] ≤− ηℓQmin

2γ2
E
[
∥∇F (w(t))∥2

]
− ηℓ
2m

E
[∑
k∈St

Qk,t−1∑
q=0

∥∇Fk(w
(t−τk,t)
k,q)∥2

]
︸ ︷︷ ︸

P4

+
3mL2η3ℓQ

3
max

γ1
(τ2max + 1)(σ2

l + σ2
g +M).

(17)

To compute the upper bound for the expectation of part P2, similar to P1, we also apply conditional
expectation: E[P2] = EHE{i}∼[m]|H[P2].

E[P2] =
L

2m2
E

[∥∥∥ ∑
k∈St

∆
(t−τk,t)
k

∥∥∥2] =
η2ℓL

2m2
E

[∥∥∥ ∑
k∈St

Qk,t−1∑
q=0

∇fk(w
(t−τk,t)
k,q ,Bk,q)

∥∥∥2]

=
η2ℓL

2m2
E

[∥∥∥ ∑
k∈St

Qk,t−1∑
q=0

(
∇fk(w

(t−τk,t)
k,q ,Bk,q)−∇Fk(w

(t−τk,t)
k,q)

)
+

∑
k∈St

Qk,t−1∑
q=0

∇Fk(w
(t−τk,t)
k,q)

∥∥∥2]
(a)
≤ η2ℓL

m2
EH

[∥∥∥ m∑
i=1

πi

Qi,t−1∑
q=0

(
∇fi(w

(t−τi,t)
i,q ,Bi,q)−∇Fi(w

(t−τi,t)
i,q)

)∥∥∥2]

+
η2ℓL

m2
E

[∥∥∥ ∑
k∈St

Qk,t−1∑
q=0

∇Fk(w
(t−τk,t)
k,q)

∥∥∥2]

=
η2ℓLP2

m2
EH

[∥∥∥ m∑
i=1

π′
i

Qi,t−1∑
q=0

(
∇fi(w

(t−τi,t)
i,q ,Bi,q)−∇Fi(w

(t−τi,t)
i,q)

)∥∥∥2]

+
η2ℓL

m2
E

[∥∥∥ ∑
k∈St

Qk,t−1∑
q=0

∇Fk(w
(t−τk,t)
k,q)

∥∥∥2]

≤ η2ℓL

γ2
1

EH

[∥∥∥ m∑
i=1

Qi,t−1∑
q=0

(
∇fi(w

(t−τi,t)
i,q ,Bi,q)−∇Fi(w

(t−τi,t)
i,q)

)∥∥∥2]

+
η2ℓL

m2
E

[∥∥∥ ∑
k∈St

Qk,t−1∑
q=0

∇Fk(w
(t−τk,t)
k,q)

∥∥∥2]
(b)
≤ mη2ℓLQmax

γ2
1

m∑
i=1

Qmax−1∑
q=0

E
[∥∥∥∇fi(w

(t−τi,t)
i,q ,Bi,q)−∇Fi(w

(t−τi,t)
i,q)

∥∥∥2]

+
η2ℓL

m2
E

[∥∥∥ ∑
k∈St

Qk,t−1∑
q=0

∇Fk(w
(t−τk,t)
k,q)

∥∥∥2]
(c)
≤ m2η2ℓσ

2
l LQ

2
max

γ2
1

+
η2ℓL

m2
E

[∥∥∥ ∑
k∈St

Qk,t−1∑
q=0

∇Fk(w
(t−τk,t)
k,q)

∥∥∥2]︸ ︷︷ ︸
P5

,

(18)
where step (a) utilizes conditional expectation and Cauchy-Schwarz inequality, step (b) utilizes
Cauchy-Schwarz inequality, and step (c) utilizes Assumption 3.

To find the upper bound of E[P1 + P2], we need to make sure that P4 + P5 ≤ 0 so that we can
eliminate these two parts when evaluating the upper bound. The following step (a) employs Cauchy-

21

Published as a conference paper at ICLR 2024

Schwarz inequality.

P4 + P5 =− ηℓ
2m

E
[∑
k∈St

Qk,t−1∑
q=0

∥∇Fk(w
(t−τk,t)
k,q)∥2

]
+

η2ℓL

m2
E

[∥∥∥ ∑
k∈St

Qk,t−1∑
q=0

∇Fk(w
(t−τk,t)
k,q)

∥∥∥2]
(a)
≤− ηℓ

2m
E
[∑
k∈St

Qk,t−1∑
q=0

∥∇Fk(w
(t−τk,t)
k,q)∥2

]
+

η2ℓLQmax

m
E

[∑
k∈St

Qk,t−1∑
q=0

∥∥∥∇Fk(w
(t−τk,t)
k,q)

∥∥∥2]

= (
η2ℓLQmax

m
− ηℓ

2m
)E

[∑
k∈St

Qk,t−1∑
q=0

∥∇Fk(w
(t−τk,t)
k,q)∥2

]
≤ 0

(19)
Therefore, we need to have ηℓ ≤ 1

2LQmax
. In such cases, combining equation 17 and equation 18,

we have

E[F (w(t+1))] ≤ E[F (w(t))]− ηℓQmin

2γ2
E
[
∥∇F (w(t))∥2

]
+

m2η2ℓσ
2
l LQ

2
max

γ2
1

+
3mL2η3ℓQ

3
max

γ1
(τ2max + 1)(σ2

l + σ2
g +M).

(20)

Summing up t from 0 to T − 1, we can get

ηℓQmin

2γ2

T−1∑
t=0

E
[
∥∇F (w(t))∥2

]
≤

T−1∑
t=0

(
E[F (w(t))]− E[F (w(t+1))]

)
+

m2η2ℓσ
2
l LQ

2
maxT

γ2
1

+
3mL2η3ℓQ

3
maxT

γ1
(τ2max + 1)(σ2

l + σ2
g +M)

≤
(
F (w(0))− F (w∗)

)
+

m2η2ℓσ
2
l LQ

2
maxT

γ2
1

+
3mL2η3ℓQ

3
maxT

γ1
(τ2max + 1)(σ2

l + σ2
g +M).

(21)

Therefore, we obtain the conclusion in Theorem 1.

1

T

T−1∑
t=0

E
[
∥∇F (w(t))∥2

]
≤
2γ2

(
F (w(0))− F (w∗)

)
ηℓQminT

+
2γ2ηℓm

2σ2
l LQ

2
max

γ2
1Qmin

+
6γ2mη2ℓL

2Q3
max

γ1Qmin
(τ2max + 1)(σ2

l + σ2
g +M)

(22)

Proof of Corollary 1.

When Qmin ≤ Qmax/µ, then µ ≤ Qmax/Qmin = Q. Therefore,

µ′ = Q⌊logQ µ⌋ = Q0 = 1. (23)

Consequently, γ1 = 1 + m−1
µ′ = m, γ2 = 1 + µ′(m − 1) = m. Letting F ∗ = F (w(0)) − F (w∗)

and σ2 = σ2
l + σ2

g +M , equation 22 can be written as

1

T

T−1∑
t=0

E
[
∥∇F (w(t))∥2

]
≤ 2mF ∗

ηℓQminT
+

2ηℓmσ2
l LQ

2
max

Qmin
+

6mη2ℓσ
2L2Q3

max

Qmin
(τ2max + 1). (24)

If choosing ηℓ = O(1/Qmax

√
T) and considering Qmax and Qmin having the same order in the

O-class estimation, we can derive the conclusion of Corollary 1.

min
t∈[T]

E∥∇F (w(t))∥2 ≤ 1

T

T−1∑
t=0

E
[
∥∇F (w(t))∥2

]
≤O

(mF ∗
√
T

)
+O

(mσ2
l L√
T

)
+O

(mτ2maxσ
2L2

T

)
(25)

22

Published as a conference paper at ICLR 2024

D DETAILS OF THE EXPERIMENT DATASETS

D.1 CLASSIC DATASET PARTITION STRATEGY

To simulate data heterogeneity on the classic datasets, we employ two partition strategies: (i) class
partition and (ii) dual Dirichlet partition, and apply them to both the MNIST (LeCun, 1998) and
CIFAR-10 (Krizhevsky et al., 2009) datasets. These two datasets are the two most commonly used
datasets in evaluating FL algorithms (MNIST is used in 32% cases and CIFAR-10 is used in 28%
cases) (Ma et al., 2022). The details of these two partition strategies are elaborated in the following
subsections.

