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1 APPENDIX

In the appendix, we first present more details about our scene code diffusion model in Sec. 1.1,
then we provide our dataset pre-processing, text prompt generation, and implementation details in
Sec. 1.2 and Sec. 1.3 respectively. Additional experiment results are illustrated in Sec. 1.4 and user
studies in Sec. 1.6. Finally, we clarify the limitations of our method.

1.1 SCENE CODE DENOISING NETWORK

In the Layout Generation Stage, we use a holistic scene code to parametrize the indoor scene and
design a diffusion model to learn its distribution. Specifically, given a 3D scene S with N objects,
we represent the scene layout as a holistic scene code x0 = {oi}Ni=1. We encode each object oi as a
node with various attributes, i.e., center location li ∈ R3, size si ∈ R3, orientation ri ∈ R, class label
ci ∈ RC . Each node is characterized by the concatenation of these attributes as oi = [ci, li, si, ri].
As shown in Fig. 1, our scene code denoising network of the layout diffusion model is built upon
IDDPM (Nichol & Dhariwal, 2021). The whole architecture of the layout diffusion model is similar
to IDDPM, while we replace the upsample and downsample blocks with 1D-convolution network
in the U-Net, and insert attention blocks after each residual block to capture both the global context
among objects and the semantic context from the input text prompt. The input encoding head pro-
cesses different encoding of the node attributes, e.g., semantic class labels, box centroid, and box
orientation. After adding noise, the input encoding is fed into the U-Net to obtain a denoised scene
code. During the forward phase, as in IDDPM, we iteratively perform the denoising process and
generate a scene code from a partial scene textual description.

The goal of training the reverse diffusion process is to find optimal denoising network parameters
that can generate natural and plausible scenes. The training objectives include the denoising objec-
tive L in Sec.3.1, which constrains the generated scene codes can approximate the underlying data
distribution, and a regularization term Lphysical to penalize the penetration among objects and walls.

Lphysical =

T∑
t=1

wt ∗ (Lw−o + Lo−o)

Lw−o =

Kwall∑
i=1

Kobject∑
j=1

8∑
p=1

Relu[−(aixjp + biyjp + cizjp + di)]1(
∏
wi

(xjp, yjp, zjp)inwi)

Lo−o =

Kobject∑
oi,oj

IoU(oi,oj)

(1)

where Lw−o is physical violation loss between walls and objects. The (ai, bi, ci) is the normal
vector of wall wi that points to the room center.

∏
wi

means the operator projecting a point
onto the plane that wi defines. The plane equation of i-th wall is aix+ biy + ciz + d = 0 and
1(
∏

wi
(xjp, yjp, zjp)inwi) indicates whether the projection of bounding box vertice (xjp, yjp, zjp)
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Table 1: Quantitative comparisons on the task of text-conditioned layout synthesis on the 3D-
FRONT dining and living rooms. Note that for the Scene Classification Accuracy (SCA), the score
closer to 50% is better. The number for Diffuscene and ATISS is copied from DiffuScene paper.

Method Livingroom Diningroom

FID ↓ KID ↑ SCA FID ↓ KID ↑ SCA

ATISS (Paschalidou et al., 2021) 40.45 4.57 63.48 36.61 1.90 55.44
DiffuScene (Tang et al., 2023a) 35.27 0.64 54.69 32.87 0.57 51.67

Ours 36.0 1.4 56.42 34.78 1.3 54.37

of j-th object is in wi: if it is, return 1; otherwise, return 0. We skip some types of objects do in-
tersect with the layout, such as windows and doors. Figure 2 depicts the physical loss among walls
and objects vividly. Lo−o is the IoU summation of arbitrary two bounding boxes of objects. The
hyperparamter wt is set to ᾱt ∗ 0.1

To verify the effectiveness of our first stage, we further conduct comparative experiments with these
state-of-the-art layout synthesis approaches. Since 3D-FRONT (Fu et al., 2021) lacks walls, doors
and windows annotation, we only use the furniture offered in 3D-FRONT to construct the scene
code for each room. Table 1 shows a qualitative comparison with DiffuScene and ATISS, indicat-
ing that our method achieves results comparable to DiffuScene on the text-to-layout task. Although
DiffuScene’s results are slightly better than our qualitative results, this can be attributed to its use of
an additional network to learn a shape code for each piece of furniture. This allows DiffuScene to
retrieve a more accurate CAD model, improving its qualitative metrics.

