
Under review as a conference paper at ICLR 2024

Felix Mohr and Marcel Wever. Naive Automated Machine Learning - A Late Baseline for AutoML.
CoRR, abs/2103.10496, 2021.

Felix Mohr, Marcel Wever, and Eyke Hüllermeier. ML-Plan: Automated machine learning via
hierarchical planning. Mach. Learn., 107(8-10):1495–1515, 2018.

Eduardo Mosqueira-Rey, Elena Hernández-Pereira, David Alonso-Rı́os, José Bobes-Bascarán, and
Ángel Fernández-Leal. Human-in-the-loop machine learning: a state of the art. Artif. Intell. Rev.,
56(4):3005–3054, 2023.

Chérubin Mugisha and Incheon Paik. Bridging the gap between medical tabular data and nlp pre-
dictive models: A fuzzy-logic-based textualization approach. Electronics, 12(8):1848, 2023.

Vu-Linh Nguyen, Sébastien Destercke, and Eyke Hüllermeier. Epistemic uncertainty sampling. In
Discovery Science - 22nd International Conference, DS 2019, Split, Croatia, volume 11828 of
Lecture Notes in Computer Science, pp. 72–86. Springer, 2019.

Randal S. Olson and Jason H. Moore. TPOT: A Tree-Based Pipeline Optimization Tool for Au-
tomating Machine Learning. In Automated Machine Learning - Methods, Systems, Challenges,
The Springer Series on Challenges in Machine Learning, pp. 151–160. Springer, 2019.

Yassine Ouali, Céline Hudelot, and Myriam Tami. An overview of deep semi-supervised learning.
CoRR, abs/2006.05278, 2020.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake VanderPlas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duch-
esnay. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12:2825–2830, 2011.

S. Russell. Rationality and intelligence. Artificial Intelligence, 94:57–77, 1997.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-WEKA: com-
bined selection and hyperparameter optimization of classification algorithms. In The 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013,
Chicago, IL, USA, August 11-14, 2013, pp. 847–855. ACM, 2013.

Isaac Triguero, Salvador Garcı́a, and Francisco Herrera. Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study. Knowl. Inf. Syst., 42(2):245–284, 2015.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605, November 2008.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luı́s Torgo. OpenML: networked science
in machine learning. SIGKDD Explor., 15(2):49–60, 2013.

Paroma Varma and Christopher Ré. Snuba: Automating Weak Supervision to Label Training Data.
Proc. VLDB Endow., 12(3):223–236, 2018.

Erik Wallin, Lennart Svensson, Fredrik Kahl, and Lars Hammarstrand. Doublematch: Improv-
ing semi-supervised learning with self-supervision. In 26th International Conference on Pattern
Recognition, ICPR 2022, Montreal, QC, Canada, pp. 2871–2877. IEEE, 2022.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. VIME: Extending the Success
of Self- and Semi-supervised Learning to Tabular Domain. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems, 2020.

Zhilu Zhang and Mert R. Sabuncu. Self-distillation as instance-specific label smoothing. 2020.

Zhen Zhao, Luping Zhou, Lei Wang, Yinghuan Shi, and Yang Gao. Lassl: Label-guided self-training
for semi-supervised learning. pp. 9208–9216. AAAI Press, 2022.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Combining Active Learning and Semi-
Supervised Learning Using Gaussian Fields and Harmonic Functions. In Proceedings of the
20th International Conference on Machine Learning (ICML), pp. 912–919, 2003.

11

Under review as a conference paper at ICLR 2024

A ANALYSIS OF THE PSEUDO-LABELING STRATEGY

In the following we visually analyze our proposed pseudo-labeling strategy. In Figure 4 the dataset
with id 44 and seed 0 was selected. Further a split of 0.025 was chosen and AutoASL constructed
the MetaEnsemble out of TabPFN, Gaussian Naive Bayes, AutoGluon and Random Forest.

