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A Definitions and Methods

A.1 Additionnal background

The purpose of this appendix is to provide additionnal definitions and properties regarding Lipschitz
Neural Networks, their possible GNP properties and Differential Privacy.

A.1.1 Lipschitz neural networks background

For simplicity of the exposure, we will focus on feedforward neural networks with densely connected
layers: the affine transformation takes the form of a matrix-vector product & — Wh. In section
we tackle the case of convolutions h — U x i with kernel U.

Definition 4 (Feedforward neural network). A feedforward neural network of depth T, with input
space X C R", and with parameter space © C RP, is a parameterized function f : @ x X — Y
defined by the following recursion:

ho(x) =z, zi(x) = Wihp—1(x) + by,

hi(x) = o(z(x)), f0,z) == zp i1 (). 8)
The set of parameters is denoted as 0 = (W4, b;)1<i<T41, the output space as Y C R¥ (e.g logits),
and the layer-wise activation as o : R — R"™.
Definition 5 (Lipschitz constant). The function f : R™ — R"™ is said l-Lipschitz for lo norm if for

every z,y € R™ we have:

1f (@) = FW)ll2 < Uz —yll2. ©
Per Rademacher’s theorem [[10]], its gradient is bounded: ||V f|| < l. Reciprocally, continuous
Sfunctions gradient bounded by [ are l-Lipschitz.

Definition 6 (Lipschitz neural network). A Lipschitz neural network is a feedforward neural network
with the additional constraints:

* the activation function o is S-Lipschitz. This is a standard assumption, frequently fulfilled
in practice.

* the dffine functions © — Wax + b are U-Lipschitz, i.e |W|lo < U. This is achieved
in practice with spectrally normalized matrices [12)] [13)]. The feasible set is the ball
{{[Wl2 < U} of radius U (which is convex), or a subset of thereof (not necessarily convex).

As a result, the function x — f(0,z) is U(US)T-Lipschitz for all § € ©.

Two strategies are available to enforce Lipschitzness:

1. With a differentiable reparametrization II : RP — © where 0 = I1(6): the weights 0 are
used during the forward pass, but the gradients are back-propagated to 6 through II. This
turns the training into an unconstrained optimization problem on the landscape of £ o f o II.

2. With a suitable projection operator II : RP — ©: this is the celebrated Projected Gradient
Descent (PGD) algorithm [58] applied on the landscape of £ o f.

For arbitrary re-parametrizations, option [I] can cause some difficulties: the Lipschiz constant of II is
generally unknown. However, if O is convex then II is 1-Lipschitz (with respect to the norm chosen
for the projection). To the contrary, option [ elicits a broader set of feasible sets ©. For simplicity,
option [2 will be the focus of our work.

A.1.2 Gradient Norm Preserving networks

Definition 7 (Gradient Norm Preserving Networks). GNP networks are 1-Lipschitz neural networks
with the additional constraint that the Jacobian of layers consists of orthogonal matrices:

afa\" (0fa) _
(a) (8%>_1. (10)

This is achieved with GroupSort activation [8| 139)], Householder activation [40], and orthogonal
weight matrices [17,|41\] or orthogonal convolutions (see [44, 145, 46]] and references therein). Without
biases these networks are also norm preserving: || f(0,x)|| = ||z||.

12
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The set of orthogonal matrices (and its generalization the Stiefel manifold [20]]) is not convex, and not
even connected. Hence projected gradient approaches are mandatory: for re-parametrization methods

the Jacobian %—lg may be unbounded which could have uncontrollable consequences on sensitivity.

A.1.3 Differential Privacy background

Definition 8 (Neighboring datasets). A labelled dataset D is a finite collection of input/label pairs
D ={(z1,y1), (x2,92), - .. ...(xN,yn)}. Two datasets D and D’ are said to be neighbouring if they
differ by at most one sample: D' =D U {(2',y")} — {(zi,v:)}.

The sensitivity is also referred as algorithmic stability [S9], or bounded differences property in other
fields [60]]. We detail below the building of a Gaussian mechanism from an arbitrary query of known
sensitivity.

Definition 9 (Gaussian Mechanism). Let f : D — RP be a query accessing the dataset of known
lo-sensitivity A(f), a Gaussian mechanism adds noise sampled from N'(0,a.A(f)) to the query f.

Property 1 (DP of Gaussian Mechanisms). Let G(f). be a Gaussian mechanism of la-sensitivity
Sa(f) adding the noise N'(0,0.52(f)) to the query f. The DP guarantees of the mechanism are

given by the following continuum: o = \/2.10g(1.25/4)/e.

SGD is a composition of queries. Each of those query consists of sampling a minibatch from the
dataset, and computing the gradient of the loss on the minibatch. The sensitivity of the query is
proportional to the maximum gradient norm [, and inversely proportional to the batch size b. By
pertubing the gradient with a Gaussian noise of variance 022—2 the query is transformed into a
Gaussian mechanism. By composing the Gaussian mechanisms we obtain the DPSGD variant, that
enjoy (e, §)-DP guarantees.

Proposition 1 (DP guarantees for SGD, adapted from [1l].). Assume that the loss fulfills
IVoL(G,y)|l2 < I, and assume that the network is trained on a dataset of size N with SGD
algorithm for T steps with noise scale N'(0,0?) such that:
S 16K /T log (2/6)log (1.25T /6N
o .
- Ne
Then the SGD training of the network is (€, §)-DP.

(11)

A.2 More about Clipless DP-SGD

About the “local” strategy. Illustrated in Figures|3] We dissect the DP-mechanism that consists
of the SGD steps applied on each layer. Indeed, we are able to characterise the sensitivity Ay of
every layer of the network. Therefore, we give (€4, 04)-DP guarantees on a per-layer basis. Finally
however, we would still have to be able to guarantee (€, §)-DP on the whole model.

1. On each layer, we apply a Gaussian mechanism [9] with noise variance o2 A2

2. Their composition yields an other Gaussian mechanism with non isotropic noise.

3. The Gaussian mechanism benefits from privacy amplification via subsampling [31] thanks
to the stochasticity in the selection of batches of size b = pIV.

4. Finally an epoch is defined as the composition of 7' = zlz sub-sampled mechanisms.

Different layers exhibit different maximum gradient bounds - and in turn this implies different
sensitivities. This also suggests that different noise multipliers o4 can be used for each layer. This
open extensions for future work.

We detail in Algorithm 3|the global variant of our approach.

B Lipdp tutorial

This section gives advice on how to start your DP training processes using the framework. Moreover,
it provides insights into how input pre-processing, building networks with Residual connections and
Loss-logits gradient clipping could help offer better utility for the same privacy budget.

13



459

460
461
462
463
464
465
466
467

468
469

470
471

472

473
474
475
476

477
478
479
480
481
482
483
484

485
486
487
488
489

Algorithm 3 Clipless DP-SGD with global sensitivity accounting
Input: Feed-forward architecture f(-,-) = fr4+1(Or41,) o fr(Op,-)o...0 fo(Oo,*)
Input: Initial weights 6, learning rate scheduling 7;, noise multiplier o.

1: repeat

2: Ag...Ary; + compute_gradient_bounds(f, X).

