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Abstract
This paper presents a new approach to automat-
ically discovering accurate models of complex
time series data. Working within a Bayesian non-
parametric prior over a symbolic space of Gaus-
sian process time series models, we present a
novel structure learning algorithm that integrates
sequential Monte Carlo (SMC) and involutive
MCMC for highly effective posterior inference.
Our method can be used both in “online” settings,
where new data is incorporated sequentially in
time, and in “offline” settings, by using nested
subsets of historical data to anneal the posterior.
Empirical measurements on real-world time series
show that our method can deliver 10x–100x run-
time speedups over previous MCMC and greedy-
search structure learning algorithms targeting the
same model family. We use our method to per-
form the first large-scale evaluation of Gaussian
process time series structure learning on a promi-
nent benchmark of 1,428 econometric datasets.
The results show that our method discovers sensi-
ble models that deliver more accurate point fore-
casts and interval forecasts over multiple horizons
as compared to widely used statistical and neural
baselines that struggle on this challenging data.

1. Introduction
Many applications depend on models that can explain and
predict time series data. A key challenge in time series
modeling is the substantial expertise needed to design sta-
tistical models that capture complex temporal patterns such
as changepoints, heteroskedastic noise, additive and mul-
tiplicative seasonal effects, and higher-order autocorrela-
tions (Hyndman & Athanasopoulos, 2021, Chapters 12–13).
Even experts who know how to construct sophisticated time

1Carnegie Mellon University 2Google Research 3Massachusetts
Institute of Technology. Correspondence to: Feras Saad
<fsaad@cmu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).
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Figure 1. Real-time discovery of time series structure. Red dots
show observed data so far, solid lines show mean forecasts from a
weighted ensemble of learned symbolic model structures, where
the thickness of a line is proportional to its corresponding model
weight; blue regions show 95% prediction intervals. (a) Broad
uncertainty. (b) Dominant linear trend. (c) Multimodal poste-
rior, including linear trend with additive or with multiplicative
seasonality. (d) Linear trend with multiplicative seasonality.

series models may have trouble deciding what types of
patterns to include when working with a given dataset. Mo-
tivated by these challenges, this work addresses the problem
of automatically discovering models of time series data that
exhibit a wide range of patterns which are a-priori unknown.

Given observations {(ti, yi)}ni=1 of time points ti and time
series values yi, we focus on learning an unknown real
function f and i.i.d. noise process ϵ such that y(t) = f(t) +
ϵ(t), t ∈ R. These so-called “pure time series models”,
which are univariate in nature and do not include exogenous
variables, are used in many disciplines. In econometrics,
for example, the function f is intended to capture essential
empirical features of the observed data that are believed to
arise from an unknown macroeconomic structural model
whose exogenous variables are too complex or impossible
to accurately specify (Brooks, 2008, Chapter 5).

Figure 1 shows an example data stream and the evolution
of various hypotheses about the unknown function f that
our method explores as it encounters new observations. The
plots illustrate some central features of our approach, which
include: (i) adapting both the structure and parameters of
f according to patterns in the data observed so far; and
(ii) maintaining not one hypothesis about f but a weighted
collection of hypotheses that together capture uncertainty
over the unknown time series structure and parameters.
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Overview To automatically discover time series models,
we stochastically sample symbolic expressions in the Gaus-
sian process family for nonparametric regression introduced
in Duvenaud et al. (2013), which we specialize to univariate
time series data (Roberts et al., 2013). Whereas Duvenaud
et al. (2013) use a greedy-search algorithm for structure
learning, our approach is based on fully Bayesian inference
in a probabilistic generative model over symbolic descrip-
tions of temporal patterns (i.e., Gaussian process covariance
functions), numeric parameters, and observed data. This rep-
resentation enables us to develop a novel sequential Monte
Carlo (SMC) algorithm for posterior inference that naturally
handles streaming data and coherently characterizes joint
uncertainty about latent model structure and parameters.

Key Results The SMC algorithm introduced in this paper
can deliver 10x–100x improvements in runtime vs. forecast-
ing accuracy profiles for many real-world datasets (Fig. 5)
over the greedy-search method in Duvenaud et al. (2013)
(which finds a single “best-fit” model structure and param-
eters) and over the MCMC sampling method in Saad et al.
(2019). We further evaluate our method on 1,428 monthly
datasets from M3 (Makridakis & Hibon, 2000) against 9
statistical and neural baselines (Hyndman & Khandakar,
2008; Hyndman et al., 2008; Fiorucci et al., 2016; Golyand-
ina et al., 2018; Taylor & Letham, 2018; Lindemann et al.,
2021; Lim et al., 2021), many of which struggle to capture
the breadth of patterns in the data (Makridakis et al., 2018).
The results show that our structure-learned models produce
more accurate point forecasts (improvement ≥ 14%) and
interval forecasts (improvement ≥ 6%) across 1–18 step
horizons (Figs. 6 and 7), with a runtime per dataset that is
comparable to the most competitive baselines (Table 1).

Outline The rest of the paper is structured as follows:
Section 2 reviews time series modeling using Gaussian
processes; Section 3 presents our SMC structure learning
method; Section 4 contains the evaluation; Section 5 dis-
cusses related work; and Section 6 offers closing remarks.

2. Gaussian Process Time Series Models
Preliminaries Let D := (t,y) be a dataset with n time
points t := (t1, . . . , tn) and observations y := (y1, . . . , yn).
As the true function that generated the data is unknown, we
use a Gaussian process function prior f ∼ GP(0, kθ) and
assume an additive observation noise model, so that yi =
f(ti)+ ϵi, where kθ := (k, θ) denotes a covariance kernel k
with parameters θ = (θ1, . . . , θd(k))∈Θk ⊂Rd(k); d(k) is

the number of continuous parameters in k; and ϵi
iid∼N(0, η).

The probabilistic generative model Pt(y; kθ) is then

[f(t1), . . . , f(tn)] ∼ MultivariateNormal(0, kθ(t)) (1)
yi ∼ Normal(f(ti), η), i ∈ [n]. (2)

GAMMAEXP CONSTANT CP (LINEAR + PERIODIC)

(LINEAR * PERIODIC) + GAMMAEXP (PERIODIC * PERIODIC)

Figure 2. Example time series patterns that can be expressed in the
Gaussian process model family (Eqs. (3)–(10)), including random-
walk evolution, smooth variation, trends with additive and multi-
plicative seasonality, changepoints (CP), and multiple seasonality.
For each kernel structure k, colored lines show draws of random
functions f ∼ GP(0, kθ) using different parameters θ ∈ Rd(k).

A Flexible Modeling Language While the model (1)–(2)
appears simple on the surface, Gaussian processes define
a flexible class of distributions. The kernel structure k and
parameters θ of the covariance function kθ together dictate
the properties of the random function f . Duvenaud et al.
(2013) introduced a language L for expressing a wide range
of Gaussian process patterns, which we restrict to time series
data. Kernel structures k ∈ L are specified compositionally
from simpler parts, using a context-free grammar (CFG):

B ::= LINEAR | PERIODIC | GAMMAEXP | . . . (3)
⊕ ::= + | * | CP (4)
k ::= B | (k1 ⊕ k2). (5)

The symbol B denotes a finite set of “base” kernels that
can be composed through binary operators ⊕, namely ad-
dition (+), pointwise multiplication (*), and changepoints
(CP) (Rasmussen & Williams, 2006, Chapter 4). Base ker-
nels b ∈ B and the changepoint operator CP are associated
with parameter spaces Θb ⊂ Rd(b), ΘCP ⊂ R2, respectively.
Figure 2 shows draws f ∼ GP(0, kθ), for various kθ.