Iteration 1 Iteration 1

Iteration 2 Iteration 2

Iteration 3

25 30 35 40 45 50
Num self-labeled instances

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Test accuracies

gnb
autogluon
rf
tabpfn
majority

Dataset id: 44, seed: 0, split: 0.025, selected algorithms: tabpfn, gnb, autogluon, rf

unlabelled - 0
unlabelled - 1

correct (self-)labeled - 0
correct (self-)labeled - 1

oracle - 0
oracle - 1

wrongly self-labeled - 0
wrongly self-labeled - 1

Figure 4: TabPFN embeddings for the data instances during the first iterations.

We present visualizations of the TabPFN embeddings of the data instances from DL (diamonds in
iteration 1, top left subfigure) andDU (small circles in iteration 1, top left subfigure), after projecting
them down to a 2-dimensional subspace using t-sne van der Maaten & Hinton (2008). For this
specific run, we made the following parameter choices: τ = 0.75, σ = 0.8, ρ = 0.6, s = 15,
l = 5, and n = 5. In the first iteration TabPFN was trained on the initial labeled dataset. Then,
we generated the embeddings by passing all instances within DL and DU through the encoder of

12

Under review as a conference paper at ICLR 2024

TabPFN. As can be clearly seen, TabPFN is able to separate the instances from both classes quite
well. The dataset DL is expanded by incorporating pseudo-labeled instances, which received labels
from both, AutoASL and the oracle. As can be seen in the subfigure on the top right, the self-
labeled instances exhibit a broad distribution across the instance space, aligning with our objective
of uniformly sampling diverse instances (the instances that are now visualized as diamonds). The
instances labeled by the oracle (red and dark blue) are situated in regions where instances belonging
to both labels are located, i.e., close to the decision boundary, which reflects the uncertainty of
AutoASL in these regions. Consequently, these instances were selected for being labeled by the
oracle. All pseudo-labeled instances are subsequently integrated into DL. The subsequent subfigure
(iteration 2, middle left) showcases the embeddings after having trained TabPFN on the expanded
DL, before again generating the TabPFN embeddings. This iterative process continues. Despite
some mislabeled instances the test accuracy consistently increases, as shown in the final subfigure.

Iteration 1 Iteration 1

Iteration 2 Iteration 2

Iteration 3

25 30 35 40 45 50 55
Num self-labeled instances

0.60

0.65

0.70

0.75

Test accuracies

rf
dt
ada
autogluon
gnb
tabpfn
majority

Dataset id: 734, seed: 1, split: 0.025, selected algorithms: tabpfn, rf, dt, ada, autogluon, gnb

unlabelled - 0
unlabelled - 1

correct (self-)labeled - 0
correct (self-)labeled - 1

oracle - 0
oracle - 1

wrongly self-labeled - 0
wrongly self-labeled - 1

Figure 5: TabPFN embeddings for the data instances during the first iterations.

13

Under review as a conference paper at ICLR 2024

In Figure 5 the dataset with id 734, seed 1 was selected. Further, a split of 0.025 was chosen
and AutoASL constructed the MetaEnsemble out of TabPFN, Random Forest, Ada Boost, Gaussian
Naive Bayes, AutoGluon, and Support Vector Machine. In Figure 6 we analyzed the pseudo-labeling
strategy for the dataset with id 351, seed 3, split 0.025.

Iteration 0 Iteration 1

Iteration 1 Iteration 2

Iteration 2 Iteration 3

Iteration 3

30 40 50 60 70
Num self-labeled instances

0.4

0.5

0.6

0.7

0.8

0.9
Test accuracies

logreg
rf
autogluon
dt
gnb
tabpfn
majority

Dataset id: 351, seed: 3, split: 0.025, selected algorithms: tabpfn, logreg, rf, autogluon, dt, gnb

unlabelled - 0
unlabelled - 1

correct (self-)labeled - 0
correct (self-)labeled - 1

oracle - 0
oracle - 1

wrongly self-labeled - 0
wrongly self-labeled - 1

Figure 6: TabPFN embeddings for the data instances during the first iterations.

