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Abstract
AI systems are ubiquitous, and extend their reach even into highly sensitive
domains such as finance. Despite these fields being heavily regulated, it
has been demonstrated time and time again that employed AI systems
tend to discriminate against legally protected groups. Ensuring fairness is
a complex problem which is even getting more complex by privacy-related
concerns. For example, while a company may wish to demonstrate that its
proprietary model meets specific fairness standards – either to comply with
regulations or to build customer trust – they are often reluctant to disclose
the model to facilitate the verification.
In our work we address this problem for the case of decision trees. We utilize
zero-knowledge proofs – a well-known technique from cryptography – to de-
sign a new algorithm which proves that a proprietary model satisfies a given
fairness constraint without revealing anything about the model. While the
usage of zero-knowledge proofs in the context of privacy-preserving ML
is not new, our protocols are tailor-made for the specific case of proving
fairness of decision trees, and we provide the first non-interactive solution
for this scenario, where "non-interactive" means the prover sends a single
message to a verifier.
Our protocol improves upon previous zero-knowledge proofs for fairness
in terms of communication bandwidth. While our prover time is higher,
we believe that the non-interactive and public verifiability features offer
greater practical utility, as they enable the creation of a compact, reusable
certificate that multiple verifiers can validate asynchronously.

1 Introduction

AI systems have the potential to cause harm and discriminate humans by disproportionately
affecting individuals based on their group identity, such as race, gender, age, etc. This is not
merely a hypothetical concern: It has been demonstrated across various domains, including
credit scoring (Fuster et al. [2022]), criminal risk assessment (ProPublica [2016]), and hiring
decisions (Reuters [2018]). It is therefore not surprising that as AI usage keeps growing,
organizations are under increasing pressure to ensure the fairness of their machine learning

2nd Workshop on Regulatable ML at NeurIPS 2024.



Figure 1: Left: An honest prover computes the fairness outcome and produces the proof.
By correctness of the zero-knowledge scheme, verifier accepts. Right: A malicious prover
with the model that does not pass the fairness check attempts to cheat during the proof
generation. By soundness of the zero-knowledge scheme, verifier rejects.1

systems – driven not only by societal expectations (Times [2020]), but also by emerging legal
regulations (European Commission [2024], House [2022]). In the U.S., in order to settle a
lawsuit filed by the Department of Justice, a well-known tech company has recently built a
new system to address algorithmic discrimination in advertising, which was in violation of
the Fair Housing Act (Times [2022]). In Europe, the recently introduced AI Act references
terms such as “equality”, “discrimination”, and “discriminatory” forty-eight times, and it
emphasizes the importance of implementing non-discrimination measures from the earliest
stages of AI model design (European Commission [2024], Equinet [2024]).
Unfortunately, proving that a given model complies with non-discriminatory regulations
is not straight-forward, in particular whenever the model is proprietary and must remain
confidential. In practice, an external examiner interacts with the company, posing questions
about the model’s training process and the measures taken to ensure fairness. This process
consumes significant resources and offers little satisfaction to either party — the evaluator
must rely on the company’s honesty, while the company may feel burdened by the lack of
clear, objective criteria or the need to disclose proprietary information.
A recent work by Shamsabadi et al. [2023] (“Confidential-PROFITT”) offers a solution by
utilizing cryptographic techniques in the context of decision trees in order to obtain confiden-
tial proofs of fair training. It is important to note that ‘fair training’ in this context does not
imply the model is inherently “fair” by societal standards or according to non-discriminatory
laws. Rather, it means that a given fairness parameter (related to, e.g., demographic parity),
is above a certain threshold. Specifically, Confidential-PROFITT’s fair training algorithm
works by recursively partitioning the training dataset based on criteria which capture the
information gain with respect to not only class, but also sensitive attributes. This allows
to link the information gain with respect to the sensitive attribute to the notion of demo-
graphic parity. More importantly, it uses zero-knowledge proofs (Goldwasser et al. [1985]),
which allow to prove that a statement is true without revealing any information beyond
its validity, and applies these to the training algorithm. In particular, zero-knowledge is
a cryptographic concept where one person (the prover) can prove to another (the verifier)
that they know something, like a password or a solution to a problem, without revealing any
information about what that something actually is. It’s like proving you know the answer
without showing the answer itself. These proofs further provide correctness (a prover prov-
ing a correct statement is always able to convince the verifier), and soundness (a malicious
prover cannot convince the verifier of a validity of an incorrect statement) guarantees. This
solves the dilemma mentioned in the paragraph above: Now, the company can formally
prove to the external examiner that the training process adheres to fairness principles, all
without disclosing proprietary data or methods. Figure 1 illustrates the message flow be-
tween the prover and the verifier, where the prover seeks to demonstrate that the fairness
property exceeds the 0.8 threshold without disclosing the underlying decision tree to the
verifier.