3 Sample a batch Bt = {(mlv yl)a (an yZ)v LR (xba yb)}
4: Compute the mean gradient of the batch for each layer ¢:

S =

b
e =7 > Vw.L(Jiy:))-
i=1

5: For each layer ¢ of the model, get the theoretical bound of the gradient:
V1<i<b, [[Vw,L(Jiyi)ll2 <A
Update Moment accountant state with global sensivity A = %\/ tT:J’ll AZ.
Add global noise ¢ ~ N (0,20A/b) to each weights and perform projected gradient step:
Wy = I(Wy = (e + €))-

8: Report new (¢, 6)-DP guarantees with accountant.
9: until privacy budget (¢, d) has been reached.

B.1 Prerequisite: building a /-Lipschitz network

As per def [3| a [-Lipschitz neural network of depth d can be built by composing Vi layers. In
the rest of this section we will focus on 1-Lipschitz networks (rather than controlling [ we control
the loss to obtain the same effects [18]). In order to do so the strategy consists in choosing only
1-Lipschitz activations, and to constrain the weights of parameterized layers such that it can only
express 1-Lipschitz functions. For instance normalizing the weight matrix of a dense layer by its
spectral norm yield a 1-Lipschitz layer (this, however cannot be applied trivially on convolution’s
kernel). In practice we used the layers available in the open-source library deel-lip. In practice, when
building a Lipschitz network, the following block can be used:

* Dense layers: are available as SpectralDense or QuickSpectralDense which apply spectral
normalization and Bjorck orthogonalization (for GNP layers).

* Relu activations are replaced by Groupsort2 activations, and such activations are GNP,
preventing vanishing gradient.

* pooling layers are replaced with ScaledL2NormPooling, which is GNP.

* normalization layers like BatchNorm are not K-Lipschitz. We did not accounted these
layers since they can induce a privacy leak (as they keep a rolling mean and variance). A
1-Lipschitz drop-in replacement is studied in[C.2.3] The relevant literature also propose
drop-in replacement for this layer with proper sensitivity accounting.

Originally, this library relied on differentiable re-parametrizations, since it yields higher accuracy
outside DP training regime (clean training without noise). However, our framework does not
account for the Lipschitz constant of the re-parametrization operator. This is why we provide
QuickSpectralDense and QuickSpectralConv2D layers to enforce Lipschitz constraints, where the
projection is enforced with a tensorflow constraint. Note that SpectralDense and SpectralConv2D
can still be used with a CondenseCallack to enforce the projection, and bypass the back-propagation
through the differentiable re-parametrization. However this last solution, while being closer to the
original spirit of deel-lip, is also less efficient in speed benchmarks.

The Lipschitz constant of each layer is bounded by 1, since each weight matrix is divided by
the largest singular value oy,,x. This singular value is computed with Power Iteration algorithm.
Power Iteration computes the largest singular value by repeatedly computing a Rayleigh quotient
asssociated to a vector u, and this vector eventually converges to the eigenvector uy,,x associated to
the largest eigenvalue. These iterations can be expensive. However, since gradient steps are smalls,

14
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the weight matrices Wy and W, remain close to each other after a gradient step. Hence their largest
eigenvectors tend to be similar. Therefore, the eigenvector umax can be memorized at the end of each
train step, and re-used as high quality initialization at the next train step, in a “lazy” fashion. This
speed-up makes the overall projection algorithm very efficient.

B.2 Getting started

The framework we propose is built to allow DP training of neural networks in a fast and controlled
approach. The tools we provide are the following :

1. A pipeline to efficiently load and pre-process the data of commonly used datasets like
MNIST, FashionMNIST and CIFAR10.

2. Configuration objects to correctly account DP events we provide config objects to fill in
that will

3. Model objects on the principle of Keras’ model classes we offer both a DP_Model and a
DP_Sequential class to streamline the training process.

4. Layer objects where we offer a readily available form of the principal layers used for DNNs.
These layers are already Lipschitz constrained and possess class specific methods to access
their Lipschitz constant.

5. Loss functions, identically, we offer DP loss functions that automatically compute their
Lipschitz constant for correct DP enforcing.

We highlight below an example of a full training loop on Mnist with lip-dp library. Refer to the
“examples” folder in the library for more detailed explanations in a jupyter notebook.

dp_parameters = DPParameters(
noisify_strategy="global",
noise_multiplier=2.0,
delta=1e-5,

)

epsilon_max = 3.0

input_upper_bound = 20.0
ds_train, ds_test, dataset_metadata = load_and_prepare_data(
"mnist",
batch_size=1000,
drop_remainder=True,
bound_fct=bound_clip_value (
input_upper_bound
) 2
)

# construct DP_Sequential
model = DP_Sequential(
layers=[
layers.DP_BoundedInput (
input_shape=dataset_metadata.input_shape, upper_bound=
input_upper_bound
),
layers.DP_QuickSpectralConv2D (
filters=32,
kernel_size=3,
kernel_initializer="orthogonal",
strides=1,
use_bias=False,
))
layers.DP_GroupSort (2),
layers.DP_ScaledL2NormPooling2D (pool_size=2, strides=2),
layers.DP_QuickSpectralConv2D(
filters=64,

15
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kernel_size=3,
kernel_initializer="orthogonal",
strides=1,
use_bias=False,
) 2
layers.DP_GroupSort (2),
layers.DP_ScaledL2NormPooling2D (pool_size=2, strides=2),

layers.DP_Flatten(),

layers.DP_QuickSpectralDense (512),

layers.DP_GroupSort (2),

layers.DP_QuickSpectralDense (dataset_metadata.nb_classes),
],
dp_parameters=dp_parameters,
dataset_metadata=dataset_metadata,

)

model. compile (
loss=losses.DP_TauCategoricalCrossentropy(18.0),
optimizer=tf.keras.optimizers.SGD(learning_rate=2e-4, momentum
=0.9),
metrics=["accuracy"],
)

model . summary ()
num_epochs = get_max_epochs(epsilon_max, model)

hist = model.fit(

ds_train,

epochs=num_epochs,

validation_data=ds_test,

callbacks=[
# accounting is done thanks to a callback
DP_Accountant (log_fn="logging"),

]’

B.3 Image spaces and input clipping

Input preprocessing can be done in a completely dataset agnostic way and may yield positive results
on the models utility. We explore here the choice of the color space, and the norm clipping of the
input.

B.3.1 Color space representations

The color space representation of the color images of the CIFAR10 dataset for example can yield
very different gradient norms during the training process. Therefore, we can take advantage of this to
train our DP models more efficiently. Empirically, Figures[6a and [6b] show that some color spaces
yield narrower image norm distributions that happen to be more advantageous to maximise the mean
gradient norm to noise ratio across all samples during the DP training process of GNP networks.

B.3.2 Input clipping

A clever way to narrow down the distribution of the dataset’s norms would be to clip the norms of the
input of the model. This may result in improved utility since a narrower distribution of input norms
might maximise the mean gradient norm to noise ratio for misclassified examples. Also, we advocate
for the use of GNP networks as their gradients usually turn out to be closer to the upper bound we are
able to compute for the gradient. See Figure [7a]and[7b|

16



601

602
603
604

605
606

608
609
610
611
612
613
614
615

819
618
619

621
622

129+ 139+
1750 RGB: 29+7 RGB: 39+11

HSB/HSV: 26+4 2000 HSB/HSV: 3447
1500 YIQ: 1744 0 YIQ: 184
9 YUV: 174 © YUV: 1243
51250 Grayscale: 174 % 3000 Grayscale: 22+5
5 1000 3
2
2 5 |I b 2 2000
: Ll :
Z 500 | l g
|”| Z 1000
o |- il
o il il I o Ll il .
0 10 20 30 40 50 0 20 40
Image norm Gradient Norm
(a) Input norms. (b) Gradient norms.