14

Under review as a conference paper at ICLR 2024

B IMPLEMENTATION

In the following we describe the detailed pseudo-code for AutoASL. In Algorithm 2 we again de-
scribe the overall structure of AutoASL. First, a number of suitable algorithms is selected based on
their performance on the labeled dataset DL to construct the MetaEnsemble. Then, we train the
selected algorithms on the dataset DL and predict hard labels as well as class probabilities for the
instances in DU . Based on these predictions and different thresholds, that had to be chosen before-
hand, Algorithm 3 splits DU into different sets, namely a confident, self-labeled dataset DL

conf
self , an

uncertain, unlabeled dataset Dunconf
U and an unlabeled dataset Drest

U , that consists of all remaining
instances within DU . From these datasets, Algorithm 4 constructs the oracle set OS, the disagree-
ment set DS and the agreement set AS. Then, the labeled and the unlabeled dataset DL and DU ,
respectively, are updated for the next iteration.

Algorithm 2 AutoActiveSelf-Labeling
Require: Labeled dataset DL, Unlabeled dataset DU , Maximum iterations n, Set of learning sys-

tems A, MetaEnsemble E {TabPFN}, Oracle O, Thresholds τ, σ, ρ, Number of self-labeled
instances s, Number of oracle-labeled instances o, Initial iteration iter = 0

1: Ã ← SELECT(DL,A, τ) ▷ Select classifiers with 5-fold CV-score > τ on DL.
2: c← |Ã|
3: E ← E ∪ Ã ▷ Construct MetaEnsemble.
4: p← COMPUTECLASSPROPORTION(DL) ▷ Computes class proportion of positive class.
5: if Ã = ∅ then return DL ▷ No classifier was selected→ abstain from self-labeling.
6: end if
7: while iter < n do:
8: {hi|1 ≤ i ≤ c} ← TRAIN(E ,DL) ▷ Train MetaEnsemble on DL.
9: Ŷ ← hi(DU) ▷ Predict hard labels for DU for all hi.

10: z← p1(DU) ▷ Predict class probabilities for DU .
11: DL

conf
self ,Dunconf

U ,Drest
U ← ASSIGNSETS(DU , Ŷ , z, σ, ρ, c)

12: DS ← Drest
U

13: AS,OS ← CONSTRUCTSETS(DL
conf
self ,Dunconf

U , s, o, r)
14: if AS = ∅ then return DL ▷ MetaEnsemble E is uncertain→ abstain from self-labeling.
15: end if
16: DL ← DL ∪AS ∪OS ▷ Update labeled dataset DL.
17: DU ← DU \ {DS ∪AS ∪OS} ▷ Update unlabeled dataset DU .
18: iter ← iter + 1
19: end while
20: return DL

[t] Algorithm 3 constructs DL
conf
self from all instances, where all algorithms agree on and TabPFN

is confident enough. All instances, where the MetaEnsemble is maximally uncertain and TabPFN
as well, belong to Dunconf

U . The rest, i.e., the instances where a majority of the algorithms inside
MetaEnsemble disagrees with a minority, belongs to Drest

U .

Algorithm 3 AssignSets

Require: Unlabeled dataset DU , Predicted hard labels Ŷ , Predicted class probabilities z, Confi-
dence threshold σ, Uncertainty threshold ρ, Number of algorithms inside MetaEnsemble c

1: Dconf
U ← {xi ∈ DU |h1(xi) = . . . = hc(xi), z1 ̸∈ [1− σ, σ]}

2: DL
conf
self ← {(xi, h1(xi))|xi ∈ Dconf

U } ▷ Construct confident dataset.

3: Dunconf
U ← {xi ∈ DU |

∑c
j=1 hj(xi) =

c
2 , z1 ∈ (1− ρ, ρ)} ▷ Construct uncertain dataset.

