
Contents329

1 Introduction 1330

1.1 Differential Privacy and Lipschitz Networks . 3331

2 Clipless DP-SGD with l-Lipschitz networks 4332

2.1 Backpropagation for bounds . 5333

2.2 Privacy accounting for Clipless DP-SGD . 5334

3 From theory to practice 6335

3.1 Gradient Norm Preserving networks . 7336

3.2 Lip-dp library . 8337

4 Experimental results 8338

5 Limitations and future work 9339

6 Concluding remarks and broader impact 9340

A Definitions and Methods 12341

A.1 Additionnal background . 12342

A.1.1 Lipschitz neural networks background . 12343

A.1.2 Gradient Norm Preserving networks . 12344

A.1.3 Differential Privacy background . 13345

A.2 More about Clipless DP-SGD . 13346

B Lipdp tutorial 13347

B.1 Prerequisite: building a l-Lipschitz network . 14348

B.2 Getting started . 15349

B.3 Image spaces and input clipping . 16350

B.3.1 Color space representations . 16351

B.3.2 Input clipping . 16352

B.4 Practical implementation of Residual connections 17353

B.5 Loss-logits gradient clipping . 18354

B.5.1 Possible improvements . 19355

C Computing Sensitivity Bounds 19356

C.1 Losses bounds . 19357

C.2 Layer bounds . 21358

C.2.1 Dense layers . 21359

C.2.2 Convolutions . 22360

C.2.3 Layer normalizations . 23361

C.2.4 MLP Mixer architecture . 24362

10

D Experimental setup 24363

D.1 Pareto fronts . 24364

D.1.1 Hyperparameters configuration for MNIST 24365

D.1.2 Hyperparameters configuration for FASHION-MNIST 25366

D.1.3 Hyperparameters configuration for CIFAR-10 25367

D.2 Configuration of speed experiment . 26368

D.3 Drop-in replacement with Lipschitz networks in vanilla DPSGD 26369

D.4 Extended limitations . 27370

E Proofs of general results 28371

E.1 Main result . 28372

E.2 Proof of main result . 30373

E.3 Variance of the gradient . 33374

11

A Definitions and Methods375

A.1 Additionnal background376

The purpose of this appendix is to provide additionnal definitions and properties regarding Lipschitz377

Neural Networks, their possible GNP properties and Differential Privacy.378

A.1.1 Lipschitz neural networks background379

For simplicity of the exposure, we will focus on feedforward neural networks with densely connected380

layers: the affine transformation takes the form of a matrix-vector product h 7→Wh. In section C.2381

we tackle the case of convolutions h 7→ Ψ ∗ h with kernel Ψ.382

Definition 4 (Feedforward neural network). A feedforward neural network of depth T , with input383

space X ⊂ Rn, and with parameter space Θ ⊂ Rp, is a parameterized function f : Θ × X → Y384

defined by the following recursion:385

h0(x) := x, zt(x) := Wtht−1(x) + bt,

ht(x) := σ(zt(x)), f(θ, x) := zT+1(x). (8)

The set of parameters is denoted as θ = (Wt, bt)1≤t≤T+1, the output space as Y ⊂ RK (e.g logits),386

and the layer-wise activation as σ : Rn → Rn.387

Definition 5 (Lipschitz constant). The function f : Rm → Rn is said l-Lipschitz for l2 norm if for388

every x, y ∈ Rm we have:389

∥f(x)− f(y)∥2 ≤ l∥x− y∥2. (9)
Per Rademacher’s theorem [10], its gradient is bounded: ∥∇f∥ ≤ l. Reciprocally, continuous390

functions gradient bounded by l are l-Lipschitz.391

Definition 6 (Lipschitz neural network). A Lipschitz neural network is a feedforward neural network392

with the additional constraints:393

• the activation function σ is S-Lipschitz. This is a standard assumption, frequently fulfilled394

in practice.395

• the affine functions x 7→ Wx + b are U -Lipschitz, i.e ∥W∥2 ≤ U . This is achieved396

in practice with spectrally normalized matrices [12] [13]. The feasible set is the ball397

{∥W∥2 ≤ U} of radius U (which is convex), or a subset of thereof (not necessarily convex).398

As a result, the function x 7→ f(θ, x) is U(US)T -Lipschitz for all θ ∈ Θ.399

Two strategies are available to enforce Lipschitzness:400

1. With a differentiable reparametrization Π : Rp → Θ where θ̃ = Π(θ): the weights θ̃ are401

used during the forward pass, but the gradients are back-propagated to θ through Π. This402

turns the training into an unconstrained optimization problem on the landscape of L ◦ f ◦Π.403

2. With a suitable projection operator Π : Rp → Θ: this is the celebrated Projected Gradient404

Descent (PGD) algorithm [58] applied on the landscape of L ◦ f .405

For arbitrary re-parametrizations, option 1 can cause some difficulties: the Lipschiz constant of Π is406

generally unknown. However, if Θ is convex then Π is 1-Lipschitz (with respect to the norm chosen407

for the projection). To the contrary, option 2 elicits a broader set of feasible sets Θ. For simplicity,408

option 2 will be the focus of our work.409

A.1.2 Gradient Norm Preserving networks410

Definition 7 (Gradient Norm Preserving Networks). GNP networks are 1-Lipschitz neural networks411

with the additional constraint that the Jacobian of layers consists of orthogonal matrices:412 (
∂fd
∂xd

)T (
∂fd
∂xd

)
= I. (10)

This is achieved with GroupSort activation [8, 39], Householder activation [40], and orthogonal413

weight matrices [17, 41] or orthogonal convolutions (see [44, 45, 46] and references therein). Without414

biases these networks are also norm preserving: ∥f(θ, x)∥ = ∥x∥.415

12

The set of orthogonal matrices (and its generalization the Stiefel manifold [20]) is not convex, and not416

even connected. Hence projected gradient approaches are mandatory: for re-parametrization methods417

the Jacobian ∂Π
∂θ may be unbounded which could have uncontrollable consequences on sensitivity.418

A.1.3 Differential Privacy background419

Definition 8 (Neighboring datasets). A labelled dataset D is a finite collection of input/label pairs420

D = {(x1, y1), (x2, y2),(xN , yN)}. Two datasets D and D′ are said to be neighbouring if they421

differ by at most one sample: D′ = D ∪ {(x′, y′)} − {(xi, yi)}.422

The sensitivity is also referred as algorithmic stability [59], or bounded differences property in other423

fields [60]. We detail below the building of a Gaussian mechanism from an arbitrary query of known424

sensitivity.425

Definition 9 (Gaussian Mechanism). Let f : D → Rp be a query accessing the dataset of known426

l2-sensitivity ∆(f), a Gaussian mechanism adds noise sampled from N (0, σ.∆(f)) to the query f .427

Property 1 (DP of Gaussian Mechanisms). Let G(f). be a Gaussian mechanism of l2-sensitivity428

S2(f) adding the noise N (0, σ.S2(f)) to the query f . The DP guarantees of the mechanism are429

given by the following continuum: σ =
√

2. log(1.25/δ)/ϵ.430

SGD is a composition of queries. Each of those query consists of sampling a minibatch from the431

dataset, and computing the gradient of the loss on the minibatch. The sensitivity of the query is432

proportional to the maximum gradient norm l, and inversely proportional to the batch size b. By433

pertubing the gradient with a Gaussian noise of variance σ2 l2

b2 the query is transformed into a434

Gaussian mechanism. By composing the Gaussian mechanisms we obtain the DPSGD variant, that435

enjoy (ϵ, δ)-DP guarantees.436

Proposition 1 (DP guarantees for SGD, adapted from [1].). Assume that the loss fulfills437

∥∇θL(ŷ, y)∥2 ≤ l, and assume that the network is trained on a dataset of size N with SGD438

algorithm for T steps with noise scale N (0, σ2) such that:439

σ ≥
16K

√
T log (2/δ) log (1.25T/δN)

Nϵ
. (11)