1Icons have been retrieved from Flaticon.com
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While Confidential-PROFITT is undoubtedly a step forward towards reconciling fairness
and privacy concerns in the context of decision trees, it nevertheless leaves a number of
questions open. First, while Confidential-PROFITT positions the solution as a certificate
which proves fairness, their solution is, in fact, an interactive and designated verifier pro-
tocol, which requires a verifier to remain online and to maintain a secret internal state
while the prover generates a proof. Therefore, their solution can be verified only by the
examiner who participated in this interactive process – a third party (e.g., a examiner from
another jurisdiction, or a customer who wishes to verify the model’s fairness) would not
be convinced by the iteration transcript, and the verification process would need to be
done anew. Although there exist standard cryptographic methods of compiling an interac-
tive scheme into a non-interactive one such as Fiat and Shamir [1987], the underlying zero
knowledge proof (Franzese et al. [2021]) of Confidential-PROFITT is not amenable to such
generic conversion methods. Although Yadav et al. Yadav et al. [2024] recently introduced
a non-interactive and publicly verifiable zero knowledge protocol for checking fairness, their
method is tailored to neural networks. Moreover, unlike Confidiential-PROFITT, which al-
lows verifier to check group fairness metrics of the proprietary model, the protocol of Yadav
et al. [2024] is specifically designed for individual fairness. As such, there is currently no ex-
plicit non-interactive and publicly verifiable solution for checking group fairness of (private)
decision trees in the literature.
Finally, Confidential-PROFITT assumes that the test data which is used during the fairness
verification check is identical to the one used for the training. The algorithm ensures that
this data is kept private, which is crucial to meet the privacy concerns. However, there is
nothing preventing a dishonest company from substituting the test data with a different
dataset during verification, because the functionality it achieves does not guarantee that
the private model is correctly derived from the test data. At the same time, an artificially
crafted dataset (which is not the same as the training dataset) could make the model pass
the fairness check — in fact, a dataset which is as simple as not including one minority
group (based on the sensitive attribute) allows any decision tree to pass the fairness check.
Since the dataset is never revealed to the examiner, there is nothing preventing a malicious
company from deceiving the examiner!

1.1 Our Contributions

In this work, we address the concern above. Specifically, we provide the first non-interactive
proof for fair decision trees. In contrast to Confidential-PROFITT, our solution is further
publicly verifiable, meaning that a certificate produced by our protocol would convince any
party that a model satisfies a certain fairness constraint with respect to a given test data,
even if the party did not participate during the protocol’s execution. We further focus
on the case where the test data is not the same as the training data and need not be
kept secret, e.g., the test data can be one of the publicly available fairness datasets such
as Census Income (Repository [1996]), Default Credit (Repository [2009]), and American
Community Survey Income Ding et al. [2021]. This allows us to circumvent the attacks
based on artificially crafted datasets. Finally, our zero-knowledge techniques are different
from those used in Confidential-PROFITT, and our evaluation shows that our solution
improves upon previous work in terms of communication bandwidth. While our prover time
is higher, we believe that the non-interactive and public verifiability features offer greater
practical utility, as they enable the creation of a compact, reusable certificate that multiple
verifiers can validate asynchronously.
To summarize, we propose the first non-interactive publicly-verifiable proof for fairness of
decision trees. Unlike previous works, it does not assume that the training data is the
same as the test data, which enables the examiner to check fairness on publicly available
datasets and reduces the impact of artificially crafted test datasets. Finally, our construction
improves upon prior work in terms of communication bandwidth.