A Prior Over Language Expressions To automate the
process of discovering covariance functions kθ for a given
dataset, we treat all unknown quantities as latent variables
in a probabilistic generative model Pt(k, θ, η,y) defined by

k ∼ PCFG, c.f. (3)–(5) (6)

[θ1, . . . , θd(k)]
iid∼ LogNormal(0, 1) (7)

η ∼ InverseGamma(1, 1) (8)
[f(t1), . . . , f(tn)] ∼ MultivariateNormal(0, kθ(t)) (9)

yi ∼ Normal(f(ti), η), i ∈ [n]. (10)

In Eq. (6), “PCFG” denotes a prior over L obtained by as-
signing a probability to each production rule in the CFG (3)–
(5). To ease notation, we will use the symbol φ := (θ, η) to
denote the numeric kernel parameters and noise variance.
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Problem Formulation In Eqs. (6)–(10), the posterior

Pt(k, φ | y) =
Pt(k, φ,y)∑

k∈L
∫
Θk×[0,∞]

Pt(k, φ,y) dφ
, (11)

over (k, φ) given y is defined on a transdimensional space,

support (Pt(k, φ | y)) ⊂
⋃
k∈L

[
{k} ×Θk × R

]
. (12)

Our goal is to generate a set {(wi, (ki, φi))}Mi=1 of M ≥ 1
approximate posterior samples (ki, φi) ∼ Pt(k, φ | y) and
weights wi> 0 that can be used to solve queries, i.e., to
compute posterior expectations of test functions ψ,

EPt [ψ(k, φ, t,y) | y] ≈
M∑
i=1

wi∑
j w

j
ψ(ki, φi, t,y). (13)

The query may be about the posterior probability of the
presence of a given temporal structure in the data, e.g.,

Pt(Periodic ∈ k | y) = EPt [1[Periodic ∈ k] | y] , (14)

or a prediction for new data y∗ at time points t∗, e.g.,

EPt,t∗
[f(t∗) | y] = EPt

[
ψmean
t∗ (k, φ, t,y) | y

]
, (15)

ψmean
t∗

:=

∫ ∞

−∞
u∗Pt,t∗(f(t∗) = u∗ | k, φ,y) du∗;

Pt,t∗(y∗ ≤ u | y) = EPt

[
ψCDF
t∗,u (k, φ, t,y) | y

]
, (16)

ψCDF
t∗,u

:=

∫ u

−∞
Pt,t∗(y∗ = u∗ | k, φ,y) du∗.

Since Pt,t∗(f(t∗) | k, φ,y) in Eqs. (15) and (16) is also a
multivariate normal distribution, the test function ψmean

t∗ can
be analytically computed in closed form (as can other mo-
ments, see Rasmussen & Williams (2006, Chapter 2.2)),
whereas ψCDF

t∗,u can be computed numerically with high
precision (Genz, 1992). Generally speaking, evaluating
ψ(k, φ, t,y) pointwise is “easy”; whereas computing its
posterior expectation as in Eqs. (15)–(16) requires the parti-
cle collection {(wi, (ki, φi))}Mi=1 for the estimator (13).

3. A Sequential Monte Carlo Sampler for
Time Series Structure Learning

In this section we briefly review sequential Monte Carlo
(SMC) sampling and describe a novel SMC sampler for
inferring a weighted collection of kernel structures and pa-
rameters that approximate the posterior distribution (11).

Background SMC methods (Del Moral et al., 2007) are
designed to produce approximate samples from a sequence
π0, π1, . . . , πT of probability distributions, where each πj
is defined on a measurable space (Xj ,Xj) can be evaluated

pointwise up to a normalizing constant, πj(x) = γj(x)/Zj

(j = 0, . . . , T ;Z0 ≡ 1). The output of an SMC sampler
at step j (for j = 0, . . . , T ) is a weighted “particle collec-
tion” {(wi

j , x
i
j)}Mi=1, such that each random pair (wi

j , x
i
j) is

“properly weighted” (Liu & Chen, 1998) for πj , meaning

E
[
wi

j ψ(x
i
j)
]
= ZjEπj [ψ(x)] , (φ ∈ Xj → R). (17)

As Eq. (17) implies that E[wi
j ] = Zj , the particles can be

used to obtain biased but consistent estimators of expecta-
tions Eπj [ψ(x)] via ratio estimation. Assuming that π0 is
tractable to sample from and Z0 = 1, the first step in SMC
is to generate xi0 ∼ π0 and wi

0 ← 1 (i = 1, . . . ,M ), which
gives properly weighted pairs for π0. At step j, the particles
{(wi

j−1, x
i
j−1)}Mi=1 are evolved through a two-step process

xij ∼ Kj(x
i
j−1, ·) (18)

wi
j ← wi

j−1

[
γj(x

i
j)Lj−1(x

i
j , x

i
j−1)

γj−1(xij−1)Kj(xij−1, x
i
j)

]
, (19)

where Kj : Xj−1×Xj → [0, 1] and Lj−1 : Xj ×Xj−1 →
[0, 1] are Markov kernels (whose densities we also refer to
as Kj and Lj−1). These kernels are typically designed on a
per-problem basis. Subject to relatively mild conditions, the
new particle collection {(wi

j , x
i
j)}Mi=1 obtained by Eqs. (18)–

(19) is properly weighted for πj . To help prevent particle
collapse, if the weights w1:M

j at step j become skewed,
each particle xij is resampled to take value xιj with (relative)
probability wι

j (ι = 1, . . . ,M) and its weight is reset to the
mean weight: wi

j ← (w1
j + · · ·+ wM

j )/M .

3.1. Sequential Bayesian Structure Learning

To leverage SMC for inferring the posterior Pt(k, φ |y) in
Eq. (11) we use a sequential Bayesian reasoning approach.
The observations D = (t,y) are partitioned into T sub-
sets Dj := (tj ,yj) with tj := tj,1:Nj

, and yj := yj,1:Nj

(j = 1, . . . , T ;Nj > 0). We let t1:j := ∪js=1ts and analo-
gously for y1:j , so (t,y) ≡ (t1:T ,y1:T ). In online learning
problems (e.g., Fig. 1) the Dj correspond to streaming new
data and in offline problems to batches of previous data used
to anneal the full posterior (11). The sequence of target dis-
tributions for SMC is then Pt1:j (k, φ |y1:j), j = 0, . . . , T .

As all these target distributions are defined on the same
transdimensional space (12), we use a reweight-resample-
rejuvenate SMC method (Algorithm 1) that is similar to
the iterated batched importance sampler (IBIS) of Chopin
(2002). In the reweight step (lines 4–5), the target is updated
from πj−1 := Pt1:j−1(k, φ | y1:j−1) to πj := Pt1:j (k, φ |
y1:j),. For Eq. (18), the particle (kij−1, φ

i
j−1) is evolved

through a deterministic “copy” kernel Kj , i.e, (kij , φ
i
j) ∼

δ(ki
j−1,φ

i
j−1)

, so that the corresponding reverse kernel Lj−1

is an atom at (kij , φ
i
j). The incremental weight (bracketed

term in Eq. (19)) is then Pt1:j (yj | kij , φi
j ,y1:j−1).
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Algorithm 1 SMC Structure Learning via Data Annealing

Require: Dataset sequence Dj := (ti,yj), j = 1, . . . , T ;
No. of particles M > 0, rejuv steps Nrejuv ≥ 0.

Ensure: Properly weighted samples {(wi, (ki, φi))} for
posterior distribution Pt1:T (k, φ | y1:T ).