Then the SGD training of the network is (ϵ, δ)-DP.440

A.2 More about Clipless DP-SGD441

About the “local” strategy. Illustrated in Figures 3. We dissect the DP-mechanism that consists442

of the SGD steps applied on each layer. Indeed, we are able to characterise the sensitivity ∆d of443

every layer of the network. Therefore, we give (ϵd, δd)-DP guarantees on a per-layer basis. Finally444

however, we would still have to be able to guarantee (ϵ, δ)-DP on the whole model.445

1. On each layer, we apply a Gaussian mechanism [9] with noise variance σ2∆2
d.446

2. Their composition yields an other Gaussian mechanism with non isotropic noise.447

3. The Gaussian mechanism benefits from privacy amplification via subsampling [31] thanks448

to the stochasticity in the selection of batches of size b = pN .449

4. Finally an epoch is defined as the composition of T = 1
p sub-sampled mechanisms.450

Different layers exhibit different maximum gradient bounds - and in turn this implies different451

sensitivities. This also suggests that different noise multipliers σd can be used for each layer. This452

open extensions for future work.453

We detail in Algorithm 3 the global variant of our approach.454

B Lipdp tutorial455

This section gives advice on how to start your DP training processes using the framework. Moreover,456

it provides insights into how input pre-processing, building networks with Residual connections and457

Loss-logits gradient clipping could help offer better utility for the same privacy budget.458

13

Algorithm 3 Clipless DP-SGD with global sensitivity accounting
Input: Feed-forward architecture f(·, ·) = fT+1(ΘT+1, ·) ◦ fT (ΘT , ·) ◦ . . . ◦ f0(Θ0, ·)
Input: Initial weights θ0, learning rate scheduling ηt, noise multiplier σ.

1: repeat
2: ∆0 . . .∆T+1 ← compute_gradient_bounds(f,X).
3: Sample a batch Bt = {(x1, y1), (x2, y2), . . . , (xb, yb)}.
4: Compute the mean gradient of the batch for each layer t:

g̃t :=
1

b

b∑
i=1

∇WtL(ŷi, yi)).

5: For each layer t of the model, get the theoretical bound of the gradient:

∀1 ≤ i ≤ b, ∥∇Wt
L(ŷi, yi)∥2 ≤ ∆t.

6: Update Moment accountant state with global sensivity ∆ = 2
b

√∑T+1
t=1 ∆2

t .
7: Add global noise ζ ∼ N (0, 2σ∆/b) to each weights and perform projected gradient step:

Wt ← Π(Wt − η(g̃t + ζ)).

8: Report new (ϵ, δ)-DP guarantees with accountant.
9: until privacy budget (ϵ, δ) has been reached.

B.1 Prerequisite: building a l-Lipschitz network459

As per def 3 a l-Lipschitz neural network of depth d can be built by composing
d√
l layers. In460

the rest of this section we will focus on 1-Lipschitz networks (rather than controlling l we control461

the loss to obtain the same effects [18]). In order to do so the strategy consists in choosing only462

1-Lipschitz activations, and to constrain the weights of parameterized layers such that it can only463

express 1-Lipschitz functions. For instance normalizing the weight matrix of a dense layer by its464

spectral norm yield a 1-Lipschitz layer (this, however cannot be applied trivially on convolution’s465

kernel). In practice we used the layers available in the open-source library deel-lip. In practice, when466

building a Lipschitz network, the following block can be used:467

• Dense layers: are available as SpectralDense or QuickSpectralDense which apply spectral468

normalization and Björck orthogonalization (for GNP layers).469

• Relu activations are replaced by Groupsort2 activations, and such activations are GNP,470

preventing vanishing gradient.471

• pooling layers are replaced with ScaledL2NormPooling, which is GNP.472

• normalization layers like BatchNorm are not K-Lipschitz. We did not accounted these473

layers since they can induce a privacy leak (as they keep a rolling mean and variance). A474

1-Lipschitz drop-in replacement is studied in C.2.3. The relevant literature also propose475

drop-in replacement for this layer with proper sensitivity accounting.476

Originally, this library relied on differentiable re-parametrizations, since it yields higher accuracy477

outside DP training regime (clean training without noise). However, our framework does not478

account for the Lipschitz constant of the re-parametrization operator. This is why we provide479

QuickSpectralDense and QuickSpectralConv2D layers to enforce Lipschitz constraints, where the480

projection is enforced with a tensorflow constraint. Note that SpectralDense and SpectralConv2D481

can still be used with a CondenseCallack to enforce the projection, and bypass the back-propagation482

through the differentiable re-parametrization. However this last solution, while being closer to the483

original spirit of deel-lip, is also less efficient in speed benchmarks.484

The Lipschitz constant of each layer is bounded by 1, since each weight matrix is divided by485

the largest singular value σmax. This singular value is computed with Power Iteration algorithm.486

Power Iteration computes the largest singular value by repeatedly computing a Rayleigh quotient487

asssociated to a vector u, and this vector eventually converges to the eigenvector umax associated to488

the largest eigenvalue. These iterations can be expensive. However, since gradient steps are smalls,489

14

the weight matrices Wt and Wt+1 remain close to each other after a gradient step. Hence their largest490

eigenvectors tend to be similar. Therefore, the eigenvector umax can be memorized at the end of each491

train step, and re-used as high quality initialization at the next train step, in a “lazy” fashion. This492

speed-up makes the overall projection algorithm very efficient.493

B.2 Getting started494

The framework we propose is built to allow DP training of neural networks in a fast and controlled495

approach. The tools we provide are the following :496

1. A pipeline to efficiently load and pre-process the data of commonly used datasets like497

MNIST, FashionMNIST and CIFAR10.498

2. Configuration objects to correctly account DP events we provide config objects to fill in499

that will500

3. Model objects on the principle of Keras’ model classes we offer both a DP_Model and a501

DP_Sequential class to streamline the training process.502

4. Layer objects where we offer a readily available form of the principal layers used for DNNs.503

These layers are already Lipschitz constrained and possess class specific methods to access504

their Lipschitz constant.505

5. Loss functions, identically, we offer DP loss functions that automatically compute their506

Lipschitz constant for correct DP enforcing.507

We highlight below an example of a full training loop on Mnist with lip-dp library. Refer to the508

“examples” folder in the library for more detailed explanations in a jupyter notebook.509

510
dp_parameters = DPParameters(511

noisify_strategy="global",512

noise_multiplier =2.0,513

delta=1e-5,514

)515

516

epsilon_max = 3.0517

518

input_upper_bound = 20.0519

ds_train , ds_test , dataset_metadata = load_and_prepare_data(520

"mnist",521

batch_size =1000,522

drop_remainder=True ,523

bound_fct=bound_clip_value(524

input_upper_bound525

),526

)527

528

construct DP_Sequential529

model = DP_Sequential(530

layers =[531

layers.DP_BoundedInput(532

input_shape=dataset_metadata.input_shape , upper_bound=533

input_upper_bound534

),535

layers.DP_QuickSpectralConv2D(536

filters =32,537

kernel_size =3,538

kernel_initializer="orthogonal",539

strides=1,540

use_bias=False ,541

),542

layers.DP_GroupSort (2),543

layers.DP_ScaledL2NormPooling2D(pool_size=2, strides =2),544

layers.DP_QuickSpectralConv2D(545

filters =64,546

15

kernel_size =3,547

kernel_initializer="orthogonal",548

strides=1,549

use_bias=False ,550

),551

layers.DP_GroupSort (2),552

layers.DP_ScaledL2NormPooling2D(pool_size=2, strides =2),553

554

layers.DP_Flatten (),555

556

layers.DP_QuickSpectralDense (512),557

layers.DP_GroupSort (2),558

layers.DP_QuickSpectralDense(dataset_metadata.nb_classes),559

],560

dp_parameters=dp_parameters ,561

dataset_metadata=dataset_metadata ,562

)563

564

model.compile(565

loss=losses.DP_TauCategoricalCrossentropy (18.0) ,566

optimizer=tf.keras.optimizers.SGD(learning_rate =2e-4, momentum567

=0.9),568

metrics =["accuracy"],569

)570

model.summary ()571

572

num_epochs = get_max_epochs(epsilon_max , model)573

574

hist = model.fit(575

ds_train ,576

epochs=num_epochs ,577

validation_data=ds_test ,578

callbacks =[579

accounting is done thanks to a callback580

DP_Accountant(log_fn="logging"),581

],582

)583584

B.3 Image spaces and input clipping585

Input preprocessing can be done in a completely dataset agnostic way and may yield positive results586

on the models utility. We explore here the choice of the color space, and the norm clipping of the587

input.588

B.3.1 Color space representations589

The color space representation of the color images of the CIFAR10 dataset for example can yield590

very different gradient norms during the training process. Therefore, we can take advantage of this to591

train our DP models more efficiently. Empirically, Figures 6a and 6b show that some color spaces592

yield narrower image norm distributions that happen to be more advantageous to maximise the mean593

gradient norm to noise ratio across all samples during the DP training process of GNP networks.594