D.1.1 CLASS PARTITION

Algorithm 4: CLASSPARTITION

Data: Classic dataset D, sample indices for different classes class indices, number of clients
m, total number of distinct classes n, minimum and maximum number of sample classes
for each client split nmin and nmax, mean value of the normal distribution µ, standard
deviation of the normal distribution σ.

1 client datasets := {i : [] for i ∈ [1,m]} ▷ Return value: local datasets for each client;
2 repeat
3 class partition := {} ▷ For a certain class, which client(s) have samples of that class in

its own client split;
4 for i ∈ [1,m] do
5 ni := randint(nmin, nmax);
6 classesi := randpermutation(n)[:ni];
7 for c ∈ classesi do
8 class partition[c] := [i] if c /∈ class partition else class partition[c].add(i);

9 until len(class partition) = n;
10 for c ∈ class partition do
11 ns := normal(mean=µ,std=σ,size=len(class partition[c]));
12 ns := (ns/sum(ns)) ∗ len(class indices[c]) ▷ Number of samples with class c for

each assigned client;
13 for num, i ∈ zip(ns, class partition[c]) do
14 Add num samples of D with distinct indices from classes indices[c] to

client datasets[i];

15 return client datasets;

Algorithm 4 outlines the process of class partition, which partitions a classic dataset into several
client splits such that each client split has samples from only a few classes. Many previous re-
search works partition the classical dataset in a similar way to artificially create non-IID federated
datasets (McMahan et al., 2017; Chen et al., 2019). To partition a dataset D, we first obtain a
dictionary class indices that contains the indices of samples belonging to each class. Namely,
class indices[c] represents the indices of all samples in D with class c. Lines 2 to 9 of the
algorithm assign each client i with ni classes for its own client split, where ni ∈ [nmin, nmax].
Additionally, the algorithm ensures that each sample class is assigned to at least one client split.
Subsequently, from lines 10 to 14, the algorithm determines the number of samples of class c that
each assigned client split should have based on a normal distribution, and then assigns the corre-
sponding number of data samples to the respective clients. The class partition strategy results in
imbalanced and non-IID FL datasets, with clients having varying sample classes within their local
datasets.

In the experiments, the mean value of the normal distribution µ = 10, and the standard deviation
σ = 3. Both the MNIST and the CIFAR-10 datasets have 10 distinct classes, namely, n = 10.
When the number of clients m = 5, nmin = 5 and nmax = 6, when m = 10 or 20, nmin = 3
and nmax = 5. Figure 3 shows a sample class distribution generated by the class partition strategy
among m = 10 clients with nmin = 3, nmax = 5, and n = 10.

23

Published as a conference paper at ICLR 2024

Figure 3: Sample class distribution generated by the class partition strategy among ten clients.

D.1.2 DUAL DIRICHLET PARTITION

Algorithm 5: DUALDIRICHLETPARTITION

Data: Classic dataset D, sample indices for different classes class indices, number of clients
m, total number of distinct classes n, two concentration parameters α1 and α2 for
Dirichlet distributions.

1 client datasets := {i : [] for i ∈ [1,m]} ▷ Return value: local datasets for each client;
2 p1 := [1/m for i ∈ [1,m]] ▷ Prior distribution for the number of samples for each client;
3 p2 := [len(class indices[c]) for c ∈ class indices];
4 p2 := [p/sum(p2) for p ∈ p2] ▷ Prior distribution for the number of samples for each class;
5 α1 := α1 ∗ p1;
6 α2 := α2 ∗ p2;
7 client wts := dirichlet(α1) ▷ Normalized number of samples for each client, shape is

Rm, sum is 1;
8 class wts := dirichlet(α2,size=m) ▷ Normalized number of samples for each class

within each client, shape is Rm×n, row sum is 1;
9 for i ∈ [1,m] do

10 for c ∈ [1, n] do
11 num :=

client wts[i]∗class wts[i][c]∗len(class indices[c])/⟨client wts, class wts[:, c]⟩;
12 Add num samples of D with distinct indices from classes indices[c] to

client datasets[i];

13 return client datasets;

Some prior works that model data heterogeneity also employ a Dirichlet distribution to model the
class distribution within each local client dataset (Yurochkin et al., 2019; Hsu et al., 2019). We ex-
tend the work of others using two Dirichlet distributions, with details outlined in Algorithm 5. The
first Dirichlet distribution uses concentration parameter α1 and prior distribution p1 to generate the
normalized number of samples for each client, client wts ∈ Rm. The second Dirichlet distribution
uses concentration parameter α2 and prior distribution p2 to generate the normalized number of
samples for each class within each client, class wts ∈ Rm×n. From lines 9 to 12, the algorithm
combines client wts, class wts, and the total number of samples for class c to calculate the num-
ber of samples with class c to be assigned for each client, and assigns the samples accordingly. In
summary, the dual Dirichlet partition strategy employs two Dirichlet distributions to model two lev-
els of data heterogeneity: the distribution across clients and the distribution across different classes
within each client. Therefore, the generated client datasets are imbalanced and non-IID, which more
accurately reflect real-world federated datasets.

In the experiments, we set α1 = m and α2 = 0.5. The concentration parameter α governs the
similarity among clients or classes. When α → ∞, the distribution becomes identical to the prior
distribution. Conversely, when α → 0, only one item is selected with a value of 1 while the remain-
ing items have a value of 0. Since concentration parameter α2 has a very small value, each client has
data samples from only a few classes. Figure 4 illustrates a sample class distribution generated by
the dual Dirichlet partition strategy among m = 10 clients, where n = 10, α1 = 10, and α2 = 0.5.

D.2 NATURALLY SPLIT DATASETS: FLAMBY

FLamby is an open-source suite that provides naturally split datasets specifically designed for
benchmarking cross-silo federated learning algorithms (Ogier du Terrail et al., 2022). These
datasets are sourced directly from distributed real-world entities, ensuring that they preserve the

24

Published as a conference paper at ICLR 2024

Figure 4: Sample class distribution generated by the dual Dirichlet partition strategy among ten
clients.

authentic characteristics and complexities of data distribution in FL. In our study, we selected two
medium-sized datasets from FLamby – Fed-IXI, and Fed-ISIC2019 – to evaluate the performance
of FedCompass and other FL algorithms in the experiments. The two datasets offer valuable per-
spectives into two healthcare domains, brain MRI interpretation (Fed-IXI), and skin cancer detection
(Fed-ISIC2019). By leveraging these datasets, our goal is to showcase the robustness and versatility
of FedCompass across diverse machine learning tasks in real-world scenarios. Table 6 provides
the overview of the two selected datasets in FLamby. Detailed descriptions of these datasets are
provided in the following subsections.

Table 6: Overview of the two selected datasets in FLamby.

Dataset Fed-IXI Fed-ISIC2019
Inputs T1 weighted image (T1WI) Dermoscopy
Task type 3D segmentation Classification
Prediction Brain mask Melanoma class
Client number 3 6
Model 3D U-net(Çiçek et al., 2016) EfficientNet(Tan & Le, 2019)
Metric DICE (Dice, 1945) Balanced accuracy
Input dimension 48 × 60 × 48 200 × 200 × 3
Dataset size 444MB 9GB

D.2.1 FED-IXI

The Fed-IXI dataset is sourced from the Information eXtraction from Images (IXI) database and in-
cludes brain T1 magnetic resonance images (MRIs) from three hospitals (Pérez-Garcı́a et al., 2021).
These MRIs have been repurposed for a brain segmentation task; the model performance is evalu-
ated with the DICE score (Dice, 1945). To ensure consistency, the images undergo preprocessing
steps, such as volume resizing to 48 × 60 × 48 voxels, and sample-wise intensity normalization. The
3D U-net (Çiçek et al., 2016) serves as the baseline model for this task.

D.2.2 FED-ISIC2019

The Fed-ISIC2019 dataset is sourced from the ISIC2019 dataset, which includes dermoscopy im-
ages collected from four hospitals (Tschandl et al., 2018; Codella et al., 2018; Combalia et al., 2019).
The images are restricted to a subset from the public train set and are split based on the imaging ac-
quisition system, resulting in a 6-client federated dataset. The task involves image classification
among eight different melanoma classes, and the performance is measured through balanced accu-
racy. Images are preprocessed by resizing and normalizing brightness and contrast. The baseline
classification model is an EfficientNet (Tan & Le, 2019) pretrained on ImageNet (Deng et al., 2009).