1: ▷ Repeat operations indexed by i over i = 1, . . . ,M ◁
2: (ki0, φ

i
0) ∼ P (k, φ); wi

0 ← 1
3: for j = 1, . . . , T do
4: (kij , φ

i
j)← (kij−1, φ

i
j)

5: wi
j ← wi

j−1

[
Pt1:j (k

i, φi,y1:j)

Pt1:j−1
(ki, φi,y1:j−1)

]
6: if j < T and RESAMPLE?(w1:M

j ) then
7: (ι1, . . . , ιM )← RESAMPLE(w1:M

j )

8: (kij , φ
i
j)← (kιij−1, φ

ιi
j−1)

9: wi
j ← (w1

j + · · ·+ wM
j )/M

10: for u = 1, . . . , Nrejuv do
11: (kij , φ

i
j) ∼ INVOLUTIVEMCMC(

(k, φ) 7→ Pt1:j (k, φ,y1:j ; (k
i
j , φ

i
j)))

▷ refer to Section 3.2
12: φi

j ∼ HAMILTONIANMONTECARLO(
φ 7→ Pt1:j (k

i
j , φ,y1:j);φ

i
j)

▷ refer to Neal (2011)

3.2. Involutive MCMC Rejuvenation Moves

The rejuvenate step (lines 10–12 of Algorithm 1) evolves
the particle (kij , w

i
j) through an MCMC kernel Kj that

adapts the structure and parameters (k, φ) to the latest batch
(tj ,yj) of observations. Rejuvenation is an SMC step (18)–
(19) where the target distributions are equal, the backward
kernel is the time reversal of Kj , and the weight is un-
changed. Since Kj traverses a transdimensional space (12)
over symbolic covariance expressions, we must perform
posterior inference over tree-shaped data structures, à la
Chipman et al. (1998); Neal (2003). We build a new class of
structure learning moves based on involutive MCMC (Nek-
lyudov et al., 2020; Cusumano-Towner et al., 2020) that
generalize the greedy search operators from Duvenaud et al.
(2013) and embed them in a Bayesian inference framework.

3.2.1. SUBTREE-REPLACE

Starting at (k, θ, η), the SUBTREE-REPLACE move (Fig. 3a)
replaces a randomly selected subtree of (k, θ) with a fresh
subtree and updates the noise η using a Gibbs-type move.
More specifically, the proposal qR simulates a path b :=
(b1, . . . , bm) (m ≥ 0, bi ∈ {0 := left, 1 := right}) to a
node in the abstract syntax-tree representation of k. We then
simulate a fresh subtree (k̃, θ̃) and obtain a proposed state
(k′, θ′) by replacing the current subtree (k̂, θ̂) rooted at b
with (k̃, θ̃). We define notation for (k̂, θ̂) and (k′, θ′) as

(k̂, θ̂)← (kb, θb), (k
′, θ′)← ⊗b

(
⊖b(k, θ), (k̃, θ̃)

)
(20)

(a) SUBTREE-REPLACE

(k̂, θ̂)

b

(k, θ)

(k̃, θ̃)

b

(k′, θ′)

qR
(
b, k̃, θ̃; (k, θ)

)
fRREPLACE

qR
(
b, k̂, θ̂; (k′, θ′)

)fR REPLACE

(b) DETACH-ATTACH

(k̃, θ̃)(k̂, θ̂)

b

a

(k, θ)

(k̃, θ̃)

a

(k′, θ′)

qD (a, b; (k, θ))

DETACH
fD

qA
(
a, b, k̂, θ̂; (k′, θ′)

)ATTACHfA

Figure 3. Involutive MCMC rejuvenation moves over the structure
k and parameters θ of a Gaussian process covariance function kθ .

where (·)b, ⊖b(·) and ⊗b(·, ·) are operators for extracting,
deleting, and inserting subtrees rooted at b, respectively. To
propose a new observation noise η′ we perform a Gibbs-
style move that leverages the conjugacy of the inverse-
gamma prior (8) over η and normal likelihood (10) of the
observations y for fixed f(t) in Eq. (9). More specifically,
given (k′, θ′, η,y), the means µ′ := [µ′

1, . . . , µ
′
n] of the ran-

dom variables [f(t1), . . . , f(tn)] are known in closed form,
which lets us sample η from its conditional distribution
given (k′, θ′, f(t) = µ′,y) (proofs in Appendix A):

η′ ∼ InverseGamma(1 + n/2, 1 +
∑n

i=1(yi − µ′
i)

2/2). (21)

Let u := (b, k̃, θ̃, η′) be the variables sampled by qR. Since
SUBTREE-REPLACE is its own reversal, the mapping and
inverse mapping [(k, θ, η), u] ↔ [(k′, θ′, η′), u′] are given
by a measure-preserving involution fR defined by

fR([(k, θ, η), (b, k̃, θ̃, η
′)]) := [(k′, θ′, η′), (b, k̂, θ̂, η)],

where Eq. (20) defines (k′, θ′) and (k̂, θ̂) from (k, θ, b, k̃, θ̃).

Proposition 1. If the proposal qR samples the path b
uniformly and (k̃, θ̃) from the conditional prior given
(⊖b(k, θ)), then the involutive MCMC acceptance probabil-
ity αR = min(1, rR), where

rR :=
P (η′)

P (η)

Pt(y | k′, θ′, η′)
Pt(y | k, θ, η)

1/|k′|
1/|k|

Pt(η | µ,y)
Pt(η′ | µ′,y)

. (22)

Remark. Even though the proposal (21) for η′ resembles a
Gibbs move, the ratio rR includes terms for η′ because it is
sampled before deciding whether to accept (k′, θ′).

While the SUBTREE-REPLACE proposal is very flexible
and, provided that b is root with positive probability, ensures
irreducibility of the chain, it has a problematic limitation.
Consider a proposed move (k, θ)→ (k′, θ′) with

LINEARθ1︸ ︷︷ ︸
(k,θ)

→ (LINEARθ′
1

+ PERIODICθ′
2,θ

′
3
)︸ ︷︷ ︸

(k′,θ′)

(23)
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which may arise in the transition from Fig. 1b to Fig. 1c. The
only way for SUBTREE-REPLACE to perform such a move is
to select the root and resimulate the entire expression, which
(i) has a positive probability of not including LINEAR; and
(ii) discards the inferred parameter θ1 in the current state.
The next move type is designed to address this limitation.

3.2.2. DETACH-ATTACH

Starting at (k, θ, η), the DETACH-ATTACH move (Fig. 3b)
is composed of a pair of submoves that invert one another.

• DETACH: Replaces the subtree (ka, θa) rooted at a with
the subtree (k̃, θ̃) rooted at (a, b); so the proposed state is
(k′, θ′) ← ⊗a(⊖a(k, θ), (k̃, θ̃)). In Fig. 3b, the dotted re-
gion shows the discarded fragment (k̂, θ̂) of (ka, θa), which
will be the “scaffold” that must be simulated in the corre-
sponding ATTACH direction to reverse this move.

• ATTACH: Replaces the subtree (k̃, θ̃) rooted at a with a
new subtree (ka, θa) that itself embeds (k̃, θ̃) as a subtree
rooted at b. The remaining components of (ka, θa) other
than (k̃, θ̃), i.e., the scaffold, are precisely the discarded
fragment (k̂, θ̂) from the corresponding DETACH move. The
proposed state is (k′, θ′)← ⊗a(⊖a(k, θ), (ka, θa))

Whereas SUBTREE-REPLACE is self-inverting, the
DETACH-ATTACH move is associated with two proposals
qD and qA and two maps fD and fA that invert one another.
The DETACH direction is chosen with probability ξ ∈ (0, 1).
Proposal qD simulates a path (a, b) whereas qA simulates
both a path (a, b) and a scaffold (k̂, θ̂). Moreover

fD([(k, θ, η), (a, b)]) := [(k′, θ′, η′), (a, b, k̂, θ̂, η)], (24)

fA([(k, θ, η), (a, b, k̂, θ̂)]) := [(k′, θ′, η′), (a, b, η)]. (25)

Proposition 2. If qD and qA sample paths a uniformly and
qA samples scaffold (k̂, θ̂) from the conditional prior given
[⊖a(k, θ), b, (k̃, θ̃)], then the acceptance ratios rD = rR ·
(1− ξ)/ξ · qA(b | a; k′, θ′)/qD(b | a; k, θ) and rA = r2Rr

−1
D .