2 Problem Statement, Notation, and Preliminaries

In our scenario we consider two parties: A prover (i.e., company which holds the proprietary
decision tree model) and a verifier (i.e., the examiner). The examiner wishes to verify that

3



the model satisfies a given fairness metric on a publicly available dataset (such as COMPAS,
Adult etc). For simplicity, we assume that the (upper-bound on) depth of the decision tree
is public, and that our sensitive attribute, along with the classification output, is binary.

2.1 Notation

We use a bracket notation [n] to denote a set of integers {1, . . . , n}. We denote the decision
tree by T , the height of the tree by h, and the number of attributes by d, respectively. A
datapoint a is represented by a key-value table, i.e., a = {attr1 : val1, . . . , attrd : vald}. The
sensitive attribute is denoted by s ∈ [d]. We denote a cryptographic hash function by H().
We denote the number of test data points by n.

2.2 Preliminaries

We now provide background on the important components of our construction. First, we
discuss the fairness metrics considered in this work. Next, we give a short overview of
decision trees – the machine learning model which we focus on in our solution. Finally, we
discuss zero-knowledge proofs – a well-known cryptographic primitive which lets the prover
prove to the verifier that a given statement holds in a privacy-preserving manner.

Fairness Over the years, numerous fairness metrics have emerged (Heidari et al. [2019]),
each grounded in distinct philosophical and societal perspectives. These notions are often
conflicting and there is no consensus on a single, “universal” definition of fairness that suits
all use cases. We emphasize that it is not our goal to identify the most appropriate notion,
nor is it to advertise for any specific definition. We focus on the following four traditional
notions of group-fairness criteria:

• Demographic Parity ignores the ground truth and aims to equalize the proba-
bility of a positive classifier output in each sensitive group. More formally:

DP(Ŷ ; s) =
∣∣Pr

[
Ŷ = 1

∣∣ s = 0
]
− Pr

[
Ŷ = 1

∣∣ s = 1
]∣∣

• Disparate Impact considers the ratio of the positive prediction rates of the two
sensitive groups:

DI(Ŷ ; s) =
Pr

[
Ŷ = 1

∣∣ s = 0
]

Pr
[
Ŷ = 1

∣∣ s = 1
]

• Equalized Odds aims to equalize the false positive and true positive rates in each
sensitive group:

EOd(Ŷ ; s) = max
y∈{0,1}

∣∣Pr
[
Ŷ = 1

∣∣ s = 0, Y = y
]
− Pr

[
Ŷ = 1

∣∣ s = 1, Y = y
]∣∣

• Equality of Opportunity is a partial form of equalied odds, and considers the
disparity only between true positive rates in the sensitive groups:

EOp(Ŷ ; s) =
∣∣Pr

[
Ŷ = 1

∣∣ s = 0, Y = 1
]
− Pr

[
Ŷ = 1

∣∣ s = 1, Y = 1
]∣∣

Decision trees Decision tree-based solutions are among the most popular machine learning
algorithms, particularly known for their effectiveness in classification problems. Their strong
performance, combined with high levels of explainability, makes them a popular choice in
practice, specifically for fraud detection and automated trading. For simplicity, in the
following we focus on binary decision trees for classification problems. The training of a
decision tree typically involves recursively splitting the dataset into subsets from the root to
the leaves. Each split is determined by a splitting rule that aims to maximize an objective
function, such as information gain. The prediction is done by traversing the path from the
tree root to the leave, while checking the threshold of the intermediate node and following
the corresponding path based on the decision at each step (see Algorithm 1).

Non-Interactive Zero Knowledge Proof A zero-knowledge proof is a well-known cryp-
tographic technique which allows the prover prove to the verifier that a given statement
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Algorithm 1: Decision Tree Inference

Input: Decision tree T , input a.
Output: Classification result.
1: Let cur := T .root
2: while cur is not a leaf do
3: if a[cur.attr] < cur.thr then
4: cur := cur.left.
5: else
6: cur := cur.right.
7: return cur.class

holds without leaking any information besides the validity of the statement. For example,
it is possible to prove that the output of a decision tree T on a given public input a equals
to y without revealing anything about T ’s node conditions. See Appendix B for more intu-
ition. More formally, we consider a non-interactive zero knowledge proof system (henceforth
NIZK) for NP relation R denoted by a tuple ZK = (G,P,V) of three algorithms:
pp← G(1λ) is a setup algorithm that samples a public parameter pp, where λ denotes a
security parameter.
π ← P(pp, x, w) is a prover that outputs a proof π asserting (x, w) ∈ R. If (x, w) /∈ R, P
outputs ⊥.
b← V(pp, x, π) is a verifier that outputs a decision bit b ∈ {0, 1}∗.