E EXPERIMENT SETUP DETAILS

All the experiments are implemented using the open-source software framework for privacy-
preserving federated learning (Ryu et al., 2022; Li et al., 2023).

E.1 DETAILS OF CLIENT HETEROGENEITY SIMULATION

When simulating the client heterogeneity, we consider the average time ti required for client i to
complete one local step. We assume that ti follows a random distribution P , namely, ti ∼ P (t). In

25

Published as a conference paper at ICLR 2024

our experiments, we employ three different distributions to simulate client heterogeneity: the normal
distribution ti ∼ N (µ, σ2) with σ = 0 (i.e., homogeneous clients), the normal distribution ti ∼
N (µ, σ2) with σ = 0.3µ, and the exponential distribution ti ∼ Exp(λ). The exponential distribution
models the amount of time until a certain event occurs (arrival time), specifically events that follow
a Poisson process. The mean values of the distribution (µ or 1/λ) are adjusted for different datasets
according to the size of the model and training data. Table 7 presents the mean values of the client
training time distribution for different datasets used in the experiments. Furthermore, Figure 5
illustrates the distribution of the training time to complete one local step among 50 clients under
normal distribution with σ = 0.3µ and exponential distribution, both with a mean value of 0.15.

Table 7: Mean values of the training time distribution for different datasets.

Dataset Name Batch Size Mean (µ or 1/λ)

MNIST 64 0.15s
CIFAR-10 128 0.5s
Fed-IXI 2 0.8s
Fed-ISIC2019 64 1.5s

0.075 0.100 0.125 0.150 0.175 0.200 0.225
Average time to finish one client local update

(a) Normal Distribution with Mean=0.15

0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Average time to finish one client local update

(b) Exponential Distribution with Mean=0.15

0

2

4

6

8

10

12
Fr

eq
ue

nc
y

Figure 5: Sample distribution of the training time to complete one local step among 50 clients under
(a) normal distribution with σ = 0.3µ and (b) exponential distribution.

E.2 DETAILED SETUPS AND HYPERPARAMETERS FOR EXPERIMENTS ON THE MNIST
DATASET

Table 8 shows the detailed architecture of the convolutional neural network (CNN) used for the
experiments on the MNIST dataset. Table 9 provides a comprehensive list of the hyperparameter
values used for training. Specifically, Q is the number of client local steps for each training round,
Qmin and Qmax are the minimum and maximum numbers of client local steps in FedCompass,
ηℓ is the client local learning rate, β is the server-side momentum, and B is the batch size. For all
asynchronous FL algorithms, we adopt the polynomial staleness function introduced in (Xie et al.,
2019), denoted as st(t − τ) = α(t − τ + 1)−a. The values of α and a are also listed in Table
9 for all asynchronous algorithms. Additionally, K is the buffer size for the FedBuff algorithm,
υ is the speed ratio factor for creating tiers for clients (clients with speed ratio within υ are tiered
together and its value is selected via grid search), and λ is the latest time factor for FedCompass.
For hyperparameters given as length-three tuples, the tuple items correspond to the hyperparameter
values when the number of clients is 5, 10, and 20, respectively. For hyperparameters that are not
applicable to certain algorithms, the corresponding value is marked as a dash “-”. To ensure a fair
comparison, similar algorithms are assigned the same hyperparameter values, as depicted in the
table. The number of global training rounds is chosen separately for different experiment settings
and FL algorithms such that the corresponding FL algorithm converges, synchronous FL algorithms
take the same amount of wall-clock time, and asynchronous algorithms take the same amount of
wall-clock time in the same setting. It is also worth mentioning that the buffer size K for the
FedBuff algorithm (Nguyen et al., 2022) is selected from a search of multiple possible values.
Though the original paper states that K = 10 is a good setting across all their benchmarks and does
not require tuning, the value does not apply in the cross-silo cases where there are less than or equal

26

Published as a conference paper at ICLR 2024

to ten clients in most experiment settings, while all the experiments in the original paper have more
than thousands of clients.

Table 8: MNIST CNN model architecture.

Layer Outsize Setting Parama #

Input (1, 28, 28) - 0
Conv1 (32, 24, 24) kernel=5, stride=1 832
ReLU1 (32, 24, 24) - 0
MaxPool1 (32, 12, 12) kernel=2, stride=2 0
Conv2 (64, 8, 8) kernel=5, stride=1 51,264
ReLU2 (64, 8, 8) - 0
MaxPool2 (64, 4, 4) kernel=2, stride=2 0
Flatten (1024,) - 0
FC1 (512,) - 524,800
ReLU2 (512,) - 0
FC2 (10,) - 5,130

Table 9: Hyperparameters for various FL algorithms on the MNIST dataset.

FedAvg FedAvgM FedAsync FedBuff FedAT FedCompass(+N) FedCompass+M

Q (200, 200, 100) (200, 200, 100) (200, 200, 100) (200, 200, 100) (200, 200, 100) - -
Qmin - - - - - (40, 40, 20) (40, 40, 20)
Qmax - - - - - (200, 200, 100) (200, 200, 100)
Optim Adam Adam Adam Adam Adam Adam Adam
ηℓ 0.003 0.003 0.003 0.003 0.003 0.003 0.003
β - 0.9 - - - - 0.9
B 64 64 64 64 64 64 64
α - - 0.9 0.9 - 0.9 0.9
a - - 0.5 0.5 - 0.5 0.5
K - - - (3, 3, 5) - - -
υ - - - - 2.0 - -
λ - - - - - 1.2 1.2

E.3 DETAILED SETUPS AND HYPERPARAMETERS FOR EXPERIMENTS ON THE CIFAR-10
DATASET

For experiments on the CIFAR-10 dataset, a randomly initialized ResNet-18 model (He et al., 2016)
is used in training. Table 10 shows the detailed architecture of the ResNet-18 model, which con-
tains eight residual blocks. Each residual block contains two convolutional + batch normalization
layers, as shown in Table 11, and the corresponding output is added by the input itself if the output
channel is equal to the input channel, otherwise, the input goes through a 1x1 convolutional + batch
normalization layer before added to the output. An additional ReLU layer is appended at the end of
the residual block. Table 12 lists the hyperparameter values used in the training for various FL algo-
rithms. The number of global training rounds is chosen separately for different experiment settings
and FL algorithms such that the corresponding FL algorithm converges, synchronous FL algorithms
take the same amount of wall-clock time, and asynchronous algorithms take the same amount of
wall-clock time in the same setting.

E.4 DETAILED SETUPS AND HYPERPARAMETERS FOR EXPERIMENTS ON THE FLAMBY
DATASETS

For the datasets from FLamby (Ogier du Terrail et al., 2022), we use the default experiments settings
provided by FLamby. The details of the experiment settings are shown in Table 13

27

Published as a conference paper at ICLR 2024

Table 10: CIFAR-10 ResNet18 model architecture.

Layer Outsize Setting Param #

Input (3, 32, 32) - 0
Conv1 (64, 32, 32) kernel=3, stride=1, padding=1, bias=False 1,728
BatchNorm1 (64, 32, 32) - 128
ReLU1 (64, 32, 32) - 0
ResidualBlock1-1 (64, 32, 32) stride=1 73,984
ResidualBlock1-2 (64, 32, 32) stride=1 73,984
ResidualBlock2-1 (128, 16, 16) stride=2 230,144
ResidualBlock2-2 (128, 16, 16) stride=1 295,424
ResidualBlock3-1 (256, 8, 8) stride=2 919,040
ResidualBlock3-2 (256, 8, 8) stride=1 1,180,672
ResidualBlock4-1 (512, 4, 4) stride=2 3,673,088
ResidualBlock4-2 (512, 4, 4) stride=1 4,720,640
AvgPool (512,) kernel=4, stride=4 0
Linear (10,) - 5,130

Table 11: ResidualBlock in ResNet18 architecture.