Figure 6: Histogram of norms for different image space on CIFAR-10 images. We see that for
GNP networks the distribution of dataset norms have a strong influence on the norm of the individual
parameterwise gradient norms of missclassified examples.
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(a) Conventional network. (b) Gradient Norm Preserving network.

Figure 7: Gradient norms of fully-connected networks on CIFAR-10. We see that GNP networks
exhibit a qualitatively different profile of gradient norms with respect to parameters, sticking closer
to the upper bound we are able to compute for the gradient norm.

B.4 Practical implementation of Residual connections

The implementation of skip connections is made relatively straightforward in our framework by the
make_residuals method. This function splits the input path in two, and wraps the layers inside the
residual connections, as illustrated in ﬁgure

from lipdp.layers import make_residuals
## Manual implementation of residual connection:
layers = [DP_SplitResidual (),
DP_WrappedResidual (DP_QuickSpectralConv2D (16, (3, 3)),
DP_WrappedResidual (DP_GroupSort (2)),
DP_MergeResidual (’1-1lip-add’)]
## 0Or equivalently, with helper function:
layers = make_residuals ([
DP_QuickSpectralConv2D (16, (3, 3),
DP_GroupSort (2)
D

By using this implementation, the sensitivity of the gradient computation and the input bounds
to each layer are correctly computed when the model’s path is split. This allows for fairly easy
implementations of models like the MLP-Mixer and ResNets. Since convolutional models may suffer
from gradient vanishing and that dense based models are relatively restrictive in terms of architecture,
implementing skip connections could be a useful feature for our framework.
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Figure 8: Implementation of a skip connection in the lip-dp framework. The meta block
DP_WrappedResidual handle the forward propagation and the backward propagation of pairs
of bounds (one for each computation path) by leveraging the forward and the backward of sub-blocks.
DP_SplitResidual handle the creation of a tuple of input bounds at the forward, and collapse the
tuple of gradient bounds into a scalar at the backward, while DP_MergeResidual does the opposite.
All those operations are wrapped under the convenience function make_residuals.

B.5 Loss-logits gradient clipping

The advantage of the traditional DP-SGD approach is that through hyperparameter optimization
on the global gradient clipping constant, we indirectly optimize the mean signal to noise ratio on
missclassified examples. However, this clipping constant is not really explainable and rather just an
empirical result of optimization on a given architecture and loss function.

Importantly, our framework is compatible with a more efficient and explainable form of clipping.
Indeed, by introducing a gradient clipping layer in our framework we are able to clip the gradient of
the loss on the final logits for a minimal cost.

Indeed, in this case the size of the clipped vector is the output dimension |§|, which is small for a
lot of practical regression and classification tasks. For example in CIFAR-10 the output vector is
of length 10. This scales better with the batch size than the weight matrices that are typically of
sizes 64 x 64 or 128 x 128.

Note that this clipping value can also follow a scheduling during training, in the spirit of [61] - but
care must be taken that the scheduling is either data independent, or in the case it is data dependant
the privacy leaks must be taken into account. The implementation of loss gradient clipping scheduling
is yet to be implemented in our framework. However, it is expected to be a part of future works.

Furthermore, if the gradient clipping layer is inserted on the tail of the network (between the logits
and the loss) we can characterize its effects on the training, in particular for classification tasks with
binary cross-entropy loss.

We denote by £(ClipS()) the loss wrapped under a DP_ClipGradient layer that behaves like
identity « — z at the forward, and clips the gradient norm to C' > 0 in the backward pass:

. O : C N
Vi (£(ClipG (5))) = min (1, 7 Vi L (0) (12)
Yy
. " Vi L(Y
—min (V3£ ) 13)
Yy
We denote by g(gi the unit norm vector ngif:g;”. Then:

vy (£(ClipS(9))) = min (|V5£@)], O)g(d).

Proposition 2 (Clipped binary cross-entropy loss is the Wasserstein dual loss). Let Lgor(9,y) =
—log (o(gy)) be the binary cross-entropy loss, with o(jy) = m the sigmoid activation,
assuming discrete labels y € {—1,+1}. Assume examples are sampled from the dataset D. Let

18



648

649
650

651
652

653

654
655

656

657
658
659
660
661
662

663
664

666
667

668
669
670

671

672
673
674

676
677
678
679
680
681
682

683

684

685
686
687

9(0,x) = f(0,x) be the predictions at input x € D. Then for every C > 0 sufficiently small, a
gradient descent step with the clipped gradient V gEp [E(Clipg (4,y))] is identical to the gradient
ascent step obtained from Kantorovich-Rubinstein loss Lk r(§,v) = §y.

Proof. In the following we use the short notation £ in place of Lpc . Assume that examples with
labels +1 (resp. —1) are sampled from distribution P (resp. Q). By definition:

VoEp[L(ClipG (§,9))] = Vo (Eunp[L(ClipG (f(6,2), +1))] + Erng[£(ClipG (f(0, 2), ~1))])
Observe that the output of the network is a single scalar, hence g(?ﬁ € {-1,+1}. We ap-

ply the chainrule VoL = VL2 = g(3 min (|V;£(5)].C)Vef(6,x). We note R(g,C) =
min (||V4£L(9)||, C) > 0 and we obtain:

VoED(£(ClipS (9, 9))] = Vo (Eanplg(GIR(, C)V0f (0,2)] + Benqlo() R(G: C)Va S (0,2)])
(14)
Observe that the value of 9(75 can actually be deduced from the label y, which gives:
VoEp[L(7,y)] = —Eonp[R(9,C)Vof (0, 2)] + Eong[R(9, C) Vo f (0, 2)]. (15)
Observe that the function x — V;L(g) is piecewise-continuous when the loss § — L(7,y) is
piecewise continuous. Observe that |V;£(3)| is non zero, since the loss £ does not achieve its
minimum over the open set (—oo, +00), since o () € (0,1). Assuming that the data z € D live in
a compact (or equivalently that P and () have compact support), since = — |V4L(9)| is piecewise
continuous (with finite number of pieces for finite neural networks) it attains its minimum C’ > 0.
Choosing any C' < C’ implies that R(g, C') = C, which yields:
VoEp[L(Clipg(§,))] = —Eonp[CVof (0, 2)] + Eung[CVo (0, 2)]
—C (Eonp[Vof(0,2)] = Exng[Vof (0, 7)]) .
This corresponds to a gradient ascent step of length C' on the Kantorovich-Rubinstein (KR) objective

Lk r(Y,y) = yy. This loss is named after the Kantorovich Rubinstein duality that arises in optimal
transport, than states that the Wasserstein-1 distance is a supremum over 1-Lipschitz functions:

Wi(P,Q)i=  sup  Epwplf(z)] - Eonglf(@)). (16)
f€l-Lip(D,R)

Hence, with clipping C' small enough the gradient steps are actually identical to the ones performed

during the estimation of Wasserstein-1 distance. O

In future works, other multi-class losses can be studied through the lens of per-example clipping.
Our framework permits the use of gradient clipping while at the same time faciliting the theoretical
anaysis.