Here, the common input x to both parties is called statement while P’s private input w is
called witness. For instance, if the prover is tasked to prove T (a) = y for public a and y
for a private decision tree T , one can set x = (a, y) and w = T . We assume ZK to satisfy
standard security properties, such as completeness (i.e., if P and V follow the protocol, V
always accepts), knowledge soundness (i.e., if V accepts the proof generated by a cheating
prover P∗, then it must be that P∗ owns a valid witness w satisfying given NP relation
w.r.t. statement x), and zero knowledge (i.e., if the proof generated by P leaks nothing
except that fact that ∃w such that (x, w) ∈ R). We refer the reader to standard references
such as Goldreich [2001] for more formal definitions.

3 Our Zero Knowledge Proof for Decision Tree Fairness

We now design a mechanism which allows to verifiably prove that a proprietary decision
tree model satisfies a fairness check on a given public test data without revealing anything
about this model besides 1) the upper-bound on the tree height and 2) that it passes the
fairness check. To do so, we design a zero-knowledge proof tailored to the fairness check
procedure.

3.1 Overview of zkDTF

At a high level, we follow the approach of Zhang et al. [2020], who designed a zero-
knowledge proof system for decision tree accuracy (henceforth zkDTA). Our construction,
zero-knowledge proof system for decision tree fairness (henceforth zkDTF), consists of the
following steps: (a) commitment to the model, (b) computation of the outcome, (c) zero-
knowledge fairness proof. We now explain each of these steps.

Commitment to the model As the first step, the prover computes and publishes a
cryptographic commitment comT to their decision tree model. This commitment can be
instantiated with the hash2 of the following information for each tree node concatenated
with a uniformly random string ρ: The attribute attr being checked, the threshold thr, and

2Intuitively, a hash function maps an arbitrary binary string to a binary string of a certain
length in a way that it is computationally hard to find an input string that matches a given hash
value. It is further hard to find a pair of different messages that have the same hash value.
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the pointers to the node’s left and right child, denoted by left and right. Note that the
commitment satisfies two properties: (i) It hides the committed information – it is hard to
guess x given only the hash of x, and (ii) It binds the committed data – given a hash h, it
is computationally hard to come up with two tuples (T , ρ) and (T ′, ρ′) such that they both
hash to h and T ̸= T ′. Note that randomness ρ is crucial for the hiding property and thus
must be kept in secret by the prover.

Computation of the outcome Next, the prover computes the prediction for the given
public test dataset D = {a1, . . . , an}, by evaluating a previously committed tree T on each
data point ai. For each datapoint ai, the prover also stores the corresponding path pathi

from the root to the leaf node. Finally, the prover uses the computed outcomes Ŷ = {ŷi}i∈[n]
(along with the test data and the corresponding ground-truth Y) to obtain the fairness result.
We abstract the process of calculating fairness metric by a function FM(D,Y, Ŷ, s), where
s is a binary sensitive attribute. The function FM can be instantiated in different ways,
depending on which fairness metric is employed from Section 2.2. For instance, to calculate
Demographic Parity, one may define

FM(D,Y, Ŷ, s) :=
∣∣∣∣∣ | {ai ∈ D : ai[s] = 0, ŷi = 1} |

| {ai ∈ D : ai[s] = 0} | −
| {ai ∈ D : ai[s] = 1, ŷi = 1} |
| {ai ∈ D : ai[s] = 1} |

∣∣∣∣∣ (1)

and FM can be instantiated for other metrics analogously.

Zero-knowledge fairness proof Assuming that the fairness check passes, in the last step,
the prover uses a secure NIZK scheme on the previously computed data (predictions, paths,
fairness outcome) along with the public data (test dataset D and commitment comT ) to
show the following statement in zero-knowledge: I know a model T for which all of the
following holds:

(1) It is committed under comT

(2) T ’s prediction for ai corresponds to path pathi for each i ∈ [n]
(3) pathi’s leaf is ŷi for each i ∈ [n]
(4) when the agreed upon fairness metric function FM is computed on the tuple

(D,Y, Ŷ = {ŷ}i∈[n], s), the outcome is below threshold fthr.