3.2.3. IMPROVING ACCEPTANCE RATES VIA
PSEUDO-MARGINAL PARAMETER PROPOSALS

It is well known that transdimensional MCMC algo-
rithms (Green, 1995) often suffer from high rejection
rates for moves (k, θ) → (k′, θ′) that change the struc-
ture (Brooks et al., 2003; Karagiannis & Andrieu, 2013). In
particular, even though k′ may model the data y well using
some ideal parameter θ′∗, the transition is likely rejected if
the proposed parameter θ′ is such that y has low density
given (k′, θ′). The first two panels in the top row of Fig. 4
illustrate this idea for the move (23), where the proposed
parameters θ′2, θ

′
3 in the PERIODIC subexpression have in-

correct frequency and lengthscale, leading to a poor fit. We
address this problem by developing an auxiliary-variable
method to improve θ′ during the transdimensional proposal.

LINEARθ1
(LINEARθ ′1 + PERIODICθ ′2,θ ′3 ) (LINEARθ ′1 + PERIODICθ ′2,θ ′3 )

U = 1

(LINEARθ ′1 + PERIODICθ ′2,θ ′3 )

U = 5
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Figure 4. Top row: Structure proposal (23) using U ∈{1, 5} aux-
iliary parameters. Bottom row: Distribution of log acceptance
ratios (58) and expected acceptances per second for various U .

For the move (k, θ) → (k′, θ′), we partition θ = (θS , θD)
and θ′ = (θ′S , θ

′
F ), where S indexes the “shared” parameters

that exist in both θ and θ′ (which may have different values),
D indexes the “discarded” parameters from θ that do not
exist in θ′, and F indexes the “fresh” parameters in θ′ that do
not exist in θ. The proposal simulates U > 0 i.i.d. auxiliary
parameters {(θ′uS , θ′uF )}Uu=1 using log-normal random walk
proposals (for S) and prior proposals (for F ) and selects
one ũ ∈ [U ] to serve as the selected parameter θ′:

θ′us ∼ LogNormal(θs,δ, δ) (u = 1 . . . U ; s ∈ S) (26)
θ′uf ∼ LogNormal(0, 1) (u = 1 . . . U ; f ∈ F ) (27)

ũ ∼ Discrete
(
ω(θ′1S,F ), . . . , ω(θ

′U
S,F )

)
, (28)

where θs,δ := ln(θs) − δ/2 (δ ≥ 0) and ω(·) assigns a
nonnegative weight to each θ′uS,F . The optimal choice of ω
that minimizes the variance of the estimate of the marginal
likelihood Pt(k

′ | y) is precisely the importance weight

ω(θ′uS,F ) =
Pt(k

′, θ′uS,F , η,y)∏
s∈S q(θ

′u
s ; θs)

∏
s∈S q(θ

′u
f )
, (29)

although the general theory we develop allows any non-
negative ω, which may be faster to compute than Eq. (29).
As part of the forward proposal (k, θ) → (k′, θ′), we also
simulate U − 1 auxiliary “reverse” parameters,

θus ∼ LogNormal(θ′ũs,δ, δ) (u = 1 . . . U − 1; s ∈ S) (30)

θud ∼ LogNormal(0, 1) (u = 1 . . . U − 1; d ∈ D) (31)
û ∼ Uniform(1, . . . , U). (32)

The role of these parameters is described in the next propo-
sition, which presents a proposal distribution, involution,
and acceptance ratio for an involutive MCMC scheme using
the auxiliary-variable proposals (26)–(28) and (30)–(32).
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Figure 5. Runtime (x-axes, log scale) vs. forecast error (y-axes, SMAPE over 18-step forecast horizon) for eight datasets in the Time Series
Data Library (Hyndman & Yangzhuoran, 2018) using three different structure discovery algorithms for temporal Gaussian processes:
SMC sampling (Algorithm 1), MCMC sampling (Saad et al., 2019) and GREEDY search (Duvenaud et al., 2013).

Proposition 3. Consider the SUBTREE-REPLACE move
using an extended proposal qUR that samples auxiliary vari-
ables (26)–(28) and (30)–(32), equipped with the involution

fUR ([(k, θ, η), (b, k̃, θ′1:US,F , ũ, θ
1:U−1
S,D , û, η′)])

= [(k′, θ′, η′), (b, k̂,(θ1:û−1
S,D , θS,D, θ

û:U−1
S,D ), û,

(θ′1:ũ−1
S,F , θ′ũ+1:U

S,F ), ũ, η)]

(33)

where (k′, θ′) := ⊗b

(
⊖b(k, (θ

′ũ
S , θD)), (k̃, θ′ũF )

)
. (34)

If qUR samples the path b uniformly and samples k̃ from the
conditional prior given (⊖b k), then involutive MCMC with
acceptance probability αU

R := min(1, r̃UR ) defines an irre-
ducible, aperiodic Markov chain with stationary distribution
Pt(k, φ |y), where r̃UR is defined in Eq. (58) of Appendix A.

Analogous results hold for the ATTACH-DETACH move.

Example Consider the move in Eq. (23). The top row of
Fig. 4 shows how the current LINEAR model (k, θ) and two
proposed models (k′, θ′) fit the data, with U = 1, 5 aux-
iliary parameters for sampling θ′. The second row shows
the empirical distribution of acceptance ratios r̃UR for var-
ious U . Since k′ is marginally orders of magnitude more
likely for the observed data than k, increasing U leads to
min(1, r̃UR ) = αU

R ≈ 1 with overwhelming probability. Let-
ting tU denote the number of seconds needed to compute r̃UR
and Naccept

U = αU
R/tU the number of accepts per second,

Fig. 4 shows that increasing U eventually leads to dimin-
ishing returns of E

[
Naccept

U

]
, because αU is essentially 1

for U ≥ 5. While the optimal value of U is difficult to
quantify theoretically for arbitrary moves (k, θ)→ (k′, θ′),
one possible choice is to set U ∝ |θ′| ≡ d(k′).

4. Evaluation
We implemented1 the time series structure discovery method
described in Section 3 using the Gen probabilistic program-
ming system (Cusumano-Towner et al., 2019) and evalu-
ated its performance against multiple automated forecasting
methods. Section 4.1 compares runtime versus accuracy pro-
files to two previous algorithms for Gaussian processes struc-
ture learning and Section 4.2 presents runtime and accuracy
results on challenging econometric forecasting benchmarks.
All the experiments were conducted on a Google Cloud n2d-
standard-48 instance (server specs: AMD EPYC™ 7B12
48vCPU @2.25GHz, 192 GB RAM).

4.1. Runtime Comparisons to MCMC & Greedy Search

Figure 5 shows runtime vs. forecasting accuracy profiles
for eight TSDL datasets (Hyndman & Yangzhuoran, 2018)
using our SMC sampler (Algorithm 1), MCMC sampling
(Saad et al., 2019), and GREEDY search (Duvenaud et al.,
2013). As in Duvenaud et al. (2013), for GREEDY the max-
imum search depth is 10, random restarts are used during
parameter optimization, and structures are scored using the
BIC. As our server has M = 48 parallel threads, we used
M particles for SMC, ran M parallel chains for MCMC,
and scored M structures in parallel for greedy search.