Layer Outsize Setting Param #

Input (in planes, H, W) - 0
Conv1 (planes, H/stride, W/stride) kernel=3, stride=stride, padding=1 in planes*planes*9
BatchNorm1 (planes, H/stride, W/stride) - 2*planes
ReLU1 (planes, H/stride, W/stride) - 0
Conv2 (planes, H/stride, W/stride) kernel=3, stride=1, padding=1 planes*planes*9
BatchNorm2 (planes, H/stride, W/stride) - 2*planes

“Identity” (planes, H/stride, W/stride) 1x1 Conv + BatchNorm if in plane ̸= plane -

ReLU2 (planes, H/stride, W/stride) ▷ Apply after adding BatchNorm2 and “Identity” outputs 0

Table 12: Hyperparameters for various FL algorithms on the CIFAR-10 dataset.

FedAvg FedAvgM FedAsync FedBuff FedAT FedCompass(+N) FedCompass+M

Q (200, 200, 100) (200, 200, 100) (200, 200, 100) (200, 200, 100) (200, 200, 100) - -
Qmin - - - - - (40, 40, 20) (40, 40, 20)
Qmax - - - - - (200, 200, 100) (200, 200, 100)
Optim SGD SGD SGD SGD SGD SGD SGD
ηℓ 0.1 0.1 0.1 0.1 0.1 0.1 0.1
β - 0.9 - - - - 0.9
B 128 128 128 128 128 128 128
α - - 0.9 0.9 - 0.9 0.9
a - - 0.5 0.5 - 0.5 0.5
K - - - (3, 3, 5) - - -
υ - - - - 2.0 - -
λ - - - - - 1.2 1.2

Table 13: Detailed settings for experiments on FLamby datasets.

Fed-IXI Fed-ISIC2019

Model 3D U-net (Çiçek et al., 2016) EfficientNet (Tan & Le, 2019)
Metric DICE Balanced accuracy
m (Client #) 3 6
Q 50 50
Qmin 20 20
Qmax 100 100
Optimizer AdamW (Loshchilov & Hutter, 2017) Adam
ηℓ 0.001 0.0005
β 0.9 0.5
B 2 64
α 0.9 0.9
a 0.5 0.5
K 2 3
λ 1.2 1.2

28

Published as a conference paper at ICLR 2024

F ADDITIONAL EXPERIMENT RESULTS

F.1 ADDITIONAL EXPERIMENT RESULTS ON THE MNIST DATASET

Table 14 shows the top validation accuracy and the corresponding standard deviation on the class
partitioned MNIST dataset for various federated learning algorithms with different numbers of
clients and client heterogeneity settings among ten independent experiment runs with different ran-
dom seeds, and Table 15 shows that on the dual Dirichlet partitioned MNIST dataset. As all asyn-
chronous FL algorithms take the same amount of training time in the same experiment setting,
the results indicate that FedCompass not only converges faster than other asynchronous FL al-
gorithms but also can converge to higher accuracy. Notably, in the homogeneous client settings,
FedCompass does not behave exactly the same as FedAvg as the clients also have local speed
variance in each local training round, and this prevents the Compass scheduler to assign Qmax to
all clients and have exactly the same behavior as FedAvg. The global model gets updated more
frequently for FedCompass and leads to relatively faster convergence.

Figures 6–11 depict the change in validation accuracy during the training process for various FL
algorithms in different experiment settings. Those figures illustrate how FedCompass can achieve
faster convergence in different data and device heterogeneity settings.

Table 14: Average top validation accuracy and standard deviation on the class partitioned MNIST
dataset for various federated learning algorithms with different numbers of clients and client hetero-
geneity settings.

n = 5 n = 10 n = 20

Method homo normal exp homo normal exp homo normal exp

FedAvg 92.42±3.96 92.42±3.96 92.42±3.96 92.27±3.88 92.27±3.88 92.27±3.88 97.38±1.59 97.38±1.59 97.38±1.59
FedAvgM 96.22±2.45 96.22±2.45 96.22±2.45 97.11±1.45 97.11±1.45 97.11±1.45 98.27±0.18 98.27±0.18 98.27±0.18

FedAsync 90.60±6.96 92.53±5.57 92.44±3.07 86.73±6.62 92.27±3.82 96.25±2.46 84.26±7.96 90.98±2.48 98.01±0.89
FedBuff 95.77±1.93 94.69±3.52 95.68±1.78 91.93±4.50 94.83±3.36 96.82±1.91 93.04±3.61 98.12±0.54 98.56±0.22
FedAT 92.47±3.51 92.36±3.59 91.40±3.21 91.50±3.15 91.01±3.43 93.03±2.94 97.17±1.62 97.89±0.94 95.74±2.48

FedCompass 95.06±2.89 95.54±2.89 96.34±1.89 94.33±3.80 95.47±3.05 97.51±1.66 98.49±0.45 98.66±0.36 98.72±0.47
FedCompass+M 95.58±2.87 95.98±2.43 95.93±1.92 95.64±2.72 96.61±2.12 97.69±0.76 98.58±0.23 97.05±0.91 98.51±0.47
FedCompass+N 94.03±3.82 93.07±4.00 96.44±1.72 94.55±3.86 94.80±3.65 97.28±1.51 98.52±0.42 98.79±0.17 98.80±0.18

Table 15: Average top accuracy and standard deviation on the dual Dirichlet partitioned MNIST
dataset for various federated learning algorithms with different numbers of clients and client hetero-
geneity settings.

m = 5 m = 10 m = 20

Method homo normal exp homo normal exp homo normal exp

FedAvg 93.08±4.16 93.08±4.16 93.08±4.16 93.71±4.52 93.71±4.52 93.71±4.52 95.77±2.98 95.77±2.98 95.77±2.98
FedAvgM 93.88±3.16 93.88±3.16 93.88±3.16 94.00±3.49 94.00±3.49 94.00±3.49 96.06±2.17 96.06±2.17 96.06±2.17

FedAsync 92.11±2.99 92.96±3.70 93.29±3.08 86.31±4.51 90.72±4.30 94.06±5.91 78.49±6.28 85.82±5.31 95.90±1.58
FedBuff 93.87±4.30 94.11±3.60 94.94±2.49 92.27±4.60 94.29±4.04 94.50±3.72 87.04±6.26 95.27±1.84 96.90±0.98
FedAT 92.30±4.00 93.06±3.74 92.88±3.16 95.40±2.70 95.63±2.42 93.80±4.94 95.26±2.47 97.32±0.76 94.67±3.01

FedCompass 94.15±4.26 94.36±4.28 95.46±3.59 95.53±3.21 95.41±3.52 96.34±2.64 96.41±1.96 97.62±1.57 97.86±0.71
FedCompass+M 94.74±3.42 95.21±3.13 96.15±2.03 96.01±2.76 96.10±2.91 95.59±2.81 97.03±1.50 93.25±3.28 97.42±0.96
FedCompass+N 94.56±4.25 92.56±4.96 94.57±3.69 95.45±3.41 95.13±3.02 95.01±4.62 96.28±2.06 97.61±0.60 97.92±0.50

0 100 200 300 400 500 600
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 100 200 300 400 500 600 700 800
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 200 400 600 800 1000 1200 1400
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 6: Change in validation accuracy during the training process for different FL algorithms on
the class partitioned MNIST dataset with five clients and three client heterogeneity settings.

29

Published as a conference paper at ICLR 2024

0 100 200 300 400 500 600
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 100 200 300 400 500 600 700 800
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 200 400 600 800 1000 1200 1400
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 7: Change in validation accuracy during the training process for different FL algorithms on
the class partitioned MNIST dataset with ten clients and three client heterogeneity settings.

0 50 100 150 200 250 300
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 100 200 300 400 500
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 200 400 600 800 1000
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 8: Change in validation accuracy during the training process for different FL algorithms on
the class partitioned MNIST dataset with twenty clients and three client heterogeneity settings.

0 100 200 300 400 500 600
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 100 200 300 400 500 600 700 800
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 200 400 600 800 1000 1200 1400
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 9: Change in validation accuracy during the training process for different FL algorithms on
the dual Dirichlet partitioned MNIST dataset with five clients and three client heterogeneity settings.

0 100 200 300 400 500 600
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 100 200 300 400 500 600 700 800
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 200 400 600 800 1000 1200 1400
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 10: Change in validation accuracy during the training process for different FL algorithms on
the dual Dirichlet partitioned MNIST dataset with ten clients and three client heterogeneity settings.