Note that our protocol allows for a flexible choice of the NIZK scheme to prove these
conditions. In fact, Step (1)-(3) can rely on existing NIZK schemes for batching a large
number of predictions w.r.t. a committed decision tree (e.g., Zhang et al. [2020], Campanelli
et al. [2024]). Step (4) requires an additional component. However, it can be computed with
standard operations supported by the aforementioned NIZK: at most n addition operations,
at most 2 multiplication-by-constant operations and at most 4 comparison operations.3
The comparison operations are already a part of Step (2), and thus we can reuse the same
techniques. Further, note that because we use a secure NIZK, the protocol does not leak
predictions Ŷ w.r.t test data D; a prover only leaks the fact that a committed tree T meets
the fairness condition w.r.t. a given test data set, sensitive attribute, and fairness threshold.

3.2 Formal Description

We now give the full description of our protocol. First, we define the syntax of ZKP for
decision tree fairness (zkDTF). The protocol consists of a tuple of algorithms zkDTF =
(G, Commit,P,V):
pp← G(1λ) is a setup algorithm that samples a public parameter pp.

3Note that we do not need division operations or multiplication between two private values,
which are more expensive than simple linear operations we rely on. For instance, to perform
|a

b
− c

d
| ≤ fthr one can clear the denominator and check the equivalent condition |ad− bc| ≤ bd · fthr.

As b, d, fthr are public in the case of DP, EOd, EOp, one can indeed check the equivalent condition
without division and multiplication between two private values. In a similar manner, one can clear
the denominator of DI to avoid division.
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Protocol 1: Zero Knowledge Proof for Decision Tree Fairness

Setup zkDTF.G(1λ): Run pp← ZK.G(1λ). Output pp.

Commit zkDTF.Commit(T , ρ): Run comT = H(T , ρ). Output comT

Prove zkDTF.P(pp, comT , T , ρ,D,Y, s, FM, fthr):

1: Compute the prediction ŷi = T (ai) for each i ∈ [n]. Let Ŷ = {ŷ1, · · · , ŷn}.
2: Compute the fairness outcome according to the fairness metric function: v = FM(D,Y, Ŷ, s). Abort

if v > fthr.
3: Produce a proof π by running ZK.P for the following NP relation:

RDTF =
{

((comT ,D,Y, s, fthr), (T , ρ)) : comT = H(T , ρ) ∧ Ŷ = {T (ai)}n
i=1 ∧ FM(D,Y, Ŷ, s) ≤ fthr

}
Verify zkDTF.V(pp, comT ,D,Y, s, FM, fthr, π): Accept π if and only if ZK.V for RDTF accepts π.

comT ← Commit(T , ρ) is a committing algorithm that outputs a commitment comT , taking
a trained decision tree T and randomness ρ as input. We assume that the commitment
scheme satisfies standard binding and hiding properties.
π ← P(pp, comT , T , ρ,D,Y, s, FM, fthr) is a DT fairness prover that outputs a proof π as-
serting that a committed T satisfies a certain fairness condition w.r.t. test data set
D = {a1, · · · , an}, ground truth labels Y = {y1, · · · , yn}, sensitive attribute s, fairness
metric function FM, and threshold fthr. If the fairness condition is not satisfied, P outputs
⊥.
b← V(pp, comT ,D,Y, s, FM, fthr, π) is a verifier that outputs a decision bit b ∈ {0, 1}∗. We
describe a way to construct a zkDTF protocol using a NIZK scheme ZK as a subroutine in
Protocol 1.