Greedy search delivers forecasts of comparable accuracy
to SMC and MCMC in three datasets (Figs. 4a, 4b and 4d)
and lower accuracy in five datasets (Figs. 4c and 4e–4h).
In Figs. 4f and 4h, the errors from greedy search after 10
and 100 seconds have high variance (due to random restarts)

1Available online at https://github.com/fsaad/AutoGP.jl
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Figure 6. Error of point forecasts (SMAPE and MASE) and 95% interval forecasts (MSIS) using our method (labeled AutoGP ) and
several baselines over 18 forecast horizons. Each dot at a given horizon shows the mean error (SMAPE, MASE, MSIS) across 1,428
forecasting problems in the M3 monthly econometric time series (Makridakis & Hibon, 2000). Red circles indicate horizons where
errors of AutoGP are statistically significantly less than errors of the next-best method (Mann-Whitney U test, p = 0.05 with Bonferroni
correction for 54 tests). Legends show in sorted order the overall error of each method, which is the mean error across all 18 horizons.

and are over 2x higher than those obtained from SMC in 1
second. A main distinction between greedy search operators
and MCMC rejuvenation operators is that the former can
never decrease the size of the kernel structure at given step,
whereas the latter makes stochastic accept/reject choices
using reversible moves that leave the posterior invariant.

The error distributions using SMC and MCMC typically
converge to similar values, although the MCMC chains ex-
hibit higher variance and can require between 10x (Figs. 4g
and 4h) to 100x (Figs. 4d and 4f) more wall-clock time.
It is helpful to compare SMC and MCMC using the same
overall rejuvenation budget. Consider n observations and
an SMC scheme with a logarithmic annealing schedule
t1:2, t1:4, . . . , t1:n (i.e., log n steps) and r rejuvenation
moves per step. As the rejuvenation cost with n observations
is O(n3) for a dense Gaussian process, the total cost of re-
juvenation within an SMC particle is

∑logn
i=0 r(n/2i)3 =

O(rn3). An MCMC chain with the same budget per-
forms O(r log(n)n3) work. We thus expect SMC to deliver
speedups when structures can be inferred using n∗≪n data
points relatively early in the annealing schedule.

4.2. Forecasting Accuracy on Econometric Data

Motivation The next evaluation builds on the study
of Makridakis et al. (2018) (which itself builds on the earlier
study of Ahmed et al. (2010)) comparing the accuracy of

popular machine learning forecasting methods to statistical
baselines in a benchmark of over 1,428 monthly time series
from the M3 dataset (Makridakis & Hibon, 2000). This pre-
vious study found that statistical methods consistently out-
perform more complex machine learning methods across all
18 forecasting horizons. Follow-on work by Cerqueira et al.
(2022) showed that increasing the number of observations
improves the performance of machine learning methods
to some extent, but they still do not outperform statistical
baselines on the 18-step forecast horizon.2

We benchmarked our time series method on the M3 monthly
data and compared the results to top-performing baselines
from Makridakis et al. (2018) and other popular methods
that also deliver probabilistic forecasts, including: Au-
toARIMA (Hyndman & Khandakar, 2008), AutoETS (Hyn-
dman et al., 2008), AutoTheta (Fiorucci et al., 2016), Face-
book Prophet (Taylor & Letham, 2018), Singular Spectrum
Analysis (Golyandina et al., 2018), LSTM (Lindemann et al.,
2021), and Temporal Fusion Transformer (Lim et al., 2021).
Refer to Appendix C for additional experimental details.

2The more recent study of Makridakis et al. (2023) found that
deep learning ensembles can perform competitively to statistical
ensembles on the M3 benchmark, but they require several months
of training and hyperparameter tuning. In particular, the authors
of the study write that: “the time spent for tuning the four deep
learning methods was 3,193, 512, 507 and 3,077 hours for DeepAR,
Feed-Forward, Transformer, and WaveNet, respectively”, which
renders these methods highly impractical for the typical user.
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Figure 7. Forecasts on three example time series in the M3 data using our method (labeled AutoGP ) and baselines from the evaluation in
Fig. 6. Observed data is shown in black; future data is shown in white; and point forecasts and 95% interval forecasts are shown in blue.

Accuracy Figure 6 shows the forecasting accuracy re-
sults. As in Makridakis et al. (2018), point forecasts are
evaluated using the SMAPE and MASE metrics and 95%
interval forecasts are evaluated using the MSIS metric (refer
to Eqs. (66)–(68) in Appendix C). Since fitting procedures
for most forecasting methods are themselves stochastic, we
report the lowest error across 10 different random seeds,
which lets us better quantify the predictive capacity of each
baseline independently of stochasticity in the fitting pro-
cess. Our method (named AutoGP , analogously to e.g.,
AutoARIMA) delivers the lowest forecast errors across all
three metrics, which are statistically significant in horizons
5–18 for SMAPE, 1–18 for MASE, and 5–18 for MSIS.

Qualitative Plots To gain more insight into the qualita-
tive differences between our method and the baselines, we
investigate forecasts on three example M3 time series in
more detail. In Fig. 7a, the baselines capture the seasonal
variation, however Seasonal Naive and AutoARIMA pro-
duce forecasts that are too low and, in the latter’s case, with
insufficient uncertainty. The forecast intervals from Face-
book Prophet are also too narrow, a property that appears in
several datasets (e.g., Fig. 7c) and is also observed in Hyn-
dman & Athanasopoulos (2021, Section 12.2). In Fig. 7b,
Random Walk With Drift accurately explains the data and
this structure is emulated by our method, whereas LSTM
and Temporal Fusion Transformer both capture incorrect
dynamics. Figure 7c shows an example of how AutoTheta,
a top-performing and robust statistical baseline on M3, often
learns conservative models that underfit. LSTM and Face-
book Prophet capture the seasonal structure but their point
forecasts are too low and interval forecasts poorly calibrated.
Our method also under-predicts the last three data points in
Fig. 7c but they fall within the 95% prediction interval.

Runtime Table 1 shows runtime statistics per M3 dataset
of each method. The average runtime of our method (Au-
toGP , 34.68 sec) lies between that of AutoETS (21.09 sec)
and that of LSTM (36.71 sec). Its higher variance (8.59
sec) as compared to the baselines is due to the fact that
the complexity of the learned Gaussian process structures
(which take values in an unbounded space, c.f. Eqs. (3)–(5))
depends on the complexity of the underlying temporal pat-
terns in the observed data, whereas the baselines typically
optimize over a fixed model and parameter space, making
their runtime more stable across different datasets.

The AutoARIMA, AutoTheta, and AutoETS baselines all
leverage stepwise, enumeration-based model search algo-
rithms that do not provide a straightforward way for users to
control accuracy as a function of runtime. In contrast, users
can control the runtime and accuracy trade-offs for AutoGP
(as in Fig. 5, for example) by modifying inference hyper-
parameters of Algorithm 1 such as the number M of SMC
particles, number Nrejuv of involutive MCMC rejuvenation
steps, or number T of annealing steps.

Table 1. Mean and standard deviation of wall-clock runtime per
dataset for various forecasting baselines in the M3 evaluation.