B.3.2 Input clipping595

A clever way to narrow down the distribution of the dataset’s norms would be to clip the norms of the596

input of the model. This may result in improved utility since a narrower distribution of input norms597

might maximise the mean gradient norm to noise ratio for misclassified examples. Also, we advocate598

for the use of GNP networks as their gradients usually turn out to be closer to the upper bound we are599

able to compute for the gradient. See Figure 7a and 7b600

16

(a) Input norms. (b) Gradient norms.

Figure 6: Histogram of norms for different image space on CIFAR-10 images. We see that for
GNP networks the distribution of dataset norms have a strong influence on the norm of the individual
parameterwise gradient norms of missclassified examples.

(a) Conventional network. (b) Gradient Norm Preserving network.

Figure 7: Gradient norms of fully-connected networks on CIFAR-10. We see that GNP networks
exhibit a qualitatively different profile of gradient norms with respect to parameters, sticking closer
to the upper bound we are able to compute for the gradient norm.

B.4 Practical implementation of Residual connections601

The implementation of skip connections is made relatively straightforward in our framework by the602

make_residuals method. This function splits the input path in two, and wraps the layers inside the603

residual connections, as illustrated in figure 8.604

605
from lipdp.layers import make_residuals606

Manual implementation of residual connection:607

layers = [DP_SplitResidual (),608

DP_WrappedResidual(DP_QuickSpectralConv2D (16, (3, 3)),609

DP_WrappedResidual(DP_GroupSort (2)),610

DP_MergeResidual(’1-lip -add’)]611

Or equivalently , with helper function:612

layers = make_residuals ([613

DP_QuickSpectralConv2D (16, (3, 3),614

DP_GroupSort (2)615

])616617

By using this implementation, the sensitivity of the gradient computation and the input bounds618

to each layer are correctly computed when the model’s path is split. This allows for fairly easy619

implementations of models like the MLP-Mixer and ResNets. Since convolutional models may suffer620

from gradient vanishing and that dense based models are relatively restrictive in terms of architecture,621

implementing skip connections could be a useful feature for our framework.622

17

Figure 8: Implementation of a skip connection in the lip-dp framework. The meta block
DP_WrappedResidual handle the forward propagation and the backward propagation of pairs
of bounds (one for each computation path) by leveraging the forward and the backward of sub-blocks.
DP_SplitResidual handle the creation of a tuple of input bounds at the forward, and collapse the
tuple of gradient bounds into a scalar at the backward, while DP_MergeResidual does the opposite.
All those operations are wrapped under the convenience function make_residuals.

B.5 Loss-logits gradient clipping623

The advantage of the traditional DP-SGD approach is that through hyperparameter optimization624

on the global gradient clipping constant, we indirectly optimize the mean signal to noise ratio on625

missclassified examples. However, this clipping constant is not really explainable and rather just an626

empirical result of optimization on a given architecture and loss function.627

Importantly, our framework is compatible with a more efficient and explainable form of clipping.628

Indeed, by introducing a gradient clipping layer in our framework we are able to clip the gradient of629

the loss on the final logits for a minimal cost.630

Indeed, in this case the size of the clipped vector is the output dimension |ŷ|, which is small for a631

lot of practical regression and classification tasks. For example in CIFAR-10 the output vector is632

of length 10. This scales better with the batch size than the weight matrices that are typically of633

sizes 64× 64 or 128× 128.634

Note that this clipping value can also follow a scheduling during training, in the spirit of [61] - but635

care must be taken that the scheduling is either data independent, or in the case it is data dependant636

the privacy leaks must be taken into account. The implementation of loss gradient clipping scheduling637

is yet to be implemented in our framework. However, it is expected to be a part of future works.638

Furthermore, if the gradient clipping layer is inserted on the tail of the network (between the logits639

and the loss) we can characterize its effects on the training, in particular for classification tasks with640

binary cross-entropy loss.641

We denote by L(ClipC
∇(ŷ)) the loss wrapped under a DP_ClipGradient layer that behaves like642

identity x 7→ x at the forward, and clips the gradient norm to C > 0 in the backward pass:643

∇ŷ

(
L(ClipC

∇(ŷ))
)
:=min (1,

C

∥∇ŷL(ŷ)∥
)∇ŷL(ŷ) (12)

=min (∥∇ŷL(ŷ)∥, C)
∇ŷL(ŷ)
∥∇ŷL(ŷ)∥

. (13)

We denote by
−−→
g(ŷ) the unit norm vector ∇ŷL(ŷ)

∥∇ŷL(ŷ)∥ . Then:644

∇ŷ

(
L(ClipC∇(ŷ))

)
= min (∥∇ŷL(ŷ)∥, C)

−−→
g(ŷ).

Proposition 2 (Clipped binary cross-entropy loss is the Wasserstein dual loss). Let LBCE(ŷ, y) =645

− log (σ(ŷy)) be the binary cross-entropy loss, with σ(ŷy) = 1
1+exp (−ŷy) the sigmoid activation,646

assuming discrete labels y ∈ {−1,+1}. Assume examples are sampled from the dataset D. Let647

18

ŷ(θ, x) = f(θ, x) be the predictions at input x ∈ D. Then for every C > 0 sufficiently small, a648

gradient descent step with the clipped gradient ∇θED[L(ClipC
∇(ŷ, y))] is identical to the gradient649

ascent step obtained from Kantorovich-Rubinstein loss LKR(ŷ, y) = ŷy.650

Proof. In the following we use the short notation L in place of LBCE . Assume that examples with651

labels +1 (resp. −1) are sampled from distribution P (resp. Q). By definition:652

∇θED[L(ClipC∇(ŷ, y))] = ∇θ

(
Ex∼P [L(ClipC∇(f(θ, x),+1))] + Ex∼Q[L(ClipC∇(f(θ, x),−1))]

)
.

Observe that the output of the network is a single scalar, hence
−−→
g(ŷ) ∈ {−1,+1}. We ap-653

ply the chainrule ∇θL = ∇ŷL∂ŷ
∂θ =

−−→
g(ŷ)min (∥∇ŷL(ŷ)∥, C)∇θf(θ, x). We note R(ŷ, C) :=654

min (∥∇ŷL(ŷ)∥, C) > 0 and we obtain:655

∇θED[L(ClipC
∇(ŷ, y))] = ∇θ

(
Ex∼P [

−−→
g(ŷ)R(ŷ, C)∇θf(θ, x)] + Ex∼Q[

−−→
g(ŷ)R(ŷ, C)∇θf(θ, x)]

)
.

