
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIALS

Anonymous authors
Paper under double-blind review

1 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 1: Performance of Fast-SNN, Offset, and CSS on ImageNet after converting 3-bit VGG-16

Methods T=1 T=2 T=3 T=4

Offset (rate) 64.90%
(129 steps)

70.85%
(130 steps)

72.06%
(131 steps)

72.53%
(132 steps)

Fast-SNN (rate) 3.19%
(1 steps)

52.74%
(2 steps)

68.13%
(3 steps)

71.26%
(4 steps)

CSS 2.87%
(17 steps)

68.53%
(18 steps)

72.81%
(19 steps)

73.25%
(20 steps)

Methods T=5 T=6 T=7 T=8

Offset (rate) 72.79%
(133 steps)

72.92%
(134 steps)

73.05%
(1235 steps)

73.01%
(136 steps)

Fast-SNN (rate) 72.21%
(5 steps)

72.64%
(6 steps)

72.87%
(7 steps)

72.97%
(8 steps)

CSS 73.23%
(21 steps)

73.24%
(22 steps)

73.23%
(23 steps)

73.24%
(24 steps)

Table 2: Performance of Fast-SNN, Offset, and CSS on ImageNet after converting 2-bit VGG-16

Methods T=1 T=2 T=3 T=4

Offset (rate) 68.44%
(65 steps)

71.71%
(66 steps)

72.39%
(67 steps)

72.54%
(68 steps)

Fast-SNN (rate) 23.82%
(1 steps)

66.98%
(2 steps)

70.99%
(3 steps)

71.92%
(4 steps)

CSS 19.49%
(17 steps)

71.22%
(18 steps)

72.31%
(19 steps)

72.56%
(20 steps)

more information at earlier time steps, 
thus faster

Figure 1: CSS coding assigns more weight to earlier spikes, allowing it to achieve higher perfor-
mance than rate coding while using fewer time steps.
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2 THE ROLE OF NEGATIVE SPIKES
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Figure 2: (a) The distribution of spikes across different time steps. Green represents rate coding.
Blue represents the case after spike weighting, where the spikes are concentrated in the later time
steps. Red represents the case in CSS coding, where we successfully shifted the distribution of
weighted spikes toward earlier time steps. (b) The distribution of fired information across different
time steps.

Table 3: Changes in accuracy before and after introducing negative spikes. Experiments were per-
formed using VGG-16 on CIFAR-10.

Coding Scheme Negative Spikes T=2 T=4 T=6 T=8
rate × 10.00% 47.48% 94.25% 95.26%
CSS × 90.93% 92.94% 93.12% 93.22%

rate ✓ 10.21% 47.88% 94.42% 95.34%
CSS ✓ 95.14% 95.55% 95.60% 95.58%
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3 ENERGY CONSUMPTION ANALYSIS

Table 4: Energy consumption of VGG-structured SNNs on CIFAR-10

Methods Arch. Accuracy T Latency SyOP
(ACs) MACs Energy

Consumption

ANN VGG-11 93.82% N/A N/A 0 153.2M 0.7047mJ

CSS VGG-11 93.78% 8 19 0 132.4M 0.1191mJ

ANN VGG-16 95.88% N/A N/A 0 313.88M 1.4438mJ

TTFS VGG-16 93.53% 64 1024 120.53M 0 0.1085mJ
CSS VGG-16 95.84% 8 24 308.35M 0 0.2775mJ
CSS VGG-16 95.14% 2 18 102.19M 0 0.0920mJ

Table 5: Energy consumption of Fast-SNN and CSS on CIFAR10 after converting 3-bit ResNet-18.

Methods Accuracy T Latency SyOP
(ACs) MACs Energy

Consumption

ANN 95.25% N/A N/A 0 2.22G 10.21mJ

Fast-SNN (rate) 95.42% 7 7 1.02G 12.42M 0.9751mJ
Fast-SNN (rate) 95.23% 6 6 878.3M 10.65M 0.8395mJ

CSS 95.31% 3 21 730.65M 1.84M 0.6660mJ
CSS 95.24% 2 20 489.93M 1.91M 0.4497mJ
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4 SELECTION OF THE AMPLIFICATION COEFFICIENT
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Figure 3: Impact of amplification coefficient on residual membrane potential and accuracy. All the
membrane potentials are normalized. Note the firing threshold is 0.5. For ResNet-18 on CIFAR-10:
(a) Residual membrane potential distributions under different β. (b) Accuracy variations corre-
sponding to different β. For VGG-16 on ImageNet: (c) Residual membrane potential distributions
under different β. (d) Accuracy variations corresponding to different β.
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