B.5.1 Possible improvements

Our framework is compatible with possible improvements in methods of data pre-processing. For
instance some works suggest that feature engineering is the key to achieve correct utility/privacy
trade-off [S0] some other work rely on heavily over-parametrized networks, coupled with batch size
[51]. While we focused on providing competitive and reproducible baselines (involving minimal
pre-processing and affordable compute budget) our work is fully compatible with those improvements.
Secondly the field of GNP networks (also called orthogonal networks) is still an active field, and new
methods to build better GNP networks will improve the efficiency of our framework ( for instance
orthogonal convolutions [44]],[411],[117]],[42],(43] are still an active topic). Finally some optimizations
specific to our framework can also be developed: a scheduling of loss-logits clipping might allow for
better utility scores by following the declining value of the gradient of the loss, therefore allowing for
a better mean signal to noise ratio across a diminishing number of miss-classified examples.

C Computing Sensitivity Bounds

C.1 Losses bounds
This section contains the proofs related to the content of table|l} Our framework wraps over some

losses found in deel-lip library, that are wrapped by our framework to provide Lipschitz constant
automatically during backpropagation for bounds.
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] Loss | Hyper-parameters L(4,y) Lipschitz bound L |

Softmax Cross-entropy temperature 7 > 0 yT log softmax(7/7) V2/T
Cosine Similarity bound Xpyin > 0 W 1/ Xiin
Multiclass Hinge margin m > 0 {max(0, T — 9i.ys) hi<i<k 1

Kantorovich-Rubenstein N/A {9,y} 1

. - . margin m > 0 " N
Hinge Kantorovich-Rubenstein regularization o > 0 oLy (9, y) + Lyuxr(G,y) 1+«

Table 1: Lipschitz constant of common supervised classification losses used for the training of
Lipschitz neural networks with & classes. Proofs in section[C.1}

Multiclass Hinge This loss, with min margin m is computed in the following manner for a one-hot
encoded ground truth vector y and a logit prediction g :

~ m N m N
‘CMH(y7y) = {HlaX(O, 5 - yl'yl)a "'7ma’X(07 5 - Zlkyk)}
ess  And ||(%£MH(Z?,ZJ)||2 < ||9]|2- Therefore Ly = 1.

689 Multiclass Kantorovich Rubenstein This loss, is computed in a one-versus all manner, for a
690 one-hot encoded ground truth vector y and a logit prediction ¢ :

Lyvixr(@:y) ={01 —vy1,-- 06 — yr) }-

691 Therefore, by differentiating, we also get Lxp = 1.

692 Multiclass Hinge - Kantorovitch Rubenstein This loss, is computed in the following manner for
693 a one-hot encoded ground truth vector y and a logit prediction ¢ :

Lyviaxr(9,y) = aLya(9,y) + Luxr(,Y)-

694 By linearity we get Lyxr = o + 1.

695 Cosine Similarity Cosine Similarity is defined in the following manner element-wise :

AT
" Yy
ﬁcs = TAn
) = il
And y is one-hot encoded, therefore Log(§,y) = Ui Therefore, the Lipschitz constant of

gl
this loss is dependant on the minimum value of §. A reasonable assumption would be Vz € D :

Kmin < ||z]|2 € Ximae- Furthermore, if the networks are Norm Preserving with factor K, we ensure
that:

KX’rrLin < ||:'-)||2 S KXT)’L(L.’L"

696 Which yields: Logs = # The issue is that the exact value of K is never known in advance
697 since Lipschitz networks are rarely purely Norm Preserving in practice due to various effects (lack of
698 tightness in convolutions, or rectangular matrices that can not be perfectly orthogonal).

699 Realistically, we propose the following loss function in replacement:

Yi
max(K Xpin, ||9]2)

‘CK—CS(Q7 y) =
700 Where K is an input given by the user, therefore enforcing L _cg = ﬁ

min
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701
702
703
704

706

707
708

709

710

711
712

713

714
715
716

Hyper 3f1(61,2)
Layer parameters I C 90 I2
1-Lipschitz dense none 1
Convolution window s Vs
. window s \/ B (h 1 (w—1)
RKO convolution image size H x W /(1= 571 = 557))

Table 2: Lipschitz constant with respect to parameters in common LlpSChltZ layers. We report only
the multiplicative factor that appears in front of the input norm ||z ||2.

Hyper 0fu (01,
Layer para)rlrll)eters H o ||2

Add bias none 1

1-Lipschitz dense none 1

RKO convolution none 1

Layer centering none 1

Residual block none 2
ReLU, GroupSort

softplus, sigmoid, tanh fone 1

Table 3: Lipschitz constant with respect to intermediate activations.

Categorical Cross-entropy from logits The logits are mapped into the probability simplex with
the Softmax function R — (0,1)%. We also introduce a temperature parameter 7 > 0, which hold
signifance importance in the accuracy/robustness tradeoff for Lipschitz networks as observed by [18].
We assume the labels are discrete, or one-hot encoded: we do not cover the case of label smoothing.

exp(7Y;)
== (17)
/ > exp(T;)
We denote the prediction associated to the true label j* as S j+- The loss is written as:
L(y) = —log(S;+). (18)
Its gradient with respect to the logits is:
A TS —1) ifj=4T,
Vil = { TS, otherwise (19)

The temperature factor 7 is a multiplication factor than can be included in the loss itself, by using %E
instead of £. This formulation has the advantage of facilitating the tuning of the learning rate: this is
the default implementation found in deel-lip library. The gradient can be written in vectorized form:

ViL=8—1g-5+).
By definition of Softmax we have Z S < 1. Now, observe that S; € (0,1), and as a
consequence (S;+ — 1)? < 1. Therefore HV L3 = D gt S% 4 (S;+ — 1)*> < 2. Finally

J
HVgEHQ = \@and LCCE = \@

C.2 Layer bounds

The Lipschitz constant (with respect to input) of each layer of interest is summarized in table 3] while
the Lipschitz constant with respect to parameters is given in table[2]

C.2.1 Dense layers

Below, we illustrate the basic properties of Lipschitz constraints and their consequences for gradient
bounds computations. While for dense layers the proof is straightforward, the main ideas can be
re-used for all linear operations which includes the convolutions and the layer centering.
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Property 2. Gradients for dense Lipschitz networks. Let x € R® be a data-point in space of
dimensions C € N. Let W € RE*F be the weights of a dense layer with F features outputs. We
bound the spectral norm of the Jacobian as

H (W Tz)

———| < :
oW < [l (20)

2

Proof. Since W + W7z is a linear operator, its Lipschitz constant is exactly the spectral radius:

W7o = WTalla _ |V W) Talle _ [W = Wlallele _ 0
W=, W =Wl = W =W

Finally, observe that the linear operation = — W7z is differentiable, hence the spectral norm of its
Jacobian is equal to its Lipschitz constant with respect to lo norm. O

C.2.2 Convolutions

Property 3. Gradients for convolutional Lipschitz networks. Let x € R°*C be an data-point
with channels C' € N and spatial dimensions S € N. In the case of a time serie S is the length of the
sequence, for an image S = HW is the number of pixels, and for a video S = HW N is the number
of pixels times the number of frames. Let U € R3*C*F be the weights of a convolution with:

e window size s € N (e.g s = hw in 2D or s = hwn in 3D),
» with C input channels,
* with F' € N output channels.

e we don’t assume anything about the value of strides. Our bound is typically tighter for
strides=1, and looser for larger strides.