(14)
Observe that the value of

−−→
g(ŷ) can actually be deduced from the label y, which gives:656

∇θED[L(ŷ, y)] = −Ex∼P [R(ŷ, C)∇θf(θ, x)] + Ex∼Q[R(ŷ, C)∇θf(θ, x)]. (15)
Observe that the function x 7→ ∇ŷL(ŷ) is piecewise-continuous when the loss ŷ 7→ L(ŷ, y) is657

piecewise continuous. Observe that |∇ŷL(ŷ)| is non zero, since the loss L does not achieve its658

minimum over the open set (−∞,+∞), since σ(ŷ) ∈ (0, 1). Assuming that the data x ∈ D live in659

a compact (or equivalently that P and Q have compact support), since x 7→ |∇ŷL(ŷ)| is piecewise660

continuous (with finite number of pieces for finite neural networks) it attains its minimum C ′ > 0.661

Choosing any C < C ′ implies that R(ŷ, C) = C, which yields:662

∇θED[L(ClipC∇(ŷ, y))] = −Ex∼P [C∇θf(θ, x)] + Ex∼Q[C∇θf(θ, x)]

= −C (Ex∼P [∇θf(θ, x)]− Ex∼Q[∇θf(θ, x)]) .

This corresponds to a gradient ascent step of length C on the Kantorovich-Rubinstein (KR) objective663

LKR(ŷ, y) = ŷy. This loss is named after the Kantorovich Rubinstein duality that arises in optimal664

transport, than states that the Wasserstein-1 distance is a supremum over 1-Lipschitz functions:665

W1(P,Q) := sup
f∈1-Lip(D,R)

Ex∼P [f(x)]− Ex∼Q[f(x)]. (16)

Hence, with clipping C small enough the gradient steps are actually identical to the ones performed666

during the estimation of Wasserstein-1 distance.667

In future works, other multi-class losses can be studied through the lens of per-example clipping.668

Our framework permits the use of gradient clipping while at the same time faciliting the theoretical669

anaysis.670

B.5.1 Possible improvements671

Our framework is compatible with possible improvements in methods of data pre-processing. For672

instance some works suggest that feature engineering is the key to achieve correct utility/privacy673

trade-off [50] some other work rely on heavily over-parametrized networks, coupled with batch size674

[51]. While we focused on providing competitive and reproducible baselines (involving minimal675

pre-processing and affordable compute budget) our work is fully compatible with those improvements.676

Secondly the field of GNP networks (also called orthogonal networks) is still an active field, and new677

methods to build better GNP networks will improve the efficiency of our framework (for instance678

orthogonal convolutions [44],[41],[17],[42],[43] are still an active topic). Finally some optimizations679

specific to our framework can also be developed: a scheduling of loss-logits clipping might allow for680

better utility scores by following the declining value of the gradient of the loss, therefore allowing for681

a better mean signal to noise ratio across a diminishing number of miss-classified examples.682

C Computing Sensitivity Bounds683

C.1 Losses bounds684

This section contains the proofs related to the content of table 1. Our framework wraps over some685

losses found in deel-lip library, that are wrapped by our framework to provide Lipschitz constant686

automatically during backpropagation for bounds.687

19

Loss Hyper-parameters L(ŷ, y) Lipschitz bound L

Softmax Cross-entropy temperature τ > 0 yT log softmax(ŷ/τ)
√
2/τ

Cosine Similarity bound Xmin > 0 yT ŷ
max(∥ŷ∥,Xmin

1/Xmin

Multiclass Hinge margin m > 0 {max(0, m
2 − ŷi.yi)}1≤i≤K 1

Kantorovich-Rubenstein N/A {ŷ, y} 1

Hinge Kantorovich-Rubenstein margin m > 0
regularization α > 0

α.LMH(ŷ, y) + LMKR(ŷ, y) 1 + α

Table 1: Lipschitz constant of common supervised classification losses used for the training of
Lipschitz neural networks with k classes. Proofs in section C.1.

Multiclass Hinge This loss, with min margin m is computed in the following manner for a one-hot
encoded ground truth vector y and a logit prediction ŷ :

LMH(ŷ, y) = {max(0,
m

2
− ŷ1.y1), ...,max(0,

m

2
− ŷk.yk)}.

And ∥ ∂
∂yLMH(ŷ, y)∥2 ≤ ∥ŷ∥2. Therefore LH = 1.688

Multiclass Kantorovich Rubenstein This loss, is computed in a one-versus all manner, for a689

one-hot encoded ground truth vector y and a logit prediction ŷ :690

LMKR(ŷ, y) = {ŷ1 − y1, . . . , ŷk − yk)}.

Therefore, by differentiating, we also get LKR = 1.691

Multiclass Hinge - Kantorovitch Rubenstein This loss, is computed in the following manner for692

a one-hot encoded ground truth vector y and a logit prediction ŷ :693

LMHKR(ŷ, y) = αLMH(ŷ, y) + LMKR(ŷ, y).

By linearity we get LHKR = α+ 1.694

Cosine Similarity Cosine Similarity is defined in the following manner element-wise :695

LCS(ŷ, y) =
ŷT y

∥ŷ∥2∥y∥2
.

And y is one-hot encoded, therefore LCS(ŷ, y) = ŷi

∥ŷ∥2
. Therefore, the Lipschitz constant of

this loss is dependant on the minimum value of ŷ. A reasonable assumption would be ∀x ∈ D :
Xmin ≤ ∥x∥2 ≤ Xmax. Furthermore, if the networks are Norm Preserving with factor K, we ensure
that:

KXmin ≤ ∥ŷ∥2 ≤ KXmax.

Which yields: LCS = 1
KXmin

. The issue is that the exact value of K is never known in advance696

since Lipschitz networks are rarely purely Norm Preserving in practice due to various effects (lack of697

tightness in convolutions, or rectangular matrices that can not be perfectly orthogonal).698

Realistically, we propose the following loss function in replacement:699

LK−CS(ŷ, y) =
ŷi

max(KXmin, ∥ŷ∥2)
.

Where K is an input given by the user, therefore enforcing LK−CS = 1
KXmin

.700

20

Layer Hyper
parameters ∥∂ft(θt,x)∂θt

∥2

1-Lipschitz dense none 1
Convolution window s

√
s

RKO convolution window s
image size H ×W

√
1/((1− (h−1)

2H)(1− (w−1)
2W))

Table 2: Lipschitz constant with respect to parameters in common Lipschitz layers. We report only
the multiplicative factor that appears in front of the input norm ∥x∥2.

Layer Hyper
parameters ∥∂ft(θt,x)∂x ∥2

Add bias none 1
1-Lipschitz dense none 1
RKO convolution none 1
Layer centering none 1
Residual block none 2

ReLU, GroupSort
softplus, sigmoid, tanh none 1

Table 3: Lipschitz constant with respect to intermediate activations.

Categorical Cross-entropy from logits The logits are mapped into the probability simplex with701

the Softmax function RK → (0, 1)K . We also introduce a temperature parameter τ > 0, which hold702

signifance importance in the accuracy/robustness tradeoff for Lipschitz networks as observed by [18].703

We assume the labels are discrete, or one-hot encoded: we do not cover the case of label smoothing.704

Sj =
exp(τ ŷj)∑
i

exp(τ ŷi)
. (17)

We denote the prediction associated to the true label j+ as Sj+ . The loss is written as:705

L(ŷ) = − log(Sj+). (18)

Its gradient with respect to the logits is:706

∇ŷL =

{
τ(Sj+ − 1) if j = j+,
τSj otherwise (19)

The temperature factor τ is a multiplication factor than can be included in the loss itself, by using 1
τL

instead of L. This formulation has the advantage of facilitating the tuning of the learning rate: this is
the default implementation found in deel-lip library. The gradient can be written in vectorized form:

∇ŷL = S − 1{j=j+}.