4 Evaluation

4.1 Implementation

We implemented our zkDTF protocol by modifying an existing implementation of zero knowl-
edge proof of accuracy (zkDTA) from TAMUCrypto [2021]. While in their protocol the
prover’s goal is to verifiably prove accuracy of a proprietary model, in our work the goal
is prove that the model satisfies a given fairness check. However, both protocols require
Steps (1)-(3), which allow us to reuse a large portion of Zhang et al. [2020]. The critical
difference between zkDTF and zkDTA lies in Step (4): while zkDTA counts the number of
correct predictions and performs an equality check w.r.t a public accuracy value acc there,
zkDTF first computes a fairness metric and compares it against a public fairness threshold
fthr. Both cases only involve summation of at most n private values. While zkDTA needs n
equality check operations, zkDTF requires a few additional multiplication-by-constant and
comparison operations for all fairness metrics considered in Section 2.2. However, as Step
(2) (i.e., prediction check for all n data points) already requires O(nh) comparison opera-
tions in both zkDTA and zkDTF, we observe that a few additional operations in Step (4)
only introduce a negligible difference in performance.
As the publicly available implementation of Zhang et al. [2020] relies on the widely deployed
Groth16 NIZK protocol Groth [2016], our implementation of zkDTF also invokes it as a
backend. The implementation of Groth16 is inherited from the libsnark library Lab [2012]
and we instantiated its parameters with the BN254 pairing-friendly elliptic curve Jancar
[2020]. As the most expensive operation of Groth16 consists of Fast Fourier Transform
(FFT) and elliptic curve arithmetic, which are parallelizable, we compiled the libsnark
library while enabling parallelized execution of these low-level computations.
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Table 1: Performance of our zkDTF protocol for checking Equalized Odds. ‘DC’ denotes the
Default Credit data set; ‘CI’ denotes the Census Income data set. The running time bench-
marks are based on our experiments conducted on an Amazon EC2 c7a.12xlarge instance
with 96GB RAM (without parallelization). For completeness, we also restate the bench-
marks for Confidential-PROFITT Shamsabadi et al. [2023] in the rows marked by ‘CP’.
These numbers are based on their experiments conducted on Amazon EC2 instances where
prover and verifier are connected over a LAN. Note that, unlike our zkDTF, the verifier of
Confidential-PROFITT does not receive any data set as input.

Setup
(sec)

Prove
(sec)

Verify
(sec) Proof Size (kB) Publicly

Verifiable Non-Interactive

DC (Ours) 1430 825.6 < 1 0.2 ✓ ✓
DC (CP) – 72.2 72.2 109875 × ×
CI (Ours) 1982 1001.5 < 1 0.2 ✓ ✓
CI (CP) – 104.7 104.7 148685 × ×

Table 2: Performance of our zkDTF protocol for checking Demographic Parity (DP) and
Equalized Odds (EqOd) of decision trees trained on the American Community Survey (ACS)
Income data set. The running time benchmarks are based on our experiments conducted on
an Amazon EC2 c7a.12xlarge instance with 96GB RAM. We parallelized FFT and elliptic
curve operations of the underlying Groth16 NIZK protocol Groth [2016] by exploiting 48
vCPUs.

Setup Time (sec) Prove Time (sec) Verifier Time (sec) Proof Size (kB)
DP 220 189 < 1 0.2
EqOd 222 190 < 1 0.2

To generate fairness-compatible decision trees (without verifiability/privacy), we follow the
approach of Confidential-PROFITT Shamsabadi et al. [2023], which enhances the traditional
decision tree training algorithm with an additional fairness-compatibility check. At a high
level, in addition to computing an information gain for each split, the algorithm computes
an “unfairness gain” using a calculation similar to the standard Gini impurity, but for a
given fairness metric (such as demographic parity, equalized odds etc). The algorithm then
only utilizes splits for which the unfairness gains are below a certain threshold. As this is
not the focus of our paper, for further details we refer the reader to Shamsabadi et al. [2023].