4: Drest
U ← {xi ∈ DU |xi /∈ {Dconf

U ∪ Dunconf
U }}

5: return DL
conf
self ,Dunconf

U ,Drest
U

15

Under review as a conference paper at ICLR 2024

Algorithm 4 computes, how many instances from class 0 and class 1 will be sampled for self-
labeling, based on the class proportion r. The instances are sampled uniformly from DL

conf
self to

construct the agreement set AS. From Dunconf
U the instances are sampled uniformly to construct

the oracle set OS. The instances inside OS are then labeled by the oracle.

Algorithm 4 ConstructSets

Require: Self-labeled, confident dataset DL
conf
self , Uncertain dataset Dunconf

U , Number of instances
to self-label s, Number of instances to forward to the oracle o, Class proportion positive class r

1: AS ← {(xi, h1(xi)) ∼ DL
conf
self } ▷ Sample first instance randomly.

2: if p ≤ 0.5 then s0 ← s− ⌊r · s⌋ ▷ Compute parameter for stratified sampling.
3: else s0 ← ⌊r · s⌋
4: end if
5: while |AS| < s do
6: iter ← 0
7: while iter < s0 do ▷ s0 many instances with pseudo-label 0.
8: AS ← AS ∪ {(xi, h1(xi)) ∼ DL

conf
self |h1(xi) = 0}

9: iter ← iter + 1
10: end while ▷ s− s0 many instances with pseudo-label 1.
11: AS ← AS ∪ {(xi, h1(xi)) ∼ DL

conf
self |h1(xi) = 1}

12: end while
13: OSU ← {xi ∼ Dunconf

U } ▷ Sample first instance randomly.
14: while |OSU | < o do
15: OSU ← OSU ∪ {xi ∼ Dunconf

U }
16: end while
17: OS ← {(xi, O(xi))|xi ∈ OSU} ▷ Forward instances in OSU to the oracle for labeling.
18: return AS,OS

16

Under review as a conference paper at ICLR 2024

C EXPERIMENTS

This section contains further information on the experiments.

C.1 MODEL DESCRIPTIONS

ML Models. The following traditional (simple) ML models are used in our experiments.

• Logistic Regressor
Logistic regression is a binary classification algorithm that models the probability of a
binary outcome using a logistic (sigmoid) function. It is a variant of linear regression,
which transforms the linear output into probabilities.

• Random Forest
Random Forest is a powerful ensemble learning method. It works by constructing multiple
trees and combining their predictions. Each tree is trained on a random subset of the data,
and the final prediction is made by aggregating the outputs of these trees. This approach
reduces overfitting and improves the generalization of the model.

• KNN-Classifier
K-Nearest Neighbors is an instance-based classification algorithm. It classifies data points
by finding their K-nearest neighbors in the training data and assigning the majority class
label among those neighbors to the test point. K is a user-defined parameter that determines
the number of neighbors to consider.

• Support Vector Machine (SVM) with a Linear Kernel
The SVM is a binary classification algorithm that seeks to find a hyperplane that best sep-
arates the classes in the data. When a linear kernel is used, SVM aims to create a linear
decision boundary. It does this by maximizing the margin between the two classes, which
improves the robustness of the model.

• SVM with a Radial Basis Function (RBF) Kernel
The SVM with an RBF kernel is an extension of SVM for handling nonlinearly separable
data. It maps the data into a higher-dimensional space where a linear decision boundary
can be established. The RBF kernel is particularly useful when the data doesn not have a
clear linear separation.

• Gaussian Process Classifier
Gaussian Process is a probabilistic classification model that provides not only predictions
but also uncertainty estimates. It models the distribution over functions and can adapt to the
data. This makes it valuable for small datasets or situations where uncertainty in predictions
is crucial.

• Decision Tree
A Decision Tree is a hierarchical model that makes decisions based on feature values. It
recursively splits the data into subsets based on the most informative features, aiming to
maximize information gain or minimize impurity at each step.