By definition of Softmax we have
∑

j ̸=j+ S2
j ≤ 1. Now, observe that Sj ∈ (0, 1), and as a707

consequence (Sj+ − 1)2 ≤ 1. Therefore ∥∇ŷL∥22 =
∑

j ̸=j+ S2
j + (Sj+ − 1)2 ≤ 2. Finally708

∥∇ŷL∥2 =
√
2 and LCCE =

√
2.709

C.2 Layer bounds710

The Lipschitz constant (with respect to input) of each layer of interest is summarized in table 3, while711

the Lipschitz constant with respect to parameters is given in table 2.712

C.2.1 Dense layers713

Below, we illustrate the basic properties of Lipschitz constraints and their consequences for gradient714

bounds computations. While for dense layers the proof is straightforward, the main ideas can be715

re-used for all linear operations which includes the convolutions and the layer centering.716

21

Property 2. Gradients for dense Lipschitz networks. Let x ∈ RC be a data-point in space of717

dimensions C ∈ N. Let W ∈ RC×F be the weights of a dense layer with F features outputs. We718

bound the spectral norm of the Jacobian as719 ∥∥∥∥∂(WTx)

∂W

∥∥∥∥
2

≤ ∥x∥2. (20)

Proof. Since W 7→WTx is a linear operator, its Lipschitz constant is exactly the spectral radius:

∥WTx−W ′Tx∥2
∥W −W ′∥2

=
∥(W −W ′)Tx∥2
∥W −W ′∥2

≤ ∥W −W ′∥2∥x∥2
∥W −W ′∥2

= ∥x∥2.

Finally, observe that the linear operation x 7→WTx is differentiable, hence the spectral norm of its720

Jacobian is equal to its Lipschitz constant with respect to l2 norm.721

C.2.2 Convolutions722

Property 3. Gradients for convolutional Lipschitz networks. Let x ∈ RS×C be an data-point723

with channels C ∈ N and spatial dimensions S ∈ N. In the case of a time serie S is the length of the724

sequence, for an image S = HW is the number of pixels, and for a video S = HWN is the number725

of pixels times the number of frames. Let Ψ ∈ Rs×C×F be the weights of a convolution with:726

• window size s ∈ N (e.g s = hw in 2D or s = hwn in 3D),727

• with C input channels,728

• with F ∈ N output channels.729

• we don’t assume anything about the value of strides. Our bound is typically tighter for730

strides=1, and looser for larger strides.731

We denote the convolution operation as (Ψ ∗ ·) : RS×C → RS×F with either zero padding, either732

circular padding, such that the spatial dimensions are preserved. Then the Jacobian of convolution733

operation with respect to parameters is bounded:734

∥∂(Ψ ∗ x)
∂Ψ

∥2 ≤
√
s∥x∥2. (21)

Proof. Let y = Ψ ∗x ∈ RS×F be the output of the convolution operator. Note that y can be uniquely735

decomposed as sum of output feature maps y =
∑F

f=1 y
f where yf ∈ RS×F is defined as:736 {

(yf)if = yif for all 1 ≤ i ≤ S,

(yf)ij = 0 if j ̸= f.

Observe that (yf)T yf
′
= 0 whenever f ̸= f ′. As a consequence Pythagorean theorem yields737

∥y∥22 =
∑F

f=1 ∥yf∥22. Similarly we can decompose each output feature map as a sum of pixels738

yf =
∑S

p=1 y
pf . where ypf ∈ RS×F fulfill:739 {

(ypf)ij = 0 if i ̸= p, j ̸= f,

(ypf)pf = ypf otherwise.

Once again Pythagorean theorem yields ∥yf∥22 =
∑S

p=1 ∥ypf∥22. It remains to bound ypf appropri-
ately. Observe that by definition:

ypf = (Ψ ∗ x)pf = (Ψf)Txp[s].

where Ψf ∈ Rs×C is a slice of Ψ corresponding to output feature map f , and xp[s] ∈ Rs×C denotes
the patch of size s centered around input element p. For example, in the case of images with s = 3×3,
p are the coordinates of a pixel, and xp[s] are the input feature maps of 3× 3 pixels around it. We
apply Cauchy-Schwartz:

∥ypf∥22 ≤ ∥Ψf∥22 × ∥xp[s]∥22.

22

By summing over pixels we obtain:740

∥yf∥22 ≤ ∥Ψf∥22
S∑

p=1

∥xp[s]∥22, (22)

=⇒ ∥y∥22 ≤ (

F∑
f=1

∥Ψf∥22)(
S∑

p=1

∥xp[s]∥22), (23)

=⇒ ∥y∥22 ≤ ∥Ψ∥22 ×

(
S∑

p=1

∥xp[s]∥22

)
. (24)

The quantity of interest is
∑S

p=1 ∥xp[s]∥22 whose squared norm is the squared norm of all the patches
used in the computation. With zero or circular padding, the norm of the patches cannot exceed those
of input image. Note that each pixel belongs to atmost s patches, and even exactly s patches when
circular padding is used:

S∑
p=1

∥xp[s]∥22 ≤ s

S∑
p=1

∥xp∥22 = s∥x∥22.

Note that when strides>1 the leading multiplicative constant is typically smaller than s, so this
analysis can be improved in future work to take into account strided convolutions. Since Ψ is a linear
operator, its Lipschitz constant is exactly its spectral radius:

∥(Ψ ∗ x)− (Ψ′ ∗ x)∥2
∥Ψ−Ψ′∥2

=
∥(Ψ−Ψ′) ∗ x∥2
∥Ψ−Ψ′∥2

≤
√
s∥Ψ−Ψ′∥2∥x∥2
∥Ψ−Ψ′∥2

=
√
s∥x∥2.

Finally, observe that the convolution operation Ψ ∗ x is differentiable, hence the spectral norm of its
Jacobian is equal to its Lipschitz constant with respect to l2 norm:

∥∂(Ψ ∗ x)
∂Ψ

∥2 ≤
√
s∥x∥2.

741

An important case of interest are the convolutions based on Reshaped Kernel Orthogonalization742

(RKO) method introduced by [17]. The kernel Ψ is reshaped into 2D matrix of dimensions (sC × F)743

and this matrix is orthogonalised). This is not sufficient to ensure that the operation x 7→ Ψ ∗ x is744

orthogonal - however it is 1-Lipschitz and only approximately orthogonal under suitable re-scaling745

by N > 0.746

Corollary 1 (Loss gradient for RKO convolutions.). For RKO methods in 2D used in [48], the747

convolution kernel is given by Φ = NΨ where Ψ is an orthogonal matrix (under RKO) and N > 0748

a factor ensuring that x 7→ Φ ∗ x is a 1-Lipschitz operation. Then, for RKO convolutions without749

strides we have:750

∥∂(Ψ ∗ x)
∂Ψ

∥2 ≤
√

1

(1− (h−1)
2H)(1− (w−1)

2W)
∥x∥2. (25)

where (H,W) are image dimensions and (h,w) the window dimensions. For large images with small751

receptive field (as it is often the case), the Taylor expansion in h≪ H and w ≪W yields a factor of752

magnitude 1 + (h−1)
4H + (w−1)

4W +O((w−1)(h−1)
8HW) ≈ 1.753

C.2.3 Layer normalizations754

Property 4. Bounded loss gradient for layer centering. Layer centering is defined as f(x) =755

x− (1n
∑n

i=1 xi)1 where 1 is a vector full of ones, and acts as a “centering” operation along some756

channels (or all channels). Then the singular values of this linear operation are:757

σ1 = 0, and σ2 = σ3 = . . . = σn = 1. (26)

In particular ∥∂f∂x∥2 ≤ 1.758

23

Proof. It is clear that layer normalization is an affine layer. Hence the spectral norm of its Jacobian759

coincides with its Lipschitz constant with respect to the input, which itself coincides with the760

spectral norm of f . The matrice M associated to f is symmetric and diagonally dominant since761

|n−1
n | ≥

∑n−1
i=1 |

−1
n |. It follows that M is semi-definite positive. In particular all its eigenvalues762

λ1 ≤ . . . ≤ λn are non negative. Furthermore they coincide with its singular values: σi = λi.763

Observe that for all r ∈ R we have f(r1) = 0, i.e the operation is null on constant vectors. Hence764

λ1 = 0. Consider the matrix M − I: its kernel is the eigenspace associated to eigenvalue 1. But the765

matrix M − I = −1
n 11T is a rank-one matrix. Hence its kernel is of dimension n− 1, from which it766

follows that λ2 = . . . = λn = σ2 . . . = σn = 1.767

C.2.4 MLP Mixer architecture768

The MLP-mixer architecture introduced in [54] consists of operations named Token mixing and769