Since most furniture in the room is associated with the walls, using different wall numbers in the text
prompt should generate different rooms with different layouts. In Figure. 3, we provide additional
visualizations of the generated scene layout in the format of 3D semantic bounding boxes. Our re-
sults demonstrate that users can control the number of walls or the layout of the room by changing
the input text.

1.2 DATASET

Structured3D dataset preprocessing Structured3D consists of 3, 500 houses with 21, 773 rooms,
where each room is designed by professional designers with rich 3D structure annotations, including
the room planes, lines, junctions, and orientated bounding box of most furniture, and photo-realistic
2D renderings of the room. In our work, we use the 3D orientated bounding boxes of furniture, 2D
RGB panorama, and 3D lines and planes of each room. While the original dataset lacks semantic
class labels for each furniture bounding box. The dataset preprocessing aims to produce clean
ground truth data for our layout generation module and appearance generation module.

• Orientated Object Bounding Box Annotation. As the original dataset lacks semantic
label for each orientated object bounding box, we first unproject the RGB panorama and
depth map into a point cloud of the room, then manually annotate the object semantic class
and add more accurate object bounding boxes based on the noisy annotation of the original
version. As shown in Fig. 4, by using labelCloud (Sager et al., 2022), three data annotators
worked for 800 hours to annotate 5,064 bedrooms and 3064 livingrooms, getting nearly
50K and 69K accurate 3D bounding boxes across 25 object categories, respectively.

• Scene Node Encoding. We define our holistic scene code based on a unified encoding of
walls and object bounding box. Each object oj is treated as a node with various attributes,
i.e., center location li ∈ R3, size si ∈ R3, orientation ri ∈ R, class label ci ∈ RC .
The orientated bounding box is off-the-shelf, we extract the inner walls based on the line
junctions and corners of the 3D room. Then we put the orientated object bounding boxes
and walls into a compact scene code. Concretely, we define an additional ’empty’ object
and pad it into scenes to have a fixed number of object across scenes. Each object rotation
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Figure 1: The detailed structure of the scene code denoising network. We here take the bedroom for
example to demonstrate the scene code denoiser’s dataflow. The scene code tensor x0 ∈ RN×D,
where N = 23, D = 32.

Figure 2: Objects-walls physical violation example. The physical violation loss is calculated only
when the object intersection with wall. There is no violation loss when the object is completely in-
side or outside the walls.

angle is parametrized by a 2-d vector of cosine and sine values. Finally, each node is
characterized by the concatenation of these attributes as oi = [ci, li, si, cosri, sinri].

• data filtering. We start by filtering out those problematic scenes such as rooms with wall
number less than 4 or larger than 24. We also remove those scenes with too few or too many
objects. The number of walls of valid bedrooms is between 4 and 10, and that of objects is
between 3 and 13. As for living rooms, the minimum and maximum numbers of walls are
set to 4 and 24, and that of objects are set to 3 and 21 respectively. Thus, the number of
scene nodes is N = 23 in bedrooms and N = 45 in living rooms. After filtering, we get
4,961 bedrooms and 3,039 living rooms.

Text Prompt Generation We follow the SceneFormer Wang et al. (2021) to generate text prompts
describing partial scene configurations. Each text prompt contains two to four sentences. The first
sentence describes how many walls are in the room, then the second sentence describes two or
three existing furniture in the room. The following sentences mainly describe the spatial relations
among the furniture, please refer to SceneFormer Wang et al. (2021) and DiffuScene Tang et al.
(2023a) for more detailed explanation of relation-describing sentences. In this way, we can get
some relation-describing sentences to depict the partial scene. Finally, we randomly sampled zero
to two relation-describing sentences to form the text prompt for 3D room generation.

1.3 IMPLEMENTATION DETAILS

Training and inference details.
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The bedroom has four walls.The room 
has two cabinets .

The bedroom has six walls.The room has 
a cabinet , a window and a bed .There is a 
lamp above the bed .There is a picture 
above the bed .

The living room has ten walls.The room has 
a cabinet , a window and a shelves .There is 
a lamp above the cabinet

The living room has twelve walls.The room 
has a cabinet , a fridge and a window

Figure 3: Visualizations of the generated layout. The white box represents window, the burgundy
boxe represents curtain, while the green box represents the door. Note that in the layout we gener-
ated, windows and curtains or doors intersect with the walls, which is reasonable since these objects
are typically found on the walls. The room layout we generated is reasonable and consistent with
the input text instructions. Users can modify the input text instructions to change the number and
distribution of walls in the room.
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Figure 4: Example of object bounding box annotation.