We denote the convolution operation as (U  -) : R3¢ — RS> with either zero padding, either
circular padding, such that the spatial dimensions are preserved. Then the Jacobian of convolution
operation with respect to parameters is bounded.:

O(V x x)

HGTHQ < Vsllz|2. 1)

Proof. Lety = W sz € R¥*F be the output of the convolution operator. Note that y can be uniquely
decomposed as sum of output feature maps y = 2]12;1 yf where y/ € RS*F is defined as:

{(yf)if:yif forall1 <i < S,
(y/)ij=0  ifj#f.
Observe that (y/)Ty/" = 0 whenever f # f’. As a consequence Pythagorean theorem yields

lyl3 = Z?:l |ly/(|3. Similarly we can decompose each output feature map as a sum of pixels
y/ = 2521 yP/. where yP/ € R¥*F fulfill:

(¥"1)ij =0 iti#p,j#f,
(yP!)ps = ypy  otherwise.

Once again Pythagorean theorem yields ||y/||2 = 2521 [ly?7||2. Tt remains to bound y?# appropri-
ately. Observe that by definition:

= (U xa)py = (BF)Ta?[s].

where ¥/ € R**“ is a slice of ¥ corresponding to output feature map f, and z[s] € R**“ denotes
the patch of size s centered around input element p. For example, in the case of images with s = 3 x 3,
p are the coordinates of a pixel, and zP[s] are the input feature maps of 3 x 3 pixels around it. We
apply Cauchy-Schwartz:

2115 < 197113 > [l [s]]3-
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By summing over pixels we obtain:

S
Iy 113 < 197115 [l [s]13, (22)
p=1
F S
= lyll3 < ZII‘WH%)(Z 2P [s]113), (23)
f=1 p=1
S
= |yl < 213 x (Z Ipr[S]I§>- 24)
p=1

The quantity of interest is 25:1 ||z?[s]||3 whose squared norm is the squared norm of all the patches
used in the computation. With zero or circular padding, the norm of the patches cannot exceed those
of input image. Note that each pixel belongs to atmost s patches, and even exactly s patches when

circular padding is used:
S S
Do lals)E < s el = sl
p=1 p=1

Note that when strides>1 the leading multiplicative constant is typically smaller than s, so this
analysis can be improved in future work to take into account strided convolutions. Since W is a linear
operator, its Lipschitz constant is exactly its spectral radius:

[(Wrz) - (W xa)o _ [[(P-9)xzlls _ V5[V = W]zl

— < = S||T .
=, e S o), Vel

Finally, observe that the convolution operation ¥ * x is differentiable, hence the spectral norm of its
Jacobian is equal to its Lipschitz constant with respect to /o norm:

8(\11*37

=g ll2 < Vsllzl2-

O

An important case of interest are the convolutions based on Reshaped Kernel Orthogonalization
(RKO) method introduced by [17]]. The kernel ¥ is reshaped into 2D matrix of dimensions (sC' x F)
and this matrix is orthogonalised). This is not sufficient to ensure that the operation x — W x x is
orthogonal - however it is 1-Lipschitz and only approximately orthogonal under suitable re-scaling
by N > 0.

Corollary 1 (Loss gradient for RKO convolutions.). For RKO methods in 2D used in [48], the
convolution kernel is given by ® = N'U where U is an orthogonal matrix (under RKO) and N' > 0
a factor ensuring that x — ® x x is a 1-Lipschitz operation. Then, for RKO convolutions without

strides we have:
O(U * ) 1
=%zl < — —- 1zl (25)
ov (1= 50 = )

2w

where (H, W) are image dimensions and (h, w) the window dimensions. For large images with small
receptive field (as it is often the case), the Taylor expansion in h < H and w < W yields a factor of

magnitude 1 + (h 1) + (IZWD +o(w slH(v}I; Dy~ 1.

C.2.3 Layer normalizations

Property 4. Bounded loss gradient for layer centering. Layer centering is defined as f(x) =
1 n . « Y .

x — (> i ;)1 where 1 is a vector full of ones, and acts as a “centering” operation along some

channels (or all channels). Then the singular values of this linear operation are:

c1=0, and o9 =03=...=0, =1. (26)

In particular || 2L 5 Lo <1
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Proof. 1t is clear that layer normalization is an affine layer. Hence the spectral norm of its Jacobian
coincides with its Lipschitz constant with respect to the input, which itself coincides with the
spectral norm of f. The matrice M associated to f is symmetric and diagonally dominant since
|2=d) > Z?:_ll | =L|. It follows that M is semi-definite positive. In particular all its eigenvalues
A1 < ... < )\, are non negative. Furthermore they coincide with its singular values: o; = ;.
Observe that for all » € R we have f(r1) = 0, i.e the operation is null on constant vectors. Hence
A1 = 0. Consider the matrix M — I: its kernel is the eigenspace associated to eigenvalue 1. But the
matrix M — I = ’TLlllT is a rank-one matrix. Hence its kernel is of dimension n — 1, from which it
followsthat \o = ... =\, = 032... =0, = 1. O

C.2.4 MLP Mixer architecture

The MLP-mixer architecture introduced in [54] consists of operations named Token mixing and
Channel mixing respectively. For token mixing, the input feature is split in disjoint patches on
which the same linear opration is applied. It corresponds to a convolution with a stride equal
to the kernel size. convolutions on a reshaped input, where patches of pixels are “collapsed” in
channel dimensions. Since the same linear transformation is applied on each patch, this can be
interpreted as a block diagonal matrix whose diagonal consists of W repeated multiple times. More
formally the output of Token mixing takes the form of f(x) := [W Tz, Wz, ... W7Tz,] where
x = [x1,29,...,T,] is the input, and the z;’s are the patches (composed of multiple pixels). Note
that || f(2)[|3 < 32 (IWI3l2il3 = W3 320, lll3 = [W3]z]3. If [[W]2 = 1 then the
layer is 1-Lipschitz - it is even norm preserving. Same reasoning apply for Channel mixing. Therefore
the MLP_Mixer architecture is 1-Lipchitz and the weight sensitivity is proportional to ||z||.

Lipschitz MLP mixer: We adapted the original architecture in order to have an efficient 1-Lipschitz
version with the following changes:

* Relu activations were replaced with GroupSort, allowing a better gradient norm preservation,
* Dense layers were replaced with their GNP equivalent,

 Skip connections are available (adding a 0.5 factor to the output in order to ensure 1-lipschitz
condition) but architecture perform as well without these.

Finally the architecture parameters were selected as following:

1. The number of layer is reduced to a small value (between 1 and 4) to take advantage of the
theoretical sensitivity bound.

2. The patch size and hidden dimension are selected to achieve a sufficiently expressive network
(a patch size between 2 and 4 achieve accuracy without over-fitting and a hidden dim of
128-512 unlocks very large batch size).

3. The channel dim and token dim were set to value such that weight matrices are square
matrices (it is harder to guarantee that a network is GNP when the weight matrices are not
square).

D Experimental setup

D.1 Pareto fronts

We rely on Bayesian optimization [62] with Hyper-band [63]] heuristic for early stopping. The
influence of some hyperparameters has to be highlighted to facilitate training with our framework,
therefore we provide a table that provides insights into the effects of principal hyperparameters
in Figure [9] Most hyper-parameters extend over different scales (such as the learning rate), so
they are sampled according to log-uniform distribution, to ensure fair covering of the search space.
Additionnaly, the importance of the softmax cross-entropy temperature 7 has been demonstrated in
previous work [[18]].