0 50 100 150 200 250 300
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 100 200 300 400 500
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 200 400 600 800 1000
Time (sec)

0

20

40

60

80

100

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 11: Change in validation accuracy during the training process for different FL algorithms
on the dual Dirichlet partitioned MNIST dataset with twenty clients and three client heterogeneity
settings.

30

Published as a conference paper at ICLR 2024

F.2 ADDITIONAL EXPERIMENT RESULTS ON THE CIFAR-10 DATASET

Table 16 shows the top validation accuracy and the corresponding standard deviation on the class
partitioned CIFAR-10 dataset for various federated learning algorithms with different numbers of
clients and client heterogeneity settings among ten independent experiment runs with different ran-
dom seeds, and Table 17 shows that on the dual Dirichlet partitioned CIFAR-10 dataset. Figures
12–17 give the change in validation accuracy during the training process for various FL algorithms
in different experiment settings on the CIFAR-10 datasets.

Table 16: Average top accuracy and standard deviation on the class partitioned CIFAR-10 dataset
for various FL algorithms with different numbers of clients and client heterogeneity settings.

m = 5 m = 10 m = 20

Method homo normal exp homo normal exp homo normal exp

FedAvg 67.10±6.33 67.10±6.33 67.10±6.3 66.80±2.71 66.80±2.71 66.80±2.71 70.03±2.37 70.03±2.37 70.03±2.37
FedAvgM 63.44±3.26 63.44±3.26 63.44±3.26 63.50±2.56 63.50±2.56 63.50±2.56 64.47±1.88 64.47±1.88 64.47±1.88

FedAsync 53.30±4.12 63.65±2.81 66.27±3.91 37.09±2.99 44.87±3.54 59.40±4.21 30.18±2.84 36.73±4.93 54.30±2.64
FedBuff 67.02±2.55 67.33±2.46 70.86±2.99 46.14±4.14 50.86±4.43 64.32±3.78 43.83±3.01 49.63±4.60 60.90±3.37
FedAT 72.41±3.31 72.92±2.52 71.15±3.18 65.25±4.21 65.70±4.34 66.57±4.48 66.09±1.72 66.38±1.50 66.31±1.87

FedCompass 72.66±2.44 73.64±1.80 73.96±1.83 66.27±2.41 67.07±2.40 68.73±1.95 66.83±1.29 67.14±1.32 67.41±1.59
FedCompass+M 72.82±2.27 74.03±1.77 74.22±1.98 66.79±1.93 67.72±1.77 69.14±1.78 66.80±1.18 67.48±1.38 67.91±1.45
FedCompass+N 72.79±2.50 73.69±2.33 74.85±1.91 65.53±2.52 66.78±2.31 68.04±1.99 66.32±1.41 66.76±1.40 67.51±1.50

Table 17: Average top accuracy and standard deviation on the dual Dirichlet partitioned CIFAR-10
dataset for various FL algorithms with different numbers of clients and client heterogeneity settings.

m = 5 m = 10 m = 20

Method homo normal exp homo normal exp homo normal exp

FedAvg 48.88±8.03 48.88±8.03 48.88±8.03 51.91±7.65 51.91±7.65 51.91±7.65 49.28±2.62 49.28±2.62 49.28±2.62
FedAvgM 49.89±5.27 49.89±5.27 49.89±5.27 51.72±2.64 51.72±2.64 51.72±2.64 49.94±4.15 49.94±4.15 49.94±4.15

FedAsync 44.38±4.71 47.67±4.29 51.21±4.99 33.52±3.29 38.13±2.07 47.62±2.59 34.89±3.34 36.12±1.69 39.92±3.39
FedBuff 51.85±3.23 54.03±4.84 58.11±4.62 42.60±2.47 45.24±1.12 53.04±2.45 41.37±2.85 42.65±1.70 46.30±2.90
FedAT 58.91±4.63 58.34±3.77 55.40±4.05 52.82±6.37 53.54±7.12 53.83±5.36 48.63±3.02 50.56±1.31 50.37±2.38

FedCompass 59.29±3.49 59.98±3.65 61.23±2.67 54.51±3.50 54.95±3.68 57.29±1.98 51.01±2.20 52.03±2.75 51.39±2.12
FedCompass+M 59.29±2.65 60.20±3.01 59.73±3.97 54.24±4.21 54.53±3.14 56.30±2.87 51.48±2.54 52.73±2.61 51.70±2.06
FedCompass+N 59.38±3.59 60.38±2.20 61.08±3.74 54.28±4.62 54.31±6.03 55.90±2.97 52.13±2.61 52.44±1.91 52.23±2.20

0 500 1000 1500 2000 2500 3000
Time (sec)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 1000 2000 3000 4000
Time (sec)

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 2000 4000 6000 8000 10000
Time (sec)

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 12: Change in validation accuracy during the training process for different FL algorithms on
the class partitioned CIFAR-10 dataset with five clients and three client heterogeneity settings.

0 1000 2000 3000 4000 5000 6000
Time (sec)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 2000 4000 6000 8000
Time (sec)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 5000 10000 15000 20000
Time (sec)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 13: Change in validation accuracy during the training process for different FL algorithms on
the class partitioned CIFAR-10 dataset with ten clients and three client heterogeneity settings.

31

Published as a conference paper at ICLR 2024

0 1000 2000 3000 4000 5000 6000
Time (sec)

0

10

20

30

40

50

60

70
Ac

cu
ra

cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 1000 2000 3000 4000 5000 6000 7000
Time (sec)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 2500 5000 7500 10000 12500 15000 17500
Time (sec)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 14: Change in validation accuracy during the training process for different FL algorithms on
the class partitioned CIFAR-10 dataset with twenty clients and three client heterogeneity settings.

0 500 1000 1500 2000 2500 3000
Time (sec)

0

10

20

30

40

50

60

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 1000 2000 3000 4000
Time (sec)

0

10

20

30

40

50

60

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 2000 4000 6000 8000 10000
Time (sec)

0

10

20

30

40

50

60

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 15: Change in validation accuracy during the training process for different FL algorithms
on the dual Dirichlet partitioned CIFAR-10 dataset with five clients and three client heterogeneity
settings.

0 1000 2000 3000 4000 5000 6000
Time (sec)

0

10

20

30

40

50

60

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 2000 4000 6000 8000
Time (sec)

0

10

20

30

40

50

60

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 5000 10000 15000 20000
Time (sec)

0

10

20

30

40

50

60

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 16: Change in validation accuracy during the training process for different FL algorithms
on the dual Dirichlet partitioned CIFAR-10 dataset with ten clients and three client heterogeneity
settings.

0 2000 4000 6000 8000 10000
Time (sec)

0

10

20

30

40

50

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 2000 4000 6000 8000 10000
Time (sec)

0

10

20

30

40

50

60

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 2500 5000 7500 10000 12500 15000 17500
Time (sec)

0

10

20

30

40

50

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 17: Change in validation accuracy during the training process for different FL algorithms on
the dual Dirichlet partitioned CIFAR-10 dataset with twenty clients and three client heterogeneity
settings.

32

Published as a conference paper at ICLR 2024

F.3 ADDITIONAL EXPERIMENT RESULTS ON THE FLAMBY DATASETS

Table 18 shows the top validation accuracy and the corresponding standard deviation on the Fed-
IXI and Fed-ISIC2019 datasets from FLamby for various federated learning algorithms in different
client heterogeneity settings among ten independent experiment runs with different random seeds.
Figures 18 and 19 present the change in validation accuracy during the training process for various
FL algorithms on the Fed-IXI and Fed-ISIC2019 datasets, respectively.

Table 18: Average top accuracy and standard deviation on the FLamby datasets for various federated
learning methods in different client heterogeneity settings.