• In the layout generation stage, We train the scene code diffusion model on our processed
‘bedroom’ and ‘livingroom’ data of Structured3D (Zheng et al., 2020) for 200, 000 steps.
The frozen text encoder we adopted is the same as Stable Diffusion (?). The training is
performed using the AdamW optimizer with a batch size of 128 and a learning rate of
1e− 4, utilizing 2 A6000 GPUs. During the inference process, we utilize the DDIM (Song
et al., 2020) sampler with a step size of 250 to perform scene code denoising.

• In the appearance generation stage, we fine-tune the segmentation-conditional ControlNet
model based on the pairwise semantic and RGB panorama of Structured3D. The fine-tuning
process is implemented on two A6000 GPUs for 150 epochs(about 3 days). In the infer-
ence phase, we generate high-fidelity and loop-consistent RGB panorama through DDIM
sampler with 100 steps, rotating both semantic layout panorama and the denoised image
for γ = 90◦ at each step.

• As for the mask-guided editing module, we utilize the fine-tuned Control-Seg model to
inpaint the background content and optimize the latents of the edited panorama. In in-
painting step, the weights used too fuse the unpainted area and unchanged area are set
λori = 0.8, λnew = 0.2 . In the optimization step, the maximum iteration is M = 50, the
learning rate η for optimization is initialized to 0.1 and then gradually decreases to 0.01.

Table 2: The computational cost comparison on A6000. Since Text2Room does not offer a standard-
ized neural network, we cannot measure its parameters.

Method Inference Time/s GPU Memory Params
Text2Light 81.56 5.46G 630.66M
MVDiffusion 208.5 8.74G 1352.54M
Text2Room > 9, 000 > 16G -
Ours 61.1 1.95G + 10.41G 63.51M + 1220.62M

1.3.1 BASELINE IMPLEMENTATIONS

We provide implementation details for baseline methods in the following:

• MVDiffusion (Tang et al., 2023b): To get a high-resolution photo realistic panorama,
MVDiffusion employs 8 branches of SD (Rombach et al., 2022) model and
correspondence-aware attention mechanism to generate multi-view images simultane-
ously. We first fine-tune the pre-trained model of MVDiffusion on Structured3D for
10 epochs(about 3 days). Since each generated subview image of MVDiffusion is at
512× 512 resolution, the final panorama is pretty large. We resize the generated panorama
of MVDiffusion from 4096 × 2048 to 1024 × 512. Then the 8 subview perspective
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images are extracted from the post-processed panorama using the same camera settings
(FOV=90◦,rotation=45◦). The same operation is adopted on our generated panoramic im-
ages. Finally, we combine the panorama from MVDiffusion with our panoramic recon-
struction module to create a 3D mesh.

• Text2Light (Chen et al., 2022): Text2Light creates HDR panoramic images from text us-
ing a multi-stage auto-regressive generative model. We choose Text2Light as one of the
baseline for our panorama generation and 3D room mesh generation. We first generate
RGB panoramas from the input text using Text2Light, then lift it into 3D mesh using the
same panoramic reconstruction module as our method. When evaluate the panoramic im-
age quality, we adopt the same processing as MVDiffusion to get multi-view perspective
images of Text2Light.

• Text2Room (Höllein et al., 2023): Text2Room is the current state-of-the-art and off-the-
shelf method for 3D room mesh generation. It utilizes 20 camera spots of a pre-defined
trajectory to expand new areas as much as possible by generating 10 images at each spot.
Here We use its final fused poison mesh for 3D mesh comparison. For a fair comparison of
2D renderings evaluation, we only use the renderings at the origin of the final mesh.

We also compare the model complexity between ours and the baselines, Tabel 2 shows our method
achieves significantly faster runtime for generating a 3D room compared to existing methods. The
difference in GPU memory footprint and parameter quantity is not significant. Despite having two
diffusion models, our layout generation stage only needs to produce high-level room layouts and
furniture arrangements, resulting in low computational costs and model complexity.

1.4 PANORAMA GENERATION COMPARISON

Fig. 5 presents additional results for panorama generation. Given a simple partial-scene text prompt,
our approach obtains better RGB panorama than that of Text2Light (Chen et al., 2022) and MVD-
iffusion (Tang et al., 2023b), which demonstrates the effectiveness of our well-designed frame-
work. While Text2Light suffers from the inconsistent loop and unexpected content of the generated
panorama, MVDiffusion fails to recover a reasonable room layout from the text prompt.