D.1.1 Hyperparameters configuration for MNIST

Experiments are run on NVIDIA GeForce RTX 3080 GPUs. The losses we optimize are either the
Multiclass Hinge Kantorovich Rubinstein loss or the 7 — CCE.

24



807

808

809

810
811

812

813
814

816
817
818

819

820
821

Hyperparameter
Tuning

Influence on utility

Influence on privacy
leakage per step

Increasing Batch Size

Beneficial: Decreases the sensitivity
of the gradient computation mecha-
nism.

Detrimental: Reduces the pri-
vacy amplification by sub-
sampling effects.

Loss Gradient Clipping Mixed: No influence
- Beneficial: Tighter sensitivity
bounds.
- Detrimental: Biases the direction
of the gradient.
Clipping Input Norms Mixed: Limited Knowledge Could No influence

be the subject of future work

Figure 9: Hyperparameter table: Here, we give insights on the effects of intervention on hyper-
parameters of the method.

Hyper-Parameter Minimum Value Maximum Value

Input Clipping 1071 1
Batch Size 512 10%
Loss Gradient Clipping 102 NO CLIPPING
a (HKR) 1072 2,0 x 103
7 (CCE) 102 1,8 x 107

The sweeps were run with MLP or ConvNet architectures yielding the results presented in Figure [Sa]

D.1.2 Hyperparameters configuration for FASHION-MNIST

Experiments are run on NVIDIA GeForce RTX 3080 GPUs. The losses we optimize are the Multiclass
Hinge Kantorovich Rubinstein loss, the 7 — CCE or the K-CosineSimilarity custom loss function.

Hyper-Parameter

Minimum Value

Maximum Value

Input Clipping 1071 1
Batch Size 5.0 x 103 10%
Loss Gradient Clipping 1072 NO CLIPPING
a (HKR) 1072 2.0 x 103
7 (CCE) 1072 4.0 x 10t
K (K-CS) 107 1.0

A simple ConvNet architecture was chosen to run all sweeps yielding the results we present in

Figure [5b]
D.1.3 Hyperparameters configuration for CIFAR-10

Experiments are run on NVIDIA GeForce RTX 3080 or 3090 GPUs. The losses we optimize are the
Multiclass Hinge Kantorovich Rubinstein loss, the 7 — CCE or the K-CosineSimilarity custom loss
function. They yield the results of Figure

Hyper-Parameter Minimum Value Maximum Value

Input Clipping 1072 1
Batch Size 512 107
Loss Gradient Clipping 2.0x 1072 NO CLIPPING
o (HKR) 1072 2.0 x 103
7 (CCE) 1073 3.2 x 101
K (K-CS) 1072 1.0

The sweeps have been done on various architectures such as Lipschitz VGGs, Lipschitz ResNets
and Lipschitz MLP_Mixer. We can also break down the results per architecture, in figure The
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Figure 10: Accuracy/Privacy tradeoff on Cifar-10, split down per architecture used. While some
architectures seems to perform better than others, we don’t advocate for the use of one over another.
The results may not translate to all datasets, and may be highly dependant on the range chosen for
hyper-parameters. While this figure provides valuable insights, identifying the best architecture is left
for future works.

MLP_Mixer architecture seems to yield the best results. This architecture is exactly GNP since the
orthogonal linear transformations are applied on disjoint patches. To the contrary, VGG and Resnets
are based on RKO convolutions which are not exactly GNP. Hence those preliminary results are
compatible with our hypothesis that GNP layers should improve performance. Note that these results
are expected to change as the architectures are further improved. It is also dependant of the range
chosen for hyper-parameters. We do not advocate for the use of an architecture over another, and we
believe many other innovations found in literature should be included before settling the question
definitively.

D.2 Configuration of speed experiment

We detail below the environment version of each experiment, together with Cuda and cudnn versions.
We rely on machine with 32GB RAM and a NVIDIA Quadro GTX 8000 graphic card with 48GB
memory. The GPU uses driver version 495.29.05, cuda 11.5 (October 2021) and cudnn 8.2 (June 7,
2021). We use Python 3.8.

* For Jax, we used jax 0.3.17 (Aug 31, 2022) with jaxlib 0.3.15 (July 23, 2022), flax 0.6.0
(Aug 17, 2022) and optax 1.4.0 (Nov 21, 2022).

* For Tensorflow, we used tensorflow 2.12 (March 22, 2023) with tensorflow_privacy 0.7.3
(September 1, 2021).

* For Pytorch, we used Opacus 1.4.0 (March 24, 2023) with Pytorch (March 15, 2023).
* For lip-dp we used deel-lip 1.4.0 (January 10, 2023) on Tensorflow 2.8 (May 23, 2022).

For this benchmark, we used among the most recent packages on pypi. However the latest version of
tensorflow privacy could not be forced with pip due to broken dependencies. This issue arise in clean
environments such as the one available in google colaboratory.

D.3 Drop-in replacement with Lipschitz networks in vanilla DPSGD

Thanks to the gradient clipping of DP-SGD (see Algorithm ), Lipschitz networks can be readily
integrated in traditional DP-SGD algorithm with gradient clipping. The PGD algorithm is not
mandatory: the back-propagation can be performed within the computation graph through iterations
of Bjorck algorithm (used in RKO convolutions). This does not benefit from any particular speed-up
over conventional networks - quite to the contrary there is an additional cost incurred by enforcing
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Figure 11: Privacy/utility trade-off for Gradient Norm Preserving networks trained under “vanilla’
DP-SGD (with gradient clipping). Each green dot corresponds to a single epoch of one of the runs.
Trajectories that end abruptly are due to the automatic early stopping of unpromising runs. Note
that clipping + orthogonalization have a high runtime cost, which limits the number of epochs that
reported.

s

Lipschitz constraints in the graph. Some layers of deel-lip library have been recoded in Jax/Flax, and
the experiment was run in Jax, since Tensorflow was too slow.

We use use the Total Amount of Noise (TAN) heuristic introduced in [64] to heuristically tune
hyper-parameters jointly. This ensures fair covering of the Pareto front. Results are exposed in

Figures [[Taand [TTb]

Algorithm 4 Differentially Private Stochastic Gradient Descent : DP-SGD

Input: Neural network architecture f(-,-)
Input: Initial weights 6y, learning rate scheduling 7;, number of steps N, noise multiplier o, L2
clipping value C .

1: repeat
2: foralll <t < N —1do
3: Sample a batch
Bt = (xlvyl)ﬂ ($2,y2), sy (xba yb)
4: Create microbatches, compute and clip the per-sample gradient of cost function:
gt;i = maX(Ca v@t‘c(g)i? yl))
5: Perturb each microbatch with carefully chosen noise distribution b ~ N (0,cC) :
Gti < Gr,i + ;.
6: Perform projected gradient step:
Orr1 < TL(Or — 0eGei)-
7: end for

8: until privacy budget (¢, 0) has been reached.

D.4 Extended limitations

The main weakness of our approach is that it crucially rely on accurate computation of the sensitiv-
ity A. This task faces many challenges in the context of differential privacy: floating point arithmetic
is not associative, and summation order can a have dramatic consequences regarding numerical
stability [S5]]. This is further amplified on the GPUs, where some operations are intrinsically non
deterministic [56]. This well known issue is already present in vanilla DP-SGD algorithm. Our
framework adds an additional point of failure: the upper bound of spectral Jacobian must be com-
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puted accurately. Hence Power Iteration must be run with sufficiently high number of iterations to
ensure that the projection operator II works properly. The (¢, §)-DP certificates only hold under the
hypothesis that all computations are correct, as numerical errors can induce privacy leakages. Hence
we check empirically the effective norm of the gradient in the training loop at the end of each epoch.
No certificate violations were reported during ours experiments, which suggests that the numerical
errors can be kept under control.