Runtime / Dataset (sec)
Mean Std

Facebook Prophet 0.87 0.41
Historic Average 4.02 1.07
RandomWalk With Drift 0.01 1.25
Naive 0.01 1.40
Seasonal Naive 5.20 1.64
AutoARIMA 12.79 2.31
AutoTheta 20.39 2.61
AutoETS 21.09 3.26
AutoGP 34.68 8.59
LSTM 36.71 0.34
Temporal Fusion Transformer 414.80 0.34
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5. Related Work
Gaussian Process Modeling Gaussian processes are
widely used models for time series data (Roberts et al.,
2013). Our work builds on the automated covariance ker-
nel discovery approach from Duvenaud et al. (2013) by
introducing a new structure learning algorithm based on
sequential Monte Carlo sampling in a Bayesian model over
covariance expressions, numeric parameters, and data. Us-
ing this new algorithm, this work presents a quantitative
evaluation that goes beyond previous work in the automated
Gaussian process model discovery literature in terms of the
number of datasets (D=1428) and baselines (B=9), e.g., Du-
venaud et al. (2013, D=5, B=5); Lloyd et al. (2014, D=13,
B=7); Janz et al. (2016, D=0, B=0); Kim & Teh (2018,
D=6, B=0); Schaechtle et al. (2017, D=4, B=5); and Saad
et al. (2019, D=7, B=5). Berns et al. (2022) provide a sur-
vey of automated covariance kernel discovery for Gaussian
process regression models with multiple input dimensions.
While our work focuses specifically on a language (3)–(5)
of kernel structures that specify covariance functions for a
single temporal input, it would be fruitful to apply our SMC
structure learning algorithm to more expressive modeling
languages that support multiple inputs.

SMC Structure Learning Sequential Monte Carlo learn-
ing algorithms have been used for Bayesian inference over
structured latent spaces in a variety of settings, including
probabilistic graphical models (Hamze & de Freitas, 2005;
Yu et al., 2021; Naesseth et al., 2014), phylogenetic tree
models (Wang et al., 2015; 2019; Moretti et al., 2021), and
Dirichlet process-based models (Obermeyer et al., 2014;
Saad & Mansinghka, 2018). Our approach in Algorithm 1
uses resample-move SMC (Chopin, 2002), where the se-
quence of target distributions is obtained via data annealing
and involutive MCMC rejuvenation moves (Fig. 3) are used
to adapt the structure given new observations; which is
a specific instantiation of the general algorithm template
in Saad (2022, Section 3.3.2) for Bayesian structure learn-
ing via SMC. Figure 5 suggests that applying this SMC
algorithm template in an analogous manner to Algorithm 1
may improve upon MCMC algorithms for structure learn-
ing in other settings, such as the model families in Adams
et al. (2010); Mansinghka et al. (2016); Jin et al. (2019);
Cranefield & Dhiman (2021); Saad & Mansinghka (2021).

Transdimensional Auxiliary Variables Section 3.2.3 in-
troduces a sampling-importance-resampling proposal for
parameters in a transdimensional move, which we formally
justify as an involutive MCMC step (Neklyudov et al., 2020;
Cusumano-Towner et al., 2019) over an extended state-space
with auxiliary variables (Lew et al., 2022). Previous works
have also used auxiliary-variable strategies for transdimen-
sional MCMC (Brooks et al., 2003; Al-Awadhi et al., 2004;

Andrieu & Roberts, 2009)—the most closely related meth-
ods are those in Yeh et al. (2012); Karagiannis & Andrieu
(2013). These two works use a single-particle, multi-step
annealed importance sampler (AIS) for proposing param-
eters in a transdimensional move; whereas our method in
Section 3.2.3 can be seen as a multi-particle, single-step AIS
proposal. A natural idea is to combine these approaches
by using a multi-particle, multi-step AIS transdimensional
parameter proposal, which can be formally understood as
an involutive MCMC move with a proposal pair as in Saad
et al. (2022, Algorithms 3 and 4) and an involution function
that generalizes the one in Eqs. (33)–(34).

6. Conclusion
We have presented a new approach for automatically dis-
covering models of time series data. Our method lever-
ages sequential Monte Carlo inference (Algorithm 1) to
effectively infer the posterior distribution over symbolic
Gaussian process model structures and numeric parameters
that can accurately model a range of real-world datasets.
We introduced involutive MCMC rejuvenation moves (Sec-
tions 3.2.1–3.2.2) that adapt the structure given new ob-
servations and a new pseudo-marginal parameter proposal
(Section 3.2.3) to improve acceptance rates of transdimen-
sional moves. These algorithmic contributions may also be
of independent interest for Bayesian structure learning in
many other symbolic probabilistic model families.

Empirical measurements in Section 4.1 show that our SMC
sampler enables 10x–100x improvements in runtime versus
accuracy profiles over previous greedy search and MCMC
structure learning methods that target the same model class.
Our algorithms enabled us to perform in Section 4.2 a
large evaluation containing ∼1,400 forecasting problems
drawn from the challenging M3 dataset, which show that our
method can produce commonsense forecasts whose accu-
racy outperforms prominent statistical and neural baselines
across multiple forecast horizons. These results present the
first illustration of the practicality of Gaussian process struc-
ture learning on a large benchmark set that is challenging
for both statistical and machine learning methods (Ahmed
et al., 2010; Makridakis et al., 2018; 2023).

As our structure learning algorithm operates over dense
Gaussian processes, it may be possible to work around
the fundamental O(n3) scaling bottleneck by using sparse
approximations (Quiñonero-Candela & Rasmussen, 2005;
Rossi et al., 2021), state-space model representations (Har-
tikainen & Särkkä, 2010; Grigorievskiy & Karhunen, 2016),
or combinations thereof (Tebbutt et al., 2021; Hamelijnck
et al., 2021). These modeling variants would enable scala-
bility beyond 10,000 observations at the expense of approxi-
mation accuracy, however, introducing new trade-offs in the
modeling and inference algorithm design space.
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A. Proofs
Proof of Equation (21). Let (k, θ, η,y) be the current state. The conditional distribution of [f(t1), . . . , f(tn)] is given by:

[f(t1), . . . , f(tn)] | (k, θ, η,y) ∼ MultivariateNormal(µ,Σ), (35)

µ := kθ(t) [kθ(t) + ηI]
−1

y (36)

Σ := kθ(t)− kθ(t) [kθ(t) + ηI]
−1
kθ(t). (37)

Conditioning on f(t) = µ and applying conjugacy of the inverse-gamma prior (8) to the normal likelihood (10) gives

η | (k, θ, f(t) = µ,y) ∼ InverseGamma

(
1 + n/2, 1 +

n∑
i=1

(yi − µi)
2/2

)
. (38)

Proof of Proposition 1. We will first show that fR is an involution. Let (k, θ, η) be the current state and (b, k̃, θ̃, η′) ∼
qR(·; k, θ, η). We then have

fR([(k, θ, η), (b, k̃, θ̃, η
′)]) = [(k′, θ′, η′), (b, k̂, θ̂, η)], where (k′, θ′) := ⊗b

(
⊖b(k, θ), (k̃, θ̃)

)
(39)

The self-inversion property holds for the variables (b, η, η′), because they each undergo a swap-position operation under fR.
It remains to show that the kernel structure k and parameters θ are self-inverted, that is,

⊗b

(
⊖b

(
⊗b

(
⊖b(k, θ), (k̃, θ̃)

))
, (k̂, θ̂)

)
= (k, θ), (40)

which follows because (k̂, θ̂) := (kb, θb) is the subtree of (k, θ) rooted at b detached by the innermost ⊖b operation.