4.2 Performance

For our experiments, we trained decision trees of height h = 10 on the following datasets:
Default Credit ((n, d) = (30000, 23)) Repository [2009], Census Income ((n, d) = (45222, 14))
Repository [1996], and American Community Survey Income ((n, d) = (45222, 10)) Ding
et al. [2021]. See Appendix A for detailed descriptions. We evaluated the performance of our
zkDTF. In Table 1 we summarize performance benchmarks and communication bandwidth
of zkDTF for Equalized Odds, using Default Credit and Census Income datasets. Table 1
includes comparison with Confidential-PROFITT Shamsabadi et al. [2023]. In Table 2
we also report the performance of our zkDTF executed on the ACS dataset, for checking
Demographic Parity and Equalized Odds. For the latter experiment, we enabled OpenMP
with 48 threads in order to showcase our approach is parallelization-friendly.
As the underlying Groth16 NIZK protocol Groth [2016] only outputs three group elements
on BN254 elliptic curves, our zkDTF obtains only modest proof sizes. In contrast, the
communication bandwidth of Confidential-PROFITT is orders of magnitude larger. Unlike
Confidential-PROFITT, however, our zkDTF additionally takes a data set as input, which is
typically about a a few megabytes. Although this might seem appear an additional overhead
in the communication bandwidth, an amortized overhead is low in practice because the input
data set is one of the widely used reference data sets and thus can be reused in order to verify
different proof strings generated by different provers. In terms of prover running time, our
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current implementation of zkDTF falls short of Confidential-PROFITT. Although this seems
to be a drawback, we highlight the fact that our zkDTF enables a model owner to produce
a reusable certificate once and for all and then publish it in a public repository, which can
be later validated by potentially many verifiers. In contrast, due to its interactive and
designated-verifier nature Confidential-PROFITT requires freshly executing an interactive
process for every verifier. As the prover time mainly hinges on the complexity of the backend
NIZK scheme (Groth [2016]), we leave for future work the improvement of the prover time
by employing a more modern, prover-efficient scheme as a backend of our zkDTF. We also
remark that our zkDTF requires a setup phase (i.e., invocation of pp← G(1λ) in Protocol 1).
This is a mandatory phase for any NIZK protocols, while most interactive ZK protocols do
not require setup. Although this phase takes a significant amount of time due to the heavy
setup operations of Groth16 NIZK, we highlight that this is a one-time setup phase, that
is, once the public parameters pp have been generated for a particular fairness metric, any
prover can reuse the same pp to generate fairness proof for the same metric and for arbitrary
trees and datasets of bounded sizes.

5 Conclusion and Future Work

We designed a non-interactive and secure solution to prove that a (proprietary and private)
decision tree model satisfies a fairness constraint, i.e., a given fairness metric is above a
certain threshold, on a dataset which is supplied by the verifier. At its core, our solution is
a custom zero-knowledge proof which is tailored to proving fairness of decision trees.
We implemented our solution for the demographic parity and equalized odds fairness met-
rics. In contrast to the prior work’s Confidential-PROFITT protocol, our solution does not
assume that the prover uses the correct dataset to generate the proof, which in combination
with our protocol’s security guarantees ensures that the prover cannot cheat regarding the
model’s fairness guarantee. Our protocol is further non-interactive and publicly verifiable,
i.e., the fairness certificate can be verified by anyone. In terms of performance, our protocol
is orders of magnitude cheaper in terms of the verifier’s computation time and communica-
tion, which albeit comes at the cost of a higher computation time on the prover’s side.
Our solution leaves several interesting questions for future work: First, since there is no
consensus on a single “general-purpose” fairness metric, it would be interesting to extend
our implementation to let the protocol support further metrics. Second, our protocol is
tailored to decision trees. Designing efficient protocols to support further machine learning
models, e.g., the widely used XGBoost Chen and Guestrin [2016], is an important direction.
Finally, our protocol requires the verifier to supply the test data set (or use a publicly
available one), and the prover learns this data. It would be interesting to provide a solution
in which the verifier’s test data remains private. General-purpose solutions for this scenario
exist, but these are not yet sufficiently efficient. Obtaining a practical scheme will likely
require developing new techniques on the cryptographic side.
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A Data Sets

For our experiments, we first trained decision trees of height h = 10 on the following datasets:

• Default Credit ((n, d) = (30000, 23)) Repository [2009]: The ground truth label
indicates whether a person will default on an credit card payment, and 22% of the
datapoints belong to the default class. We assume the sensitive attribute to be
the age. The minority group of young individuals under 25 comprises 13% of the
dataset.

• Census Income ((n, d) = (45222, 14)) Repository [1996]: The ground truth label
indicates whether an individual’s income is ≥ 50,000. Among the considered indi-
viduals, 75% have a salary below 50K. Following Shamsabadi et al. [2023], we as-
sume gender (Male, Female) to be the sensitive attribute, with 68% of the dataset’s
individuals being Males.