• Adaboost Classifier
AdaBoost is an ensemble learning technique that combines multiple weak classifiers into
a strong classifier. It assigns weights to data points, focusing more on those that are mis-
classified in each iteration. By iteratively improving the classification of difficult examples,
AdaBoost creates a robust final classifier.

• Gaussian Naive Bayes Classifier
The Gaussian Naive Bayes classifier is a probabilistic algorithm based on Bayes’ theorem.
It assumes that features follow a Gaussian distribution and calculates the probability of a
data point belonging to a particular class.

17

Under review as a conference paper at ICLR 2024

AutoML Tools. The following AutoML-tools are used in our experiments as well as for the base-
lines.

• AutoGluon
AutoGluon Erickson et al. (2020), an open-source AutoML framework, employs a sophis-
ticated ensemble technique known as multi-layer stacking to enhance predictive model per-
formance. The method begins by training a set of base models. These base models generate
predictions, which are then used as features in subsequent stacking layers. Each stacking
layer consists of stacker models that learn from the base models predictions and the original
dataset, creating a hierarchical structure. This approach captures diverse patterns, reduces
overfitting, and leverages all available data for training. The final stacking layer aggregates
predictions using ensemble selection, resulting in highly accurate model predictions. The
multi-layer stacking strategy enhances predictive robustness and generalization, making it
a powerful tool for constructing accurate predictive models for structured tabular data in a
user-friendly and predictable manner.

• TabPFN
TabPFN Hollmann et al. (2023) is a cutting-edge model for fast and accurate supervised
classification on small tabular datasets. It uses in-context learning (ICL) to make predic-
tions based on labeled examples in the input, eliminating the need for further parameter
updates. TabPFN is trained offline on synthetic data using a Prior-data Fitted Network
(PFN) architecture, which incorporates a novel prior specifically designed for tabular data.
During training, a 12-layer Transformer model is trained on synthetic datasets generated
from the prior. This training step is done once and takes advantage of architectural en-
hancements for efficient inference. During inference, TabPFN approximates the posterior
predictive distribution (PPD) for the dataset prior, favoring simpler and causal explanations
for the data. TabPFN achieves exceptional speed and competes with complex AutoML
systems on small tabular datasets, making it a valuable tool for rapid classification tasks.

SSL Tools. Additionally, we compared our approach to the following two baselines.

• Snuba
Snuba Varma & Ré (2018) is a system designed to automate the process of generating
heuristics for assigning training labels to large, unlabeled datasets in a weak supervision
setting. It aims to replace the human-driven heuristic development process, which can be
time-consuming and expensive. Snuba leverages a small labeled dataset to automatically
create noisy heuristics that iteratively label portions of the unlabeled data. Importantly, it
introduces a statistical measure that ensures the termination of this iterative process before
the heuristics degrade label quality beyond a certain threshold. The core components of
Snuba include a synthesizer for accuracy, a pruner for diversity, and a verifier to determine
termination conditions. These components work together to generate a set of heuristics
that balance accuracy and coverage while maintaining label quality. Its system architecture
and theoretical guarantees ensure its efficiency and effectiveness in automating the weak
supervision process. However, this approach heavily relies on the feature representation of
each instance, which has to be chosen by the user. The authors only give a rough idea of
how these feature representations could be generated.

• VIME
VIME Yoon et al. (2020) (Value Imputation and Mask Estimation) is a self- and semi-
supervised learning framework designed for tabular data. Unlike existing methods that
excel in structured data like images and language, VIME adapts to general tabular data,
which lacks the same explicit structure. It introduces two pretext tasks: feature vector esti-
mation and mask vector estimation for self-supervised learning, along with a novel tabular
data augmentation method. VIME creates augmented samples for each training sample
by applying the mask vector estimation and feature vector estimation procedures multi-
ple times. These augmented samples are used to calculate the unsupervised (consistency)
loss during training. After training, the predictive model can make predictions on new test
samples.

18