Fed-IXI Fed-ISIC2019

Method homo normal exp homo normal exp

FedAvg 98.39±0.02 98.39±0.02 98.39±0.02 59.12±1.38 59.12±1.38 59.12±1.38
FedAvgM 98.39±0.00 98.39±0.00 98.39±0.00 50.25±2.57 50.25±2.57 50.25±2.57

FedAsync 98.05±0.25 98.24±0.18 98.32±0.20 59.43±1.18 59.66±3.04 56.34±4.34
FedBuff 98.36±0.03 98.35±0.03 98.35±0.08 57.65±2.07 57.46±2.60 55.13±4.74
FedAT 98.72±0.01 98.65±0.06 98.63±0.08 58.31±2.35 58.55±1.76 61.93±4.56

FedCompass 98.76±0.00 98.61±0.06 98.59±0.04 68.46±0.38 66.35±3.76 65.46±5.33
FedCompass+M 98.76±0.00 98.61±0.06 98.59±0.04 64.72±0.94 62.43±5.23 60.18±4.95
FedCompass+N 98.72±0.01 98.61±0.06 98.59±0.04 69.59±0.06 67.04±3.56 66.48±4.84

0 100 200 300 400 500 600 700 800
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 100 200 300 400 500
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 200 400 600 800
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 18: Change in validation accuracy during the training process for different federated learning
algorithms on the FLamby Fed-IXI dataset with three different client heterogeneity settings.

0 500 1000 1500 2000 2500 3000
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

(a) Homogeneous

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 500 1000 1500 2000 2500 3000
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

(b) Normal

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

0 500 1000 1500 2000 2500 3000
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

(c) Exponential

FedAvg
FedAvgM
FedAsync
FedBuff
FedCompass
FedCompass+M
FedCompass+N
FedAT

Figure 19: Change in validation accuracy during the training process for different federated learning
algorithms on the FLamby Fed-ISIC2019 dataset with three different client heterogeneity settings.

G ABLATION STUDY

G.1 ABLATION STUDY ON Qmin/Qmax

In this section, we conduct ablation studies on the values of 1/Q = Qmin/Qmax to investigate its
impact on the performance of the FedCompass algorithm. Table 19 lists the relative wall-clock
time for different values of 1/Q = Qmin/Qmax to reach 90% validation accuracy on the class
partitioned and dual Dirichlet partitioned MNIST datasets, and 50% accuracy on the dual Dirichlet
partitioned CIFAR10 datasets in different client heterogeneity settings, and Table 20 shows the
corresponding the validation accuracy and standard deviations. The results are the average of ten
different runs with random seeds. Table 19 also lists the results of FedBuff for reference. From
Table 19, the following observations can be derived: (1) A smaller Qmin usually leads to faster
convergence speed, which is consistent with the convergence analysis from Section 4 where smaller
1/Q results in fewer existing arrival groups at equilibrium and may help to reduce the impact of

33

Published as a conference paper at ICLR 2024

device heterogeneity. (2) Though FedCompass achieves faster convergence rate with smaller 1/Q
(0.05–0.2) in general, it still can achieve reasonable convergence rate with large 1/Q values (0.2–
0.8) compared with FedBuff, which shows that FedCompass is not sensitive to the choice of the
value of Q. (3) In the extreme case that Q = 1, i.e. Qmin = Qmax, there is a significant performance
drop for FedCompass, as the Compass scheduler is not able to assign different number of local
steps to different clients, so each client has its own group, and the FedCompass algorithm becomes
equivalent to the FedAsync algorithm.

Table 19: Relative wall-clock time to first reach the target validation accuracy on the MNIST and
CIFAR10 datasets for various values of 1/Q = Qmin/Qmax with different number of clients and
client heterogeneity settings.

m = 5 m = 10 m = 20

Dataset 1/Q homo normal exp homo normal exp homo normal exp

0.05 1.04× 1.16× 0.92× 0.93× 0.90× 0.95× 0.98× 0.93× 0.99×
0.10 1.00× 1.38× 0.93× 1.03× 0.92× 0.93× 1.01× 1.03× 1.02×
0.20 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×

MNIST-Class 0.40 0.99× 1.67× 2.48× 0.98× 0.98× 1.41× 1.01× 1.19× 1.10×
Partition (90%) 0.60 0.97× 1.23× 2.64× 0.98× 0.97× 1.28× 1.02× 1.31× 1.11×

0.80 0.96× 1.33× 1.51× 0.98× 1.21× 1.23× 1.01× 1.61× 1.28×
1.00 2.15× 2.34× 2.35× - 2.17× 1.32× - 4.44× 1.32×

FedBuff 1.30× 1.57× 1.81× 1.58× 1.39× 1.43× 1.37× 1.18× 1.39×

0.05 0.89× 1.01× 0.85× 0.96× 0.97× 0.82× 1.00× 1.02× 0.96×
0.10 0.91× 1.05× 0.92× 0.96× 0.95× 0.85× 0.97× 1.02× 0.96×
0.20 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×

MNIST-Dirichlet 0.40 1.02× 1.03× 1.70× 1.04× 1.05× 1.28× 1.00× 1.14× 1.25×
Partition (90%) 0.60 1.04× 1.01× 1.83× 1.00× 1.01× 1.19× 0.92× 1.11× 1.16×

0.80 1.04× 1.13× 1.58× 0.91× 1.25× 1.22× 0.86× 1.22× 1.21×
1.00 1.78× 1.68× 2.01× - 2.28× 1.29× - - 1.76×

FedBuff 1.23× 1.52× 1.86× 1.81× 1.51× 1.49× 2.77× 1.22× 1.40×

0.05 1.27× 0.97× 0.76× 1.05× 0.98× 1.19× 1.05× 0.97× 0.90×
0.10 1.15× 1.01× 0.73× 0.98× 1.11× 1.27× 1.01× 1.04× 1.01×
0.20 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×

CIFAR10-Dirichlet 0.40 1.28× 1.06× 1.36× 1.02× 1.06× 2.19× 0.96× 1.14× 1.08×
Partition (50%) 0.60 1.23× 0.99× 1.65× 0.97× 1.61× 2.52× 1.11× 1.06× 1.74×

0.80 1.23× 1.24× 1.64× 1.32× 1.91× 3.44× 1.33× 2.95× 1.64×
1.00 - 3.18× 1.70× - - 5.35× - - -

FedBuff 1.62× 1.99× 1.67× - - 2.42× - - -

G.2 CLIENT SPEED CHANGES IN FEDCOMPASS AND ABLATION STUDY ON λ

In cross-silo federated learning scenarios, variations in computing power and speeds among clients
are possible. For instance, a client utilizing a supercomputer might experience significant changes
in computing power due to the auto-scaling after the allocation or deallocation of other tasks within
the same cluster. Similarly, in cloud computing environments, a client might be subject to auto-
scaling policies that dynamically adjust the number of virtual machines or container instances. In
this section, we provide analyses and empirical results to study how FedCompass is resilient to
client speed changes.

Figure 20 depicts an execution of FedCompass involving a client speedup scenario. During the
second round of local training, client 3 enhances its computing speed from 4 step/min to 5 step/min.
Consequently, client 3 transmits its local updates ∆3 at 10:36, earlier than the expected group arrival
time Ta = 12:00. In this situation, FedCompass server first updates the speed record for client 3
and then waits for the arrival of clients 1 and 2 in the same group. Upon the arrival of clients 1 and
2 at 12:00, FedCompass server assigns all three clients to arrival group 2 for the subsequent round
of local training, and the number of local steps for client 3 are assigned according to its new speed.

Figures 21 and 22 illustrate two executions of FedCompass with different levels of client slow-
down. In Figure 21, the speed of client 3 changes from 4 step/min to 3.33 step/min during its second

34

Published as a conference paper at ICLR 2024

Table 20: Average top validation accuracy and standard deviation for various values of 1/Q =
Qmin/Qmax with different number of clients and client heterogeneity settings.

m = 5 m = 10 m = 20

Dataset 1/Q homo normal exp homo normal exp homo normal exp

0.05 95.20±2.53 95.21±2.90 97.22±1.67 94.29±3.80 94.88±3.73 97.49±1.55 98.56±0.43 98.80±0.17 98.75±0.20
0.10 95.03±3.13 95.35±2.15 97.07±1.67 94.72±3.56 94.65±3.74 97.71±1.25 98.57±0.38 98.80±0.11 98.82±0.18

MNIST 0.20 95.06±2.89 95.55±2.89 96.34±1.89 94.33±3.80 95.47±3.05 97.51±1.66 98.49±0.45 98.67±0.36 98.73±0.47
Class 0.40 94.44±3.26 95.34±3.63 92.73±3.09 94.42±3.94 95.01±3.52 96.91±2.13 98.58±0.36 98.74±0.26 98.75±0.32