• American Community Survey Income ((n, d) = (45222, 10)) Ding et al. [2021]: Same
as in the Census Income case, the ground truth label indicates whether an an
individual’s income is ≥ 50,000. We use the gender (Male, Female) as a sensitive
attribute, with 52%of the datapoints being Males.

The first two data sets are the largest ones used by Confidential-PROFITT Shamsabadi
et al. [2023]. As the Census Income data set is by now outdated, we also conducted the
experiment using a replacement dataset suggested in Ding et al. [2021].

B Intuition for Commitments and Zero Knowledge Proofs

Cryptographic Commitment We recall a cryptographic commitment scheme Blum
[1981], which is one of the most basic building blocks in cryptography. On a high-level,
a commitment can be seen as a digital analogue of “locked box”: a message sender first
puts a letter in a box locked with some password and sends it to a receiver. As the box is
password-protected, the receiver is not able to read the letter until the sender reveals the
password later. At the same time, the sender cannot change the content of the letter once
the box is handed over to the receiver.
More formally, a commitment algorithm Commit takes a message m and randomness ρ
as input, and outputs a commitment string com. The receiver, upon receiving m and
ρ, simply checks that com = Commit(m, ρ) to verify the opening information (m, ρ) is
correct. In practice, Commit can be efficiently instantiated with standardized cryptographic
hash functions such as SHA-256, which outputs a 256-bit digest of the input message.
The standard security property of commitment includes hiding (i.e., by observing com, the
receiver learns nothing about the committed message m) and binding (i.e., once com is sent
to the receiver, the sender cannot open com to two distinct messages m and m′). We refer
the reader to standard textbooks such as Goldreich [2001] for more formal treatments.

Zero Knowledge Proofs Consider two parties – a prover and a verifier. The verifier is a
color blind person. The prover possesses two objects that are identical in every way except,
potentially, their color. The prover claims that the colors of these objects are different,
but does not want to let the verifier know the colors. How can a color blind verifier check
whether the prover’s statement is indeed true, i.e., the two otherwise identical objects differ
in color? Consider the following protocol:

• First, the prover places both items next to each other on a table.
• Then, the prover leaves the room. The verifier can now flip a coin to decide whether

to swap the two objects or not.
• The prover returns and has to declare whether the objects were swapped or not.

At this point, there are two possible scenarios: Either the prover’s claim is true and the
objects have different colors, or the claim is false and the objects are identical. In the first
case, the prover can memorize the color of the left object when leaving the room, and once
they return the prover simply checks whether the color of the left object is still the same as
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before or not. This way, the prover can always pass the check. If, however, the prover was
lying and the two objects are completely identical, they have only a 1

2 chance of guessing
whether the verifier swapped the two objects or not.
Thus, the protocol is correct, in the sense that an honest prover can always pass the check.
It is further sound (with probability 1

2 ), in the sense that an honest verifier has a 50% chance
of catching a cheating prover. Finally, it is zero-knowledge – it allows the verifier to check the
prover’s claim without learning anything about the actual colors of the objects. Note that
the soundness guarantee can easily be improved by simply repeating the protocol – after n
repetitions, the probability that the verifier fails to catch the cheating prover is reduced to
only 1

2n . Of course, this is only a simplified, illustrative example. Modern zero-knowledge
proof systems are complex mathematical protocols with clearly specified assumptions and
protocol descriptions, and formal security guarantees. This example nevertheless gives a
good idea how a typical zero-knowledge proof can work: The verifier asks the prover to
perform a check which does not reveal any additional information except for, potentially,
“the prover’s statement is incorrect”. This check can be repeated multiple times to increase
the probability of catching a cheating prover.
Finally, while the example above is an interactive protocol, the majority of modern zero-
knowledge protocols are in fact non-interactive and publicly verifiable, that is, the prover
generates a one-shot proof string π which can be later checked by any verifier without further
interacting with the prover. Such protocols require some form of one-time setup phase Blum
et al. [1988], which essentially outputs public parameters available for prover and verifier
to carry out the protocol. In practice, a setup phase can be conducted by a trusted third
party (e.g., government institute) or by some distributed, multi-party computation protocol
in order to remove reliance on the trusted third party Kohlweiss et al. [2021].
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