E Proofs of general results

This section contains the proofs of results that are either informally presented in the main paper,
either formally defined in section[A.2]

The informal Theorem [I|requires some tools that we introduce below.

Additionnal hypothesis for GNP networks. We introduce convenient assumptions for the purpose
of obtaining tight bounds in Algorithm 2]

Assumption 1 (Bounded biases). We assume there exists B > 0 such that that for all biases by we
have ||bg|| < B. Observe that the ball {||bl|s < B} of radius B is a convex set.

Assumption 2 (Zero preserving activation). We assume that the activation fulfills 0(0) = 0. When o
is S-Lipschitz this implies ||o(x)|| < S||z|| for all x. Examples of activations fulfilling this constraints
are ReLU, Groupsort, GeLU, ELU, tanh. However it does not work with sigmoid or softplus.

We also propose the assumption 3] for convenience and exhaustivity.

Assumption 3 (Bounded activation). We assume it exists G > 0 such that for every x € X and every
1 <d < D+ 1we have:
|hall < G and |zq| < G. (27)

Note that this assumption is implied by requirement 2] assumption as illustrated in proposition 3]

In practice assumption [3|can be fulfilled with the use of input clipping and bias clipping, bounded
activation functions, or layer normalization. This assumption can be used as a “shortcut” in the proof
of the main theorem, to avoid the “propagation of input bounds” step.

E.1 Main result

We rephrase in a rigorous manner the informal theorem of section [3.1] The proofs are given in
section[B] In order to simplify the notations, we use X := Xj in the following.

Proposition 3. Norm of intermediate activations. Under requirement 2} assumptions we have:

sy ( - 1E?U> + 125y fUS#1,
SX +tSB otherwise.

he]] < S|z < { (28)

In particular if there are no biases, i.e if B = 0, then ||h¢]| < S||z:] < SX .

Proposition 3| can be used to replace assumption 3|

Proposition 4. Lipschitz constant of dense Lipschitz networks with respect to parameters. Let
f(-,-) be a Lipschitz neural network. Under requirement [Z] assumptions we have for every
1<t<T+1:

af (6, x)

1=l < (SU)", (29)
t

af (o, _

12D, < (SUYT . 30)

In particular, for every x € X, the function 6 — f(0,x) is Lipschitz bounded.
PropositionE] suggests that the scale of the activation || h; || must be kept under control for the gradient

scales to distribute evenly along the computation graph. It can be easily extended to a general result
on the per sample gradient of the loss, in theorem I}
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Theorem 1. Bounded loss gradient for dense Lipschitz networks. Assume the predictions are
given by a Lipschitz neural network f:

j = f(0,2). (31)

Under requirements assumptions there exists a K > 0 for all (x,y,0) € X x Y x O the
loss gradient is bounded:
IVoL(3,y)ll2 < K. (32)

Let a = SU be the maximum spectral norm of the Jacobian between two consecutive layers.

If o = 1 then we have:

K =0 (LX + LVT + LSXVT + LVBXST + LBST*?). (33)
The case S = 1 is of particular interest since it covers most activation function (i.e ReLU, GroupSort):
K =0 (LVT + LXVT + LVBXT + LBT**) . (34)
Further simplification is possible if we assume B = 0, i.e a network without biases:
K=0 (Lﬁu + X)) . (35)
If o > 1 then we have:
VoL (9,y)ll2 = O <Laa_T1 <ﬁ(aX+SB) + O‘(Soif‘f)» (36)

Once again B = 0 (network with no bias) leads to useful simplifications:
T+1
o @
Vo L(y, =0(L—— TX + — | ).
90t =0 (12— (VIx + =)
We notice that when o > 1 there is an exploding gradient phenomenon where the upper bound
become vacuous.

(37)

If o < 1 then we have:

. 1 XSB SB L
[Vo£(@.9)ll2 =0 (LQT (X\/ﬂ Ery) ( o T a))> - mm) '
@)

For network without biases we get:

VoLl )z = O [ LaTXVT + ——2_ ). (39)
1_ap

The case o < 1 is a vanishing gradient phenomenon where ||V oL(3§,y)||2 is now independent of
the depth T’ and of the input scale X.

The informal theorem of section@] is based on the aforementioned bounds, that have been simplified.
Note that the definition of network differs slightly: in definition [3the activations and the affines layers
are considered independent and indexed differently, while the theoretical framework merge them into
z¢ and h, respectively, sharing the same index ¢. This is without consequences once we realize that
if K =U = Sand 2T = D then (US)? = o? = K2 leads to o®T = K. The leading constant
factors based on « value have been replaced by 1 since they do not affect the asymptotic behavior.

Main paper submission erratum: at time of submission the informal theorem of section [3.1|contains a
small mistake (a missing /D factor in case 3., and a missing constant in the case 2.), which has no
consequences on the code, the framework or the theoretical analysis. This will be corrected in the
revised version.
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E.2 Proof of main result

Propositions [3|and 4 were introduced for clarity. They are a simple consequence of the Lemmas [T}[3}4]
used in the proof of Theorem [I] See the proof below for a complete exposition of the arguments.

Theorem 1. Bounded loss gradient for dense Lipschitz networks. Assume the predictions are
given by a Lipschitz neural network f:

g:=f(0,2). €1y

Under requirements assumptions[I\2] there exists a K > 0 for all (z,y,0) € X x Y x © the
loss gradient is bounded:
IVoL(,y)ll2 < K. (32)

Let o = SU be the maximum spectral norm of the Jacobian between two consecutive layers.

If o = 1 then we have:

K=0 (LX + LVT + LSXVT + LVBX ST + LBST3/2) . (33)
The case S = 1 is of particular interest since it covers most activation function (i.e ReLU, GroupSort):
K =0 (LVT + LXVT + LVBXT + LBT*) . (34)
Further simplification is possible if we assume B = 0, i.e a network without biases:
K=0 (L\/T(l + X)) . (35)
If > 1 then we have:
T SB +
VoL, y)|l = O (L a (ﬁ(ax 4 SB) + M)) . (36)
a—1 o2 — 1
Once again B = 0 (network with no bias) leads to useful simplifications:
OzT+1 f @]
Vo L(§ =0|L— (VIX+ ———) |- 37
I90£(3,9)] (a_1< +ﬁﬁ_J) @)

We notice that when o >> 1 there is an exploding gradient phenomenon where the upper bound
become vacuous.

If o < 1 then we have:

. 1 XSB SB L
IVoL(@:9)ll2 = O (LaT (X\/T+ (1—a2?) ( o " (1—a))> i (1—a)\/m> '
(38)

For network without biases we get:

IVol(g )z = O [ LaTXVT + ——2_ ). (39)
TEL

The case o < 1 is a vanishing gradient phenomenon where ||V oL(4,y)||2 is now independent of
the depth 'T' and of the input scale X.

Proof. The control of gradient implicitly depend on the scale of the output of the network at every
layer, hence it is crucial to control the norm of each activation.