Partition 0.60 95.29±2.75 95.25±3.36 94.90±0.97 94.17±3.88 95.38±2.55 97.73±0.86 98.48±0.56 98.80±0.20 98.80±0.19
(90%) 0.80 95.61±2.34 95.35±2.30 95.04±3.13 94.77±3.59 96.08±2.60 97.35±1.49 98.60±0.45 98.72±0.25 98.74±0.25

1.00 90.60±6.96 92.53±5.57 92.44±3.07 86.73±6.62 92.27±3.82 96.25±2.46 84.26±7.96 90.98±2.48 98.01±0.89

0.05 94.10±4.12 94.30±4.18 95.81±3.12 95.64±3.15 95.75±2.98 96.17±3.01 96.22±2.25 97.40±1.82 97.04±1.97
0.10 94.14±4.08 94.14±4.44 96.11±3.04 95.49±3.32 95.65±3.23 96.78±2.56 96.39±1.92 97.59±1.28 97.68±1.28

MNIST 0.20 94.15±4.26 94.36±4.28 95.46±3.59 95.53±3.21 95.41±3.52 96.34±2.64 96.41±1.96 97.62±1.57 97.86±0.71
Dirichlet 0.40 94.12±4.11 94.27±4.11 95.40±2.46 95.46±3.47 95.67±3.14 95.86±3.35 96.07±2.45 98.03±0.93 97.85±1.00
Partition 0.60 94.09±4.10 94.65±4.11 94.29±3.43 95.43±3.36 95.89±3.26 95.27±4.71 96.37±2.35 98.04±0.68 97.66±1.14

(90%) 0.80 94.23±3.89 94.71±3.56 95.09±2.62 95.32±3.55 95.46±3.20 95.26±4.36 96.72±2.20 97.51±0.84 97.66±0.62
1.00 92.11±2.99 92.96±3.70 93.29±3.08 86.31±4.51 90.72±4.30 94.06±5.91 78.49±6.28 85.82±5.31 95.90±1.58

0.05 59.40±2.28 60.86±1.94 61.79±3.27 54.04±4.68 53.85±6.74 57.36±1.90 50.58±2.26 50.62±2.58 51.40±1.68
0.10 59.50±2.69 61.05±2.26 61.70±2.92 53.91±4.00 55.13±5.42 56.36±2.60 51.15±2.64 50.81±2.39 51.08±1.90

CIFAR10 0.20 59.29±3.49 59.98±3.65 61.23±2.67 54.51±3.50 54.95±3.68 57.29±1.98 51.01±2.20 52.03±2.75 51.39±2.12
Dirichlet 0.40 59.25±3.49 60.85±2.23 59.44±3.22 53.29±5.17 56.47±2.83 55.58±2.04 50.90±2.65 50.26±2.04 51.43±1.32
Partition 0.60 59.25±2.79 60.76±2.24 59.01±3.90 52.92±4.00 56.45±3.05 54.76±2.71 50.67±2.20 50.33±2.04 51.44±1.79

(50%) 0.80 59.10±3.03 60.53±4.18 58.79±3.68 53.11±2.50 55.78±3.00 53.23±2.03 49.83±2.04 49.63±2.10 51.01±0.96
1.00 44.38±4.71 47.67±4.29 51.21±4.99 33.52±3.29 38.13±2.07 47.62±2.59 34.89±3.34 36.12±1.69 39.92±3.39

Client 1

Client 2

Client 3

Client 4

Client 5

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

∆$02: 00

∆%04: 00

∆&05: 00

∆'08: 00

∆(10: 00

Speed Record

𝑄 = 𝑄!)* = 100

𝓌02: 00

𝑄 = 40

𝓌04: 00

𝑄 = 28

𝓌05: 00

𝑄 = 35

𝓌08: 00

𝑄 = 24

𝓌10: 00

: AGGREGATE + CREATEGROUP

𝑇) = 12: 00
Arrival Group 1

𝑇) = 22: 00
Arrival Group 2

∆$12: 00

∆%12: 00

∆&10: 36

𝑄 = 100

𝓌12: 00

𝑄 = 50

𝓌12: 00

𝑄 = 50

𝓌12: 00

𝑇) = 22: 00
Arrival Group 2

∆$22: 00

∆%22: 00

∆&22: 00

∆'22: 00

∆(22: 00

𝑄!)* = 100

𝓌22: 00

$
% 𝑄!)* = 50

𝓌22: 00

$
% 𝑄!)* = 50

𝓌22: 00

$
' 𝑄!)* = 25

𝓌22: 00

$
(𝑄!)* = 20

𝓌22: 00

𝑇) = 32: 00
Arrival Group 3

……

……

……

……

……

FedCompass
Server

FedCompass
Server

FedCompass
Server

𝑄 =
10 <

𝑄!"#

: AGGREGATE + JOINGROUP

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

𝒞 𝑖 . 𝑆

Speedup

Speed Update

Figure 20: Overview of an execution of FedCompass on five clients with the minimum number of
local steps Qmin = 20, maximum number of local steps Qmax = 100, and client speedup.

round of training. Consequently, the client transmits its local update ∆3 back to the server at 13:24,
surpassing the expected arrival time Ta = 12:00. Nonetheless, it is important to recall that each
arrival group has the latest arrival time Tmax to accommodate potential client speed fluctuations.
The time interval between Tmax and the group’s creation time is λ times longer than the difference
between Ta and the group’s creation time. For this example, we select λ = 1.2, resulting in Tmax =
14:00 for arrival group 1. Since client 3 arrives later than Ta but earlier than Tmax, the FedCompass
server waits until client 3 arrives at 13:24, subsequently assigning clients 1 to 3 to a new arrival group
for the next training round. Figure 22 presents another case where the client has a relatively larger
slowdown. In this example, the speed of client 3 diminishes from 4 step/min to 2.5 step/min, causing
it to transmit local update ∆3 at 15:12, even exceeding Tmax = 14:00. When the FedCompass
server does not receive an update from client 3 by the latest arrival time 14:00, it responds to clients 1
and 2. The server assigns these clients to arrival group 2 with corresponding numbers of local steps.
Upon client 3 arrives at 15:12, the server first attempts to assign it to group 2, but this is unsuccessful
due to the corresponding number of steps (Q = (22:00-15:12) ∗ 2.5 (step/min) = 17) falling below
the Qmin = 20. As a result, the server establishes a new group 3 for client 3. Subsequently, once all
clients in group 2 arrive at 22 : 00, the server assigns all of them to group 3.

35

Published as a conference paper at ICLR 2024

Client 1

Client 2

Client 3

Client 4

Client 5

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

𝑄!"# = 20

𝓌00: 00

∆$02: 00

∆%04: 00

∆&05: 00

∆'08: 00

∆(10: 00

Speed Record

𝑄 = 𝑄!)* = 100

𝓌02: 00

𝑄 = 40

𝓌04: 00

𝑄 = 28

𝓌05: 00

𝑄 = 35

𝓌08: 00

𝑄 = 24

𝓌10: 00

: AGGREGATE + CREATEGROUP

𝑇) = 12: 00 𝑇!)* = 14: 00
Arrival Group 1

𝑇) = 22: 00
Arrival Group 2

∆$12: 00

∆%12: 00

∆&13: 24

𝑄 = 86

𝓌13: 24

𝑄 = 43

𝓌13: 24

𝑄 = 28

𝓌13: 24

𝑇) = 22: 00
Arrival Group 2

∆$22: 00

∆%22: 00

∆&22: 00

∆'22: 00

∆(22: 00

𝑄!)* = 100

𝓌22: 00

$
% 𝑄!)* = 50

𝓌22: 00

$
& 𝑄!)* = 33

𝓌22: 00

$
' 𝑄!)* = 25

𝓌22: 00

$
(𝑄!)* = 20

𝓌22: 00

𝑇) = 32: 00
Arrival Group 3

……

……

……

……

……

FedCompass
Server

FedCompass
Server

FedCompass
Server

𝑄 =
10 <

𝑄!"#

: AGGREGATE + JOINGROUP

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

𝒞 𝑖 . 𝑆

Slowdown

Speed Update

Figure 21: Overview of an execution of FedCompass on five clients with the minimum number of
local steps Qmin = 20 and maximum number of local steps Qmax = 100 with client slowdown.