To derive the acceptance ratio (22), the assumption that qR samples the path b uniformly and (k̃, θ̃) from the conditional
prior given (⊖b(k, θ)) means that

rR =
Pt(k

′, θ′, η′,y)

Pt(k, θ, η,y)

qR(b, k̂, θ̂, η; k
′, θ′, η′,y)

qR(b, k̃, θ̃, η′; k, θ, η,y) ������������:1

|Det JfR(k, θ, η, b, k̃, θ̃, η
′)| (41)

=
P (⊖b(k

′, θ′))P (k̃, θ̃ | ⊖b(k
′, θ′))

P (⊖b(k, θ))P (k̂, θ̂ | ⊖b(k, θ))

P (η′)

P (η)

Pt(y | k′, θ′, η′)
Pt(y | k′, θ′, η′)

1/|k′|
1/|k|

P (k̂, θ̂ | ⊖b(k
′, θ′))

P (k̃, θ̃ | ⊖b(k, θ))

Pt(η | µ,y)
Pt(η′ | µ′,y)

(42)

=
P (η′)

P (η)

Pt(y | k′, θ′, η′)
Pt(y | k, θ, η)

1/|k′|
1/|k|

Pt(η | µ,y)
Pt(η′ | µ′,y)

, (43)

where Eq. (42) uses the equality ⊖b(k, θ) ≡ ⊖b(k
′, θ′).

Proof of Proposition 2. We first describe the implicit involution fDA and proposal qDA for ATTACH-DETACH. The proposal
qDA first samples an auxiliary “direction” variable d ∈ {0, 1} (Neklyudov et al., 2020, Trick 3) with probability (ξ, 1− ξ),
where d = 0 corresponds to the DETACH direction and d = 1 to ATTACH direction. Letting z be the current state and v be
the variables sampled by the proposals (qD or qA), let qDA(d = 0,v) := ξqD(v), qDA(d = 1,v) := (1− ξ)qA(v). Then

fDA(d = 0, z,v) := (1, fD(z,v)), (44)
fDA(d = 1, z,v) := (0, fA(z,v)). (45)

To establish that fDA is an involution, it suffices to show that fD = f−1
A . As in the previous proof, the variables (a, b, η, η′)

each undergo a swap-position operation under application of fA, fD that invert one another. It remains to be shown that

⊗a(⊖a(⊗a(⊖a(k, θ), (k̃, θ̃))), (ka, θa)), (46)

which follows from the properties (i) ⊖a(⊗a(⊖aT, T
′)) = ⊖aT ; and (ii) ⊗a(⊖aT, Ta) = T ; which hold for any tree T .
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We now prove the expression for the acceptance ratio rD corresponding to the DETACH direction (d = 0). Under the
hypotheses in Proposition 2 and the fact that fDA is volume preserving, the acceptance ratio rA is given by

rA =
Pt(k

′, θ′, η′,y)

Pt(k, θ, η,y)

qDA(d = 1, a, b, k̂, θ̂; k′, θ′, η′,y)

qDA(d = 0, a, b; k, θ; k, θ, η,y)
(47)

=
Pt(k

′, θ′, η′,y)

Pt(k, θ, η,y)

(1− ξ)
ξ

qA(a, b, k̂, θ̂; k
′, θ′, η′,y)

qA(a, b; k, θ, η,y)
(48)

=
P (⊖a(k

′, θ′))P (k̃, θ̃ | ⊖a(k
′, θ′))

P (⊖a(k, θ))P (ka, θa | ⊖a(k, θ))

(1− ξ)
ξ

P (η′)

P (η′)

Pt(y | k′, θ′, η′)
Pt(y | k′, θ′, η′)

1/|k′|
1/|k|

qA(b | a; k′, θ′)
qD(b | a; k′, θ′)

P (k̂, θ̂ | ⊖a(k
′, θ′), b, (k̃, θ̃))

1

Pt(η | µ,y)
Pt(η′ | µ′,y)

(49)

=
P (η′)

P (η)

Pt(y | k′, θ′, η′)
Pt(y | k, θ, η)

1/|k′|
1/|k|

Pt(η | µ,y)
Pt(η′ | µ′,y)

(1− ξ)
ξ

qA(b | a; k′, θ′)
qD(b | a; k, θ)

, (50)

where Eq. (50) uses the following properties:

⊖a(k, θ) = ⊖a(k
′, θ′), (by construction) (51)

P (k̃, θ̃ | ⊖a(k
′, θ′)) = P (k̃, θ̃), (context-free prior) (52)

P (ka, θa | ⊖a(k, θ)) = P (ka, θa), (context-free prior) (53)

P (ka, θa) = P (k̃, θ̃)P (ka, θa | (kab, θab) = (k̃, θ̃)) (chain rule) (54)

= P (k̃, θ̃)P (k̂, θ̂ | b, (k̃, θ̃)) (notation). (55)

An identical argument establishes the expression for the acceptance ratio rD of the ATTACH direction (d = 1).

Proof of Proposition 3. Recalling the definition of the involution fUR (33)–(34) for the SUBTREE-REPLACE proposal on the
extended state-space, the acceptance ratio is

r̃UR =
Pt(k

′, θ′, η′,y)

Pt(k, θ, η,y)

qR(b, k̂, (θ
1:û−1
S,D , θS,D, θ

û+1:U
S,D ), û, (θ′1:ũ−1

S,F , θũ+1:U
S,F ), ũ, η)

qR(b, k̃, θ′1:US,F , ũ, θ
1:U−1
S,D , û, η′)

(56)

=
Pt(k

′, θ′, η′,y)

Pt(k, θ, η,y)

1/|k|
1/|k′|

P (k̂ | ⊖bk
′)

P (k̃ | ⊖bk)

q(θS,D)
∏U−1

u=1 q(θ
u
S,D)∏U

u=1 q(θ
′u
S,F )

ω(θS,D)∑U
u=1 ω(θ

u
S,D)

ω(θ′ũS,F )∑U
u=1 ω(θ

′u
S,F )

∏U
u=1
u̸=ũ

q(θ′uS,F )∏U−1
u=1 q(θ

u
S,D)

1/U

1/U

Pt(η | µ,y)
Pt(η′ | µ′,y)

(57)

=
P (θ′ũS,F )

P (θS,D)

P (η′)

P (η)

Pt(y | k′, θ′, η′)
Pt(y | k, θ, η)

1/|k|
1/|k′|

q(θS,D)

q(θ′ũS,F )

ω(θS,D)

ω(θ′ũS,F )

∑U
u=1 ω(θ

′u
S,F )∑U

u=1 ω(θ
u
S,D)

Pt(η | µ,y)
Pt(η′ | µ′,y)

. (58)

It can be readily verified that if U = 1 and δ = 0 in the log-normal proposals (26) and (30), then Eq. (58) recovers Eq. (43),
as these conditions give θS ≡ θ′ũS which in turn implies that P (θ′ũS,F )q(θS,D) = P (θS,D)q(θ′ũS,F ). To show that fUR is an
involution, we apply it twice to the current state to obtain

fUR

(
fUR ([(k, θ, η), (b, k̃, θ′1:US,F , ũ, θ

1:U−1
S,D , û, η′)])

)
(59)

= fUR

([(
⊗b

(
⊖b(k, (θ

′ũ
S , θD)), (k̃, θ′ũF )

)
, η′
)
, (b, k̂, (θ1:û−1

S,D , θS,D, θ
û:U−1
S,D ), û, (θ′1:ũ−1

S,F , θ′ũ+1:U
S,F ), ũ, η)

])
(60)

=

(k, (θS , θD)︸ ︷︷ ︸
Eq. (40)

, η), (b, k̃, (θ1:ũ−1
S,F , θ′ũS,F , θ

′ũ:U−1
S,F ), ũ, (θ1:û−1

S,D , θû:U−1
S,D ), û, η′)

 . (61)
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Figure 8. SMC step (x-axes) vs. normalized effective sample size (y-axes, ESS) for the eight datasets used in Fig. 5.