1.5 ADDITIONAL QUALITATIVE RESULTS

We show additional qualitative comparison results between our method and baselines in Fig. 7. More
demonstration of the visual quality of the generated geometry is shown in Fig. 8. We demonstrate
more scene editing results of our method in Fig. 6.

1.6 USER STUDY

Follow Text2Room Höllein et al. (2023), we conduct a user study and ask n = 61 ordinary users
to score the Perceptual Quality(PQ) and 3D Structure Completeness(3DS) of the generated room
on a scale of 1 − 5. Different from Text2room which only demonstrates the perspective renderings
of the 3D room, we directly show users the generated mesh to get a global evaluation of the whole
generated 3D room. We show an example of the presented interface of the user study in Fig. 9. In
total, we presented 40 top-down views from 10 scenes and report averaged results for each method.
Users favor our approach, which emphasizes the superiority of our more plausible geometry, along
with the vivid texture.

1.7 LIMITATION

Although we have shown impressive 3D room generation results, there are still some limitations
in our method. Firstly, we only support single-room generation, thus we cannot produce large-
scale indoor scenes with multiple rooms. Secondly, the generated 3D room still contains incomplete
structures in invisible area. Users might observe obviously stretched texture because of the occlusion
and poor performance of the panoramic depth estimator. It will further affect the visual quality of
scene editing results. For example, in Fig. 6(b), we find the table after movement is distorted and
the tabletop becomes inclined, the problem is mainly caused by the inaccurate depth estimation and
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The bedroom has eight walls. The room has two windows and a bed.

The living room has ten walls. The room has a cabinet and a shelves .

The bedroom has four walls. The room has a cabinet and a window.

Text2Light MVDiffusion

Inconsistent loop

Unknown bedroom
furniture

Repetitve cabinet

Repetitve cabinet

Bed, table and window

Door

Inconsistent loop

Repetitive door

Repetitve bed and lamp

Repetitve bed

Bed, window and lamp

Tv and tv-stand

Unknown furniture

Inconsistent loop

Ours

Repetitve cabinet

Repetitve cabinet

Sofa set and table

Corridor and doors

Figure 5: Qualitative comparison for panorama generation. Generated panorama is visualized in
a panoramic image viewer to facilitate the user to check the global content of panorama. The left
side of each column is two zoom-in views, and the right side is the fisheye view. Text2Light (Chen
et al., 2022) exists serious inconsistent problem on the border of the generated panorama, it also
shows a lot of unexpected stuff in the image. MVDiffusion (Tang et al., 2023b) fails to synthesize
reasonable content for the target room type. In contrast, our method obtains layout plausible and
vivid panorama from the given text prompt of partial scene.

the next mesh reconstruction and mesh texturing process. A promising direction is to learn a text-
driven diffusion model to produce one or more RGB-D panorama images under the scene layout
constraints. We leave these mentioned limitations as our future efforts.
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(b) Move the table(a) Remove the extra lamp

(c) Resize the sofa (d) Remove the chair

Figure 6: Additional scene editing results. In each sub-figure, the left part is the original 3D room,
the right part shows the final mesh after users’ interactive editing.
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Figure 7: Additional qualitative comparison with previous works.
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Figure 8: Visualization of generated geometry of the 3D scenes. We show color renderings from
generated scenes at the first and third rows, and the corresponding shaded geometry renderings at
the second and fourth rows.

Figure 9: User study interface. We provide users with multiple top-down images from different
methods and ask users to rate the given 3D meshes on a scale from 1 to 5, according to the criteria
of Perceptual Quality and 3D Structure Completeness.
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MVDiffusion

Ours

The living room has twelve walls. The room has a cabinet and a fridge 

Figure 10: Comparison of geometry quality between our result and MVDiffusion’s. The first and
third columns are color renderings from different views, and the second and last columns are the
shaded geometry rendering. It is obvious that MVDiffusion results in an entire room filled with cab-
inets, whereas our approach is capable of generating a realistic room layout with various pieces of
furniture, such as a TV, a table, and a sofa, all arranged sensibly in accordance with the input tex-
tual instructions. Furthermore, while MVDiffusion fails to generate walls with the correct number
consistent with the input text, we can recover the required walls approximately. This highlights the
effectiveness of our approach in generating more accurate room layouts.
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