Channel mixing respectively. For token mixing, the input feature is split in disjoint patches on770

which the same linear opration is applied. It corresponds to a convolution with a stride equal771

to the kernel size. convolutions on a reshaped input, where patches of pixels are “collapsed” in772

channel dimensions. Since the same linear transformation is applied on each patch, this can be773

interpreted as a block diagonal matrix whose diagonal consists of W repeated multiple times. More774

formally the output of Token mixing takes the form of f(x) := [WTx1,W
Tx2, . . .W

Txn] where775

x = [x1, x2, . . . , xn] is the input, and the xi’s are the patches (composed of multiple pixels). Note776

that ∥f(x)∥22 ≤
∑n

i=1 ∥W∥22∥xi∥22 = ∥W∥22
∑n

i=1 ∥xi∥22 = ∥W∥22∥x∥22. If ∥W∥2 = 1 then the777

layer is 1-Lipschitz - it is even norm preserving. Same reasoning apply for Channel mixing. Therefore778

the MLP_Mixer architecture is 1-Lipchitz and the weight sensitivity is proportional to ∥x∥.779

Lipschitz MLP mixer: We adapted the original architecture in order to have an efficient 1-Lipschitz780

version with the following changes:781

• Relu activations were replaced with GroupSort, allowing a better gradient norm preservation,782

• Dense layers were replaced with their GNP equivalent,783

• Skip connections are available (adding a 0.5 factor to the output in order to ensure 1-lipschitz784

condition) but architecture perform as well without these.785

Finally the architecture parameters were selected as following:786

1. The number of layer is reduced to a small value (between 1 and 4) to take advantage of the787

theoretical sensitivity bound.788

2. The patch size and hidden dimension are selected to achieve a sufficiently expressive network789

(a patch size between 2 and 4 achieve accuracy without over-fitting and a hidden dim of790

128-512 unlocks very large batch size).791

3. The channel dim and token dim were set to value such that weight matrices are square792

matrices (it is harder to guarantee that a network is GNP when the weight matrices are not793

square).794

D Experimental setup795

D.1 Pareto fronts796

We rely on Bayesian optimization [62] with Hyper-band [63] heuristic for early stopping. The797

influence of some hyperparameters has to be highlighted to facilitate training with our framework,798

therefore we provide a table that provides insights into the effects of principal hyperparameters799

in Figure 9. Most hyper-parameters extend over different scales (such as the learning rate), so800

they are sampled according to log-uniform distribution, to ensure fair covering of the search space.801

Additionnaly, the importance of the softmax cross-entropy temperature τ has been demonstrated in802

previous work [18].803

D.1.1 Hyperparameters configuration for MNIST804

Experiments are run on NVIDIA GeForce RTX 3080 GPUs. The losses we optimize are either the805

Multiclass Hinge Kantorovich Rubinstein loss or the τ − CCE.806

24

Hyperparameter
Tuning

Influence on utility Influence on privacy
leakage per step

Increasing Batch Size Beneficial: Decreases the sensitivity
of the gradient computation mecha-
nism.

Detrimental: Reduces the pri-
vacy amplification by sub-
sampling effects.

Loss Gradient Clipping Mixed:
- Beneficial: Tighter sensitivity
bounds.
- Detrimental: Biases the direction
of the gradient.

No influence

Clipping Input Norms Mixed: Limited Knowledge Could
be the subject of future work

No influence

Figure 9: Hyperparameter table: Here, we give insights on the effects of intervention on hyper-
parameters of the method.

Hyper-Parameter Minimum Value Maximum Value

Input Clipping 10−1 1
Batch Size 512 104

Loss Gradient Clipping 10−2 NO CLIPPING
α (HKR) 10−2 2, 0× 103

τ (CCE) 10−2 1, 8× 101

807

The sweeps were run with MLP or ConvNet architectures yielding the results presented in Figure 5a.808

D.1.2 Hyperparameters configuration for FASHION-MNIST809

Experiments are run on NVIDIA GeForce RTX 3080 GPUs. The losses we optimize are the Multiclass810

Hinge Kantorovich Rubinstein loss, the τ − CCE or the K-CosineSimilarity custom loss function.811

Hyper-Parameter Minimum Value Maximum Value

Input Clipping 10−1 1
Batch Size 5.0× 103 104

Loss Gradient Clipping 10−2 NO CLIPPING
α (HKR) 10−2 2.0× 103

τ (CCE) 10−2 4.0× 101

K (K-CS) 10−2 1.0

812

A simple ConvNet architecture was chosen to run all sweeps yielding the results we present in813

Figure 5b.814

D.1.3 Hyperparameters configuration for CIFAR-10815

Experiments are run on NVIDIA GeForce RTX 3080 or 3090 GPUs. The losses we optimize are the816

Multiclass Hinge Kantorovich Rubinstein loss, the τ − CCE or the K-CosineSimilarity custom loss817

function. They yield the results of Figure 5c.818

Hyper-Parameter Minimum Value Maximum Value

Input Clipping 10−2 1
Batch Size 512 104

Loss Gradient Clipping 2.0× 10−2 NO CLIPPING
α (HKR) 10−2 2.0× 103

τ (CCE) 10−3 3.2× 101

K (K-CS) 10−2 1.0

819

The sweeps have been done on various architectures such as Lipschitz VGGs, Lipschitz ResNets820

and Lipschitz MLP_Mixer. We can also break down the results per architecture, in figure 10. The821

25

Figure 10: Accuracy/Privacy tradeoff on Cifar-10, split down per architecture used. While some
architectures seems to perform better than others, we don’t advocate for the use of one over another.
The results may not translate to all datasets, and may be highly dependant on the range chosen for
hyper-parameters. While this figure provides valuable insights, identifying the best architecture is left
for future works.

MLP_Mixer architecture seems to yield the best results. This architecture is exactly GNP since the822

orthogonal linear transformations are applied on disjoint patches. To the contrary, VGG and Resnets823

are based on RKO convolutions which are not exactly GNP. Hence those preliminary results are824

compatible with our hypothesis that GNP layers should improve performance. Note that these results825

are expected to change as the architectures are further improved. It is also dependant of the range826

chosen for hyper-parameters. We do not advocate for the use of an architecture over another, and we827

believe many other innovations found in literature should be included before settling the question828

definitively.829

D.2 Configuration of speed experiment830

We detail below the environment version of each experiment, together with Cuda and cudnn versions.831

We rely on machine with 32GB RAM and a NVIDIA Quadro GTX 8000 graphic card with 48GB832

memory. The GPU uses driver version 495.29.05, cuda 11.5 (October 2021) and cudnn 8.2 (June 7,833

2021). We use Python 3.8.834

• For Jax, we used jax 0.3.17 (Aug 31, 2022) with jaxlib 0.3.15 (July 23, 2022), flax 0.6.0835

(Aug 17, 2022) and optax 1.4.0 (Nov 21, 2022).836

• For Tensorflow, we used tensorflow 2.12 (March 22, 2023) with tensorflow_privacy 0.7.3837

(September 1, 2021).838

• For Pytorch, we used Opacus 1.4.0 (March 24, 2023) with Pytorch (March 15, 2023).839

• For lip-dp we used deel-lip 1.4.0 (January 10, 2023) on Tensorflow 2.8 (May 23, 2022).840

For this benchmark, we used among the most recent packages on pypi. However the latest version of841

tensorflow privacy could not be forced with pip due to broken dependencies. This issue arise in clean842

environments such as the one available in google colaboratory.843

D.3 Drop-in replacement with Lipschitz networks in vanilla DPSGD844

Thanks to the gradient clipping of DP-SGD (see Algorithm 4), Lipschitz networks can be readily845

integrated in traditional DP-SGD algorithm with gradient clipping. The PGD algorithm is not846

mandatory: the back-propagation can be performed within the computation graph through iterations847

of Björck algorithm (used in RKO convolutions). This does not benefit from any particular speed-up848

over conventional networks - quite to the contrary there is an additional cost incurred by enforcing849

26

(a) (b)

Figure 11: Privacy/utility trade-off for Gradient Norm Preserving networks trained under “vanilla”
DP-SGD (with gradient clipping). Each green dot corresponds to a single epoch of one of the runs.
Trajectories that end abruptly are due to the automatic early stopping of unpromising runs. Note
that clipping + orthogonalization have a high runtime cost, which limits the number of epochs that
reported.