The transition kernel with acceptance probability αU
R = min(1, r̃UR ) thus leaves Pt(k, φ |y) invariant. Irreducibility and

aperiodicity follow from (i) the hypothesis that qUR selects a zero-length path b (i.e., the root node) with positive probability;
and (ii) the full support of the proposal q(θ′; θ) over Θd(k′) and of the proposal P (η′ | µ′,y) over R>0. These conditions
guarantee that any positive probability set in the transdimensional space (12) can be reached from (k, θ, η) in one step.

B. Profiles of Effective Sample Size vs. SMC Step
Figure 8 shows the normalized effective sample size (ESS) versus SMC step j, defined from the weights according to
ESSj := (

∑M
i=1(w

i
j))

2/(M
∑M

i=1(w
i
j)

2), for eight datasets analyzed in Fig. 5 (Section 4.1 of the main text). Horizontal
lines at ESS = 0.5 show the resampling threshold and vertical red lines show steps at which resampling occurred. There are
typically several rejuvenation steps between resampling steps, suggesting that particle degeneracy is not a significant issue.

C. M3 Evaluation Details
Table 2 enumerates the baselines used in the evaluation from Section 4.2.3 For each method, the default inference settings
were used where applicable. Baselines from the statsforecast and neuralforecast packages (Garza et al., 2022) require the
seasonal period m as input, which was set as m = 12 for monthly data. The LSTM and Temporal Fusion Transformer
were trained with the multi-quantile loss at level 95 to produce the required 95% forecast intervals. For Singular Spectrum
Analysis (SSA), multi-horizon forecasts were obtained using the recurrent SSA forecasting algorithm with bootstrap
estimation for the forecast intervals. For AutoGP , Algorithm 1 was run using a linear annealing schedule with 5% of the
data introduced at each step; M = 48 particles; adaptive resampling with ESS =M/2 = 24; and Nrejuv = 100 MCMC
rejuvenation steps. The training time points t and (demeaned) values y are linearly transformed to [0, 1]. We use a kernel
language L with three base kernels B (Eq. (3)) and a changepoint operator (CP, Eq. (4)) with the following parameterization:

LINEARθ1,θ2,θ3 := λt, t′.θ1 + θ2(t− θ3)(t′ − θ3) (62)

GAMMAEXPONENTIALθ1,θ2,θ3 := λt, t′.θ1 exp
(
−(|t− t′|/θ2)θ3

)
θ3 ∈ (0, 2] (63)

PERIODICθ1,θ2,θ3 := λt, t′.θ1 exp
(
(−2/θ22)(sin(π|t− t′|/θ3))2

)
(64)

k1 CPθ1,θ2 k2 := λt, t′.[σ1 · k1(t, t′) · σ2] + [(1− σ1) · k2(t, t′) · (1− σ2)]
where σ1 := (1 + tanh((t− θ1)/θ2))/2

σ2 := (1 + tanh((t′ − θ1)/θ2))/2

(65)

3We also considered the hand-designed Gaussian process model from Corani et al. (2021), which uses a fixed structure with five
kernels (PERIODIC + LINEAR + RBF + SM1 + SM2) tailored to the M3 data, where SM is a spectral mixture kernel. However, we
encountered two challenges: (i) the model hyperpriors are pre-tuned on 350/1428 monthly time series, so the forecasts apply only to
1078/1428 datasets; and (ii) the prediction intervals spanned many orders of magnitude, leading to MSIS errors of ≈ 1.8×104.
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Table 2. Baseline methods used in the evaluation from Section 4.2 on the M3 monthly time series.

Method Reference Implementation

AutoARIMA Hyndman et al. (2008) https://nixtla.github.io/statsforecast/
AutoETS Hyndman et al. (2008) https://nixtla.github.io/statsforecast/
AutoTheta Fiorucci et al. (2016) https://nixtla.github.io/statsforecast/
Custom M3 Gaussian Process Corani et al. (2021) https://github.com/IDSIA/gpforecasting/
Facebook Prophet Taylor & Letham (2018) https://facebook.github.io/prophet/
LSTM Lindemann et al. (2021) https://nixtla.github.io/neuralforecast/
Random Walk with Drift Hyndman & Athanasopoulos (2021) https://nixtla.github.io/statsforecast/
Seasonal Naive Hyndman & Athanasopoulos (2021) https://nixtla.github.io/statsforecast/
Singular Spectrum Analysis Golyandina et al. (2018) https://cran.r-project.org/web/packages/Rssa/
Temporal Fusion Transformer Lim et al. (2021) https://nixtla.github.io/neuralforecast/

C.1. Performance Metrics for Evaluating Forecasts

The definitions of Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error (MASE), and Mean
Scaled Interval Score (MSIS) appearing in Figs. 5 and 6 are taken from Makridakis et al. (2018):

SMAPEh(x, x̂) := 100× 2

h

n+h∑
t=n+1

|xt − x̂t|
|xt|+ |x̂t|

(66)

MASEh,m(x, x̂) :=
1

h

∑n+h
t=n+1|xt − x̂t|

1

n−m

n∑
t=m+1

|xt − xt−m|
(67)

MSISh,m(x, û, ℓ̂) :=
1

h

∑n+h
t=n+1(ût − ℓ̂t) +

2
a (ℓ̂t − xt)1[xt < ℓ̂t] +

2
a (xt < ût)1[ût < xt]

1

n−m

n∑
t=m+1

|xt − xt−m|
, (68)

where n is the number of observed data points; h > 0 is the forecasting horizon; m > 0 is the seasonal period (m = 12
for monthly data); x = (x1, . . . , xn, xn+1, . . . , xn+h) denotes the n observed data points and h test data points; x̂ =

(x̂n+1, . . . , x̂n+h) denotes the h point forecasts; and û = (ûn+1, . . . , ûn+h) and ℓ̂ = (ℓ̂n+1, . . . , ℓ̂n+h) denote the h upper
and lower bounds of the (1− a)% prediction interval (a = 0.05 for 95% intervals).

D. Modeling Discrete-Time Data with Gaussian Processes
Recall from Eqs. (9) and (10) that the Gaussian process time series model specifies a distribution over data yi ∼
Normal(f(ti), η) where ti ∈ R is a real time index. For discrete-time datasets such as M3, the observed time index
ti is instead a time stamp of the form YYYY-MM-DD. We convert time stamps to numbers by computing their age in
seconds since the UNIX epoch 1970-01-01 00:00:00. This strategy is preferable to converting time stamps to integer
indexes in applications where even slight differences in the duration between two time stamps influences the magnitude
of the observations (Loossens et al., 2021). In a monthly time series, for example, the month 2020-01-01—2020-02-01
contains 31 days while the month 2020-02-01—2020-03-01 contains only 29 days. The UNIX epoch encoding of these
time stamps (1577836800, 1580515200, 1583020800) captures the unequal spacing whereas the integer encoding (1, 2, 3)
does not. Another benefit of epoch encoding with continuous-time models is that it provides a coherent way of learning
seasonal periods with non-integer periodicity (such as weekly data with an annual pattern which has a seasonal period of
365.25/7 ≈ 52.179 steps on average). Traditional ARIMA or ETS models do not handle non-integer periodicity (Hyndman
& Athanasopoulos, 2021, Section 12.1) and require users to manually include Fourier features with the correct periodicity.

Caution must be taken when computing predictions with a Gaussian process trained on epoch encodings, however, because
the time series may not have meaningful semantics at arbitrary time points. Consider, for example, a monthly time series
that records the total number of home sales as measured on the final day (2020-01-31, 2020-02-28, . . . ). The output f(t) of
a Gaussian process f at a real number t that encodes an arbitrary time stamp (e.g., 2020-01-18, 8pm) may not correspond
to a semantically well-defined measurement of the underlying time series. Time series that evolve in continuous time can
generally be modeled without these subtleties.
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