∆!02: 00

∆"04: 00

∆#05: 00

∆$08: 00

∆%10: 00

Speed Record

𝑄 = 𝑄&'(= 100

𝓌02: 00

𝑄 = 40

𝓌04: 00

𝑄 = 28

𝓌05: 00

𝑄 = 35

𝓌08: 00

𝑄 = 24

𝓌10: 00

: AGGREGATE + CREATEGROUP

𝑇' = 12: 00 𝑇&'(= 14: 00
Arrival Group 1

𝑇' = 22: 00
Arrival Group 2

∆!12: 00

∆"12: 00

∆#15: 12

𝑄 = 80

𝓌14: 00

𝑄 = 40

𝓌14: 00

𝑄 = 42

𝓌15: 12

𝑇' = 22: 00
Arrival Group 2

∆!22: 00

∆"22: 00

∆$22: 00

∆%22: 00

𝑄 = 100

𝓌22: 00

𝑄 = 50

𝓌22: 00

𝑄 = 25

𝓌22: 00

𝑄 = 20

𝓌22: 00

𝑇' = 32: 00
Arrival Group 3

…

…

…

…

…

FedCompass
Server

FedCompass
Server

FedCompass
Server

𝑄 =
10 <

𝑄&)*

: AGGREGATE + JOINGROUP

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

𝒞 𝑖 . 𝑆

Slowdown

Speed Update

2

1

3

4

5

𝑇' = 22: 00
Arrival Group 2

𝑇' = 32: 00
Arrival Group 3

𝑄
=
17 <

𝑄
&
)*

∆!32: 00

∆"32: 00

∆$32: 00

∆%32: 00

𝑄&'(= 100

𝓌32: 00

!
" 𝑄&'(= 50

𝓌32: 00

!
$ 𝑄&'(= 25

𝓌32: 00

!
% 𝑄&'(= 20

𝓌32: 00

𝑇' = 42: 00
Arrival Group 4

1

2

3

4

5

∆"32: 00

!
$ 𝑄&'(= 25

𝓌32: 00

Figure 22: Overview of an execution of FedCompass on five clients with the minimum number of
local steps Qmin = 20 and maximum number of local steps Qmax = 100 with client slowdown.

To empirically study how FedCompass is resilient to client speed changes compared to similar
tiered FL methods such as FedAT (Chai et al., 2021) and how the value of λ may impact the
resilience, we set up a scenario such that each client has a 10% probability to change its computing
speed by re-sampling a speed from the client speed distribution (normal or exponential distribution)
in each local training round. This setup aims to mimic the occasional yet substantial changes in
speed that may arise in real-world cross-silo federated learning environments as a result of auto-
scaling. Table 21 shows the convergence speed for the FedCompass algorithm with different
values of λ and the FedAT algorithm, and Table 22 shows the corresponding average top accuracy
and standard deviations. From Table 21, we can draw the following conclusions: (1) When λ =
1.00, the Compass scheduler is not resilient to even small client slowdown, so FedCompass
converges relatively slower compared with some λ values slightly above 1.00 in general. (2) λ
values slightly above 1.00 (e.g., 1.20− 1.50) result in faster convergence from the empirical results
as the Compass scheduler accounts for minor client speed fluctuations without a long waiting time.
(3) Large λ values sometimes slow down the convergence as the server needs to experience a long
waiting time when there are significant client speed slowdowns. (4) FedCompass converges faster
than FedAT regardless of the value of λ, which further demonstrates its resilience to speed changes.

Finally, it is noteworthy that under extreme circumstances, where all client computing speeds are
subject to dramatic and constant fluctuations, the scheduling mechanism of FedCompass may be
unable to maintain the desired client synchronization. This is due to the reliance on prior speed
data, which becomes obsolete in the face of such variability. In these scenarios, the training process
would proceed in a completely asynchronous manner, effectively causing FedCompass to revert
to a similar behavior of the FedAsync (Xie et al., 2019) algorithm. However, different from cross-

36

Published as a conference paper at ICLR 2024

device FL where each client may experience frequent speed changes due to power constraints, the
operation of other concurrent applications, or network connectivity issues. In practice, a cross-silo
FL client usually has dedicated computing resources such as HPC with a job scheduler or some cloud
computing facilities—where significant changes in computing speed are less frequent, generally
arising from events like auto-scaling.

Table 21: Relative wall-clock time to first reach the target validation accuracy on the MNIST datasets
for various values of λ with different numbers of clients and client heterogeneity settings, and each
client has 10% probability to change its speed in each local training round.

m = 5 m = 10 m = 20

Dataset λ normal exp normal exp normal exp

1.00 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
MNIST-Class 1.20 0.64× 0.83× 0.84× 0.88× 0.86× 0.90×

Partition (90%) 1.50 0.67× 1.00× 0.72× 1.01× 1.01× 1.00×
2.00 0.68× 1.11× 0.80× 1.11× 1.04× 1.37×

FedAT 3.13× 3.20× 4.04× 5.92× 1.66× 3.33×

1.00 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
MNIST-Dirichlet 1.20 0.63× 1.05× 0.75× 0.62× 0.79× 0.98×
Partition (90%) 1.50 0.55× 1.20× 0.75× 0.62× 0.85× 1.16×

2.00 0.55× 1.29× 0.76× 0.83× 0.86× 1.28×
FedAT 1.03× 1.55× 1.41× 1.61× 1.71× 2.94×

Table 22: Average top validation accuracy and standard deviation on the MNIST datasets for various
values of λ with different numbers of clients and client heterogeneity settings, and each client has
10% probability to change its speed in each local training round.

m = 5 m = 10 m = 20

Dataset λ normal exp normal exp normal exp

1.00 97.01±1.19 97.57±1.01 96.55±1.07 97.45±2.17 98.78±0.03 98.76±0.15
MNIST-Class 1.20 96.19±2.46 97.54±1.54 96.78±2.94 97.03±2.71 98.86±0.10 98.90±0.05

Partition (90%) 1.50 95.99±2.30 97.59±1.98 96.25±3.26 97.44±1.90 98.86±0.09 98.71±0.26
2.00 96.29±1.77 97.84±1.06 96.37±3.17 97.37±2.29 98.86±0.09 98.83±0.13

FedAT 93.56±6.40 94.97±3.86 93.93±3.51 94.20±3.36 97.98±1.42 97.98±1.32

1.00 91.15±4.48 94.34±2.84 94.88±4.40 96.90±1.53 98.08±0.34 98.09±0.23
MNIST-Dirichlet 1.20 92.03±4.10 93.92±3.45 96.59±2.10 97.19±1.82 98.16±0.13 98.22±0.19
Partition (90%) 1.50 91.82±4.35 93.32±4.03 96.04±3.36 97.47±1.42 98.28±0.13 98.16±0.19

2.00 92.09±4.11 93.08±3.61 95.77±3.29 97.36±1.68 98.16±0.20 98.26±0.07
FedAT 91.43±3.31 92.36±2.50 95.49±2.94 96.36±2.36 97.65±0.44 97.68±0.35

37

	Introduction
	Related Work
	Proposed Method: FedCompass
	Compass: Computing Power-Aware Scheduler
	FedCompass: Federated Learning with Compass

	Convergence Analysis
	Experiments
	Experiment Setup
	Experiment Results

	Conclusion
	Detailed Implementation of FedCompass
	Upper Bound on the Number of Groups
	FedCompass Convergence Analysis
	List of Notations
	Proof of Theorem 1

	Details of the Experiment Datasets
	Classic Dataset Partition Strategy
	Class Partition
	Dual Dirichlet Partition

	Naturally Split Datasets: FLamby
	Fed-IXI
	Fed-ISIC2019

	Experiment Setup Details
	Details of Client Heterogeneity Simulation
	Detailed Setups and Hyperparameters for Experiments on the MNIST Dataset
	Detailed Setups and Hyperparameters for Experiments on the CIFAR-10 Dataset
	Detailed Setups and Hyperparameters for Experiments on the FLamby Datasets

	Additional Experiment Results
	Additional Experiment Results on the MNIST Dataset
	Additional Experiment Results on the CIFAR-10 Dataset
	Additional Experiment Results on the FLamby Datasets

	Ablation Study
	Ablation Study on Q/Q
	Client Speed Changes in FedCompass and Ablation Study on