Lipschitz constraints in the graph. Some layers of deel-lip library have been recoded in Jax/Flax, and850

the experiment was run in Jax, since Tensorflow was too slow.851

We use use the Total Amount of Noise (TAN) heuristic introduced in [64] to heuristically tune852

hyper-parameters jointly. This ensures fair covering of the Pareto front. Results are exposed in853

Figures 11a and 11b.854

Algorithm 4 Differentially Private Stochastic Gradient Descent : DP-SGD
Input: Neural network architecture f(·, ·)
Input: Initial weights θ0, learning rate scheduling ηt, number of steps N , noise multiplier σ, L2
clipping value C .

1: repeat
2: for all 1 ≤ t ≤ N − 1 do
3: Sample a batch

Bt = (x1, y1), (x2, y2), . . . , (xb, yb).

4: Create microbatches, compute and clip the per-sample gradient of cost function:

g̃t,i := max(C,∇θtL(ŷi, yi)).

5: Perturb each microbatch with carefully chosen noise distribution b ∼ N (0, σC) :

ĝt,i ← g̃t,i + bi.

6: Perform projected gradient step:

θt+1 ← Π(θt − ηtĝt,i).

7: end for
8: until privacy budget (ϵ, δ) has been reached.

D.4 Extended limitations855

The main weakness of our approach is that it crucially rely on accurate computation of the sensitiv-856

ity ∆. This task faces many challenges in the context of differential privacy: floating point arithmetic857

is not associative, and summation order can a have dramatic consequences regarding numerical858

stability [55]. This is further amplified on the GPUs, where some operations are intrinsically non859

deterministic [56]. This well known issue is already present in vanilla DP-SGD algorithm. Our860

framework adds an additional point of failure: the upper bound of spectral Jacobian must be com-861

27

puted accurately. Hence Power Iteration must be run with sufficiently high number of iterations to862

ensure that the projection operator Π works properly. The (ϵ, δ)-DP certificates only hold under the863

hypothesis that all computations are correct, as numerical errors can induce privacy leakages. Hence864

we check empirically the effective norm of the gradient in the training loop at the end of each epoch.865

No certificate violations were reported during ours experiments, which suggests that the numerical866

errors can be kept under control.867

E Proofs of general results868

This section contains the proofs of results that are either informally presented in the main paper,869

either formally defined in section A.2.870

The informal Theorem 1 requires some tools that we introduce below.871

Additionnal hypothesis for GNP networks. We introduce convenient assumptions for the purpose872

of obtaining tight bounds in Algorithm 2.873

Assumption 1 (Bounded biases). We assume there exists B > 0 such that that for all biases bd we874

have ∥bd∥ ≤ B. Observe that the ball {∥b∥2 ≤ B} of radius B is a convex set.875

Assumption 2 (Zero preserving activation). We assume that the activation fulfills σ(0) = 0. When σ876

is S-Lipschitz this implies ∥σ(x)∥ ≤ S∥x∥ for all x. Examples of activations fulfilling this constraints877

are ReLU, Groupsort, GeLU, ELU, tanh. However it does not work with sigmoid or softplus.878

We also propose the assumption 3 for convenience and exhaustivity.879

Assumption 3 (Bounded activation). We assume it exists G > 0 such that for every x ∈ X and every880

1 ≤ d ≤ D + 1 we have:881

∥hd∥ ≤ G and ∥zd∥ ≤ G. (27)
Note that this assumption is implied by requirement 2, assumption 1-2, as illustrated in proposition 3.882

In practice assumption 3 can be fulfilled with the use of input clipping and bias clipping, bounded883

activation functions, or layer normalization. This assumption can be used as a “shortcut” in the proof884

of the main theorem, to avoid the “propagation of input bounds” step.885

E.1 Main result886

We rephrase in a rigorous manner the informal theorem of section 3.1. The proofs are given in887

section B. In order to simplify the notations, we use X := X0 in the following.888

Proposition 3. Norm of intermediate activations. Under requirement 2, assumptions 1-2 we have:889

∥ht∥ ≤ S∥zt∥ ≤

{
(US)t

(
X − SB

1−SU

)
+ SB

1−SU if US ̸= 1,

SX + tSB otherwise.
(28)

In particular if there are no biases, i.e if B = 0, then ∥ht∥ ≤ S∥zt∥ ≤ SX .890

Proposition 3 can be used to replace assumption 3.891

Proposition 4. Lipschitz constant of dense Lipschitz networks with respect to parameters. Let892

f(·, ·) be a Lipschitz neural network. Under requirement 2, assumptions 1-2 we have for every893

1 ≤ t ≤ T + 1:894

∥∂f(θ, x)
∂bt

∥2 ≤ (SU)T+1−t, (29)

∥∂f(θ, x)
∂Wt

∥2 ≤ (SU)T+1−t∥ht−1∥. (30)

In particular, for every x ∈ X , the function θ 7→ f(θ, x) is Lipschitz bounded.895

Proposition 4 suggests that the scale of the activation ∥ht∥ must be kept under control for the gradient896

scales to distribute evenly along the computation graph. It can be easily extended to a general result897

on the per sample gradient of the loss, in theorem 1.898

28

Theorem 1. Bounded loss gradient for dense Lipschitz networks. Assume the predictions are899

given by a Lipschitz neural network f :900

ŷ := f(θ, x). (31)

Under requirements 1-2, assumptions 1-2, there exists a K > 0 for all (x, y, θ) ∈ X × Y ×Θ the901

loss gradient is bounded:902

∥∇θL(ŷ, y)∥2 ≤ K. (32)

Let α = SU be the maximum spectral norm of the Jacobian between two consecutive layers.903

If α = 1 then we have:

K = O
(
LX + L

√
T + LSX

√
T + L

√
BXST + LBST

3/2
)
. (33)

The case S = 1 is of particular interest since it covers most activation function (i.e ReLU, GroupSort):904

K = O
(
L
√
T + LX

√
T + L

√
BXT + LBT

3/2
)
. (34)

Further simplification is possible if we assume B = 0, i.e a network without biases:905

K = O
(
L
√
T (1 +X)

)
. (35)

If α > 1 then we have:

∥∇θL(ŷ, y)∥2 = O
(
L

αT

α− 1

(√
T (αX + SB) +

α(SB + α)√
α2 − 1

))
. (36)

Once again B = 0 (network with no bias) leads to useful simplifications:906

∥∇θL(ŷ, y)∥2 = O
(
L
αT+1

α− 1

(√
TX +

α√
α2 − 1

))
. (37)

We notice that when α ≫ 1 there is an exploding gradient phenomenon where the upper bound907

become vacuous.908

If α < 1 then we have:

∥∇θL(ŷ, y)∥2 = O

(
LαT

(
X
√
T +

1

(1− α2)

(√
XSB

αT
+

SB√
(1− α)

))
+

L

(1− α)
√
1− α

)
.