Lemma 1 (Bounded activations). IfUS # 1 forevery 1 <t < T + 1 we have:

SB B
< tgt-1 _ .
2]l < U*S (X 1SU> = (40)
IfUS =1 we have:
l2¢]] < X +tB. 41)

In every case we have ||h:|| < S||z¢]|.
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Lemma proof. From assumption 2] if we assume that o is S-Lipschitz, we have:
1]l = llo(z0)ll = llo(zt) — o (0)[| < Sllzel]- (42)
Now, observe that:
zeall = IWegrhe + b | < [IWegal[[[Be]l + 1o || < US|[ze]| + B. (43)

Letu; = UX + B and us+1 = SUu; + B be a linear recurrence relation. The translated sequence
% is a geometric progression of ratio SU, hence uy = (SU)*"'(UX + B — SU) + %.
Finally we conclude that by construction ||z¢|| < u;. |

Ut —

The activation jacobians can be bounded by applying the chainrule. The recurrence relation obtained
is the one automatically computed with back-propagation.
Lemma 2 (Bounded activation derivatives). Forevery T +1 > s >t > 1 we have:

0z, s
155,11 < (ST (44)

Lemma proof. The chain rule expands as:

82’3 629 6h§_1 8Z§_1

= . : —— 45
0z  Ohg_1 0zs—1 Oz 43)
From Cauchy-Schwartz inequality we get:
Oz 3hs 1 325 1
46
15280 < g DG . (46)

Since o is S-Lipschitz, and | W, || < U, and by observing that || 22 t|| =1 we obtain by induction
that:

< (SU)s . 47)
]

The derivatives of the biases are a textbook application of the chainrule.
Lemma 3 (Bounded bias derivatives). For every t we have:

IV, L(§,y)| < L(SU)T*H (48)

Lemma proof. The chain rule yields:

) .\ Ozry1 0z
= (V; — 4
Vo L(9,y) = (VgL(9,y)) 92 b (49)
Hence we have: 5 5
N . z z
Vo, L(G, ) = VL@, )l - |l T“ 115 tH (50)

We conclude with Lemma [2| that states || ‘%T“ | < (U S)T+1 ¢, with requirement |1| that states
IV4L(3,y)|| < L and by observaing that || 57 32’ L] =1. [ |

We can now bound the derivative of the affine weights:

Lemma 4 (Bounded weight derivatives). Forevery T +1 >t > 2 we have:

SB
- < T . TH1—t
V£l < L8UYT (X = 125 )+ psoyT o 2 ke sU 21, 6D
IVw, £(5,y)|| < LS (X + (t — 1)B) when SU = 1. (52)
(53)
In every case:
IVw, £(g,9)|| < L(SU)T X. (54)
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965 Lemma proof. We proceed like in the proof of Lemma [3]and we get:

~ ~ 82T+1 azt
Vw, L < |[VgL . . . 55
I, £ )| < IV LG - |- | (59)
966 Which then yields:
0z
Vw, L(G,y)|| < L(SU)TH 1 || === 56
¥, £, )| < LSO | (56)
967 Now, for T'+ 1 > ¢ > 1, according to Lemma we either have:
< ||h < = 7
Il < Whecal < Slall = 50 (x - 2500 )+ 1255 o
98 or, whenUS = 1:
5'2,5
I3 || < N1l = Sllze-1]| = SX + (t - 1)SBift > 2, (58)
8Zt
”8 || < X otherwise. (59)
969 |

970 Now, the derivatives of the loss with respect to each type of parameter (i.e W, or b,) are know, and
971 they can be combined to retrieve the overall gradient vector.

= {(W1,b1), (Wa, ba), ... (Wry1,bri1)} (60)

972 We introduce oo = SU.

973 Case o = 1. The resulting norm is given by the series:

T+1
V6 L@ )5 = > IVe L@ )5+ Vw. L@ 93 (61)
t=1
T+1
<I? <1+X )+Z(1+(SX+(t—1)SB)2)> (62)
2
<1+X2+Z 1+ (SX +uSB) )) (63)
(1 + X2+ Z 1+ S*(X? + +2uBX + u232))> (64)
<1 L X2 4 T(1 4 $2X2) 4 SPBXT(T +1) + §2B2 L+ 1)6(2T + 1)> .
(65)
974 Finally:
VoL (D, y)|l2 = O(LV X2 + T + TS2X? + BS2XT? + B2S52T3) (66)
—0 (LX + LVT + LSXVT + LVBXST + LBSTS/Z) . (67)

75 This upper bound depends (asymptotically) linearly of L, X, S, B, T*/?, when other factors are kept
976 fixed to non zero value.
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Case o # 1. We introduce = 3£

j e
T+1
VoL@ )13 =Y (Vs LG, 9)I5 + I Vw, £(G, )13 (68)
=1
! T+1
<17 (a” S =B)+a' B + a“t>> (69)
t=1
T
< 12?7 (Z(((X —B)?+2(X - Bla" B+ a" 2B + a‘Q“)> (70)
u=0
T T
< L*®" ((T FDX =B +2X =B)BY a "+ (B +1)) a_2“> (71)
u=0 u=0
_ (1T 2 _ (AT
< 1227 ((T F1)(X = B)? +2(X — 5)5% (8 + 1)W) .
(72)
Finally:
_ (T 2 _ (AT
IVoL(@ )l < Laﬁ T+ (X - g2 +2(x - 922l (o )T
(73)

Now, the situation is a bit different for & < 1 and o > 1. One case corresponds to exploding gradient,
and the other to vanishing gradient.

When « < 1 we necessarily have § > 0, hence we obtain a crude upper-bound:

R T 1 XSB SB L
IVoﬁ(y,y)zO<L <Xﬁ+(1—a2) ( — + (1—a)>>+(1—a)m>'
(74)

Once again B = 0 (network with no bias) leads to useful simplifications:
L
IVoL(D,9)|l2 = O [ La” XVT + — | . (75)
1-ap

This is a typical case of vanishing gradient since when 7" >> 1 the upper bound does not depend on
the input scale X anymore.

Similarly, we can perform the analysis for o > 1, which implies 8 < 0, yielding another bound:
T SB +
9ot le =0 (L2 (Vax + 5m)+ 2220, a0
_ o _

Without biases we get:

al*l JT a
L(7y =0(L— | VIX+ ——— ]. 77
90t =0 (18— (VIx + ) )
We recognize an exploding gradient phenomenon due to the o’ term. O

E.3 Variance of the gradient

The result mentionned in section[3.1]is based on the following result, directly adapted from a classical
result on concentration inequalities.

Corollary 2. Concentration of stochastic gradient around its mean. Assume the samples (x,y)
are i.i.d and sampled from an arbitrary distribution D. We introduce the R.V g = VgL (x,y) which is
a function of the sample (x,y), and its expectation g = By ) p[VoL(x,y)]. Then for all u > %
the following inequality hold:

1< . Vb 2
P(|| - i — gl > uK) <exp | ——(u— )2>. (78)
b;g g p( < 7
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Proof. The result is an immediate consequence of Example 6.3 p167 in [65]. We apply the theorem
with the centered variable X; = (g; — g) that fulfills condition || X;|| < & with ¢; = %£ since

lg:|| < K. Then for every t > % we have:

b
1 Vb 2K
P(||= =gl >t < ——(t—2)? ). 79
(I5 >0 =l > >exp< sl W) (19)
We conclude with the change of variables u = % O
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