(38)

For network without biases we get:909

∥∇θL(ŷ, y)∥2 = O

(
LαTX

√
T +

L√
(1− α)3

)
. (39)

The case α≪ 1 is a vanishing gradient phenomenon where ∥∇θL(ŷ, y)∥2 is now independent of910

the depth T and of the input scale X .911

The informal theorem of section 3.1 is based on the aforementioned bounds, that have been simplified.912

Note that the definition of network differs slightly: in definition 3 the activations and the affines layers913

are considered independent and indexed differently, while the theoretical framework merge them into914

zt and ht respectively, sharing the same index t. This is without consequences once we realize that915

if K = U = S and 2T = D then (US)2 = α2 = K2 leads to α2T = KD. The leading constant916

factors based on α value have been replaced by 1 since they do not affect the asymptotic behavior.917

Main paper submission erratum: at time of submission the informal theorem of section 3.1 contains a918

small mistake (a missing
√
D factor in case 3., and a missing constant in the case 2.), which has no919

consequences on the code, the framework or the theoretical analysis. This will be corrected in the920

revised version.921

29

E.2 Proof of main result922

Propositions 3 and 4 were introduced for clarity. They are a simple consequence of the Lemmas 1-3-4923

used in the proof of Theorem 1. See the proof below for a complete exposition of the arguments.924

Theorem 1. Bounded loss gradient for dense Lipschitz networks. Assume the predictions are925

given by a Lipschitz neural network f :926

ŷ := f(θ, x). (31)

Under requirements 1-2, assumptions 1-2, there exists a K > 0 for all (x, y, θ) ∈ X × Y ×Θ the927

loss gradient is bounded:928

∥∇θL(ŷ, y)∥2 ≤ K. (32)
Let α = SU be the maximum spectral norm of the Jacobian between two consecutive layers.929

If α = 1 then we have:

K = O
(
LX + L

√
T + LSX

√
T + L

√
BXST + LBST

3/2
)
. (33)

The case S = 1 is of particular interest since it covers most activation function (i.e ReLU, GroupSort):930

K = O
(
L
√
T + LX

√
T + L

√
BXT + LBT

3/2
)
. (34)

Further simplification is possible if we assume B = 0, i.e a network without biases:931

K = O
(
L
√
T (1 +X)

)
. (35)

If α > 1 then we have:

∥∇θL(ŷ, y)∥2 = O
(
L

αT

α− 1

(√
T (αX + SB) +

α(SB + α)√
α2 − 1

))
. (36)

Once again B = 0 (network with no bias) leads to useful simplifications:932

∥∇θL(ŷ, y)∥2 = O
(
L
αT+1

α− 1

(√
TX +

α√
α2 − 1

))
. (37)

We notice that when α ≫ 1 there is an exploding gradient phenomenon where the upper bound933

become vacuous.934

If α < 1 then we have:

∥∇θL(ŷ, y)∥2 = O

(
LαT

(
X
√
T +

1

(1− α2)

(√
XSB

αT
+

SB√
(1− α)

))
+

L

(1− α)
√
1− α

)
.

(38)

For network without biases we get:935

∥∇θL(ŷ, y)∥2 = O

(
LαTX

√
T +

L√
(1− α)3

)
. (39)

The case α≪ 1 is a vanishing gradient phenomenon where ∥∇θL(ŷ, y)∥2 is now independent of936

the depth T and of the input scale X .937

Proof. The control of gradient implicitly depend on the scale of the output of the network at every938

layer, hence it is crucial to control the norm of each activation.939

Lemma 1 (Bounded activations). If US ̸= 1 for every 1 ≤ t ≤ T + 1 we have:940

∥zt∥ ≤ U tSt−1

(
X − SB

1− SU

)
+

B

1− SU
. (40)

If US = 1 we have:941

∥zt∥ ≤ X + tB. (41)
In every case we have ∥ht∥ ≤ S∥zt∥.942

30

Lemma proof. From assumption 2, if we assume that σ is S-Lipschitz, we have:943

∥ht∥ = ∥σ(zt)∥ = ∥σ(zt)− σ(0)∥ ≤ S∥zt∥. (42)

Now, observe that:944

∥zt+1∥ = ∥Wt+1ht + bt+1∥ ≤ ∥Wt+1∥∥ht∥+ ∥bt+1∥ ≤ US∥zt∥+B. (43)

Let u1 = UX +B and ut+1 = SUut +B be a linear recurrence relation. The translated sequence945

ut− B
1−SU is a geometric progression of ratio SU , hence ut = (SU)t−1(UX+B− B

1−SU)+ B
1−SU .946

Finally we conclude that by construction ∥zt∥ ≤ ut. ■947

The activation jacobians can be bounded by applying the chainrule. The recurrence relation obtained948

is the one automatically computed with back-propagation.949

Lemma 2 (Bounded activation derivatives). For every T + 1 ≥ s ≥ t ≥ 1 we have:950

∥∂zs
∂zt
∥ ≤ (SU)s−t. (44)

Lemma proof. The chain rule expands as:951

∂zs
∂zt

=
∂zs

∂hs−1

∂hs−1

∂zs−1

∂zs−1

∂zt
. (45)

From Cauchy-Schwartz inequality we get:952

∥∂zs
∂zt
∥ ≤ ∥ ∂zs

∂hs−1
∥ · ∥∂hs−1

∂zs−1
∥ · ∥∂zs−1

∂zt
∥. (46)

Since σ is S-Lipschitz, and ∥Ws∥ ≤ U , and by observing that ∥∂zt∂zt
∥ = 1 we obtain by induction953

that:954

∥∂hs

∂ht
∥ ≤ (SU)s−t. (47)

■955

The derivatives of the biases are a textbook application of the chainrule.956

Lemma 3 (Bounded bias derivatives). For every t we have:957

∥∇btL(ŷ, y)∥ ≤ L(SU)T+1−t. (48)

Lemma proof. The chain rule yields:958

∇btL(ŷ, y) = (∇ŷL(ŷ, y))
∂zT+1

∂zt

∂zt
∂bt

. (49)

Hence we have:959

∥∇btL(ŷ, y)∥ = ∥∇ŷL(ŷ, y)∥ · ∥
∂zT+1

∂zt
∥ · ∥∂zt

∂bt
∥. (50)

We conclude with Lemma 2 that states ∥∂zT+1

∂zt
∥ ≤ (US)T+1−t, with requirement 1 that states960

∥∇ŷL(ŷ, y)∥ ≤ L and by observaing that ∥∂zt∂bt
∥ = 1. ■961

We can now bound the derivative of the affine weights:962

Lemma 4 (Bounded weight derivatives). For every T + 1 ≥ t ≥ 2 we have:963

∥∇Wt
L(ŷ, y)∥ ≤ L(SU)T

(
X − SB

1− SU

)
+ L(SU)T+1−t SB

1− SU
when SU ̸= 1, (51)

∥∇Wt
L(ŷ, y)∥ ≤ LS (X + (t− 1)B) when SU = 1. (52)

(53)

In every case:964

∥∇W1
L(ŷ, y)∥ ≤ L(SU)TX. (54)

31

Lemma proof. We proceed like in the proof of Lemma 3 and we get:965

∥∇Wt
L(ŷ, y)∥ ≤ ∥∇ŷL(ŷ, y)∥ · ∥

∂zT+1

∂zt
∥ · ∥ ∂zt

∂Wt
∥. (55)

Which then yields:966

∥∇WtL(ŷ, y)∥ ≤ L(SU)T+1−t · ∥ ∂zt
∂Wt

∥. (56)

Now, for T + 1 ≥ t ≥ 1, according to Lemma 1 we either have:967

∥ ∂zt
∂Wt

∥ ≤ ∥ht−1∥ ≤ S∥zt−1∥ = (SU)t−1

(
X − SB

1− SU

)
+

SB

1− SU
, (57)

or, when US = 1:968

∥ ∂zt
∂Wt

∥ ≤ ∥ht−1∥ = S∥zt−1∥ = SX + (t− 1)SB if t ≥ 2, (58)

∥ ∂zt
∂Wt

∥ ≤ X otherwise. (59)

■969

Now, the derivatives of the loss with respect to each type of parameter (i.e Wt or bt) are know, and970

they can be combined to retrieve the overall gradient vector.971

θ = {(W1, b1), (W2, b2), . . . (WT+1, bT+1)}. (60)

We introduce α = SU .972

Case α = 1. The resulting norm is given by the series:973

∥∇θL(ŷ, y)∥22 =

T+1∑
t=1

∥∇btL(ŷ, y)∥22 + ∥∇Wt
L(ŷ, y)∥22 (61)

≤ L2

(
(1 +X2) +

T+1∑
t=2

(1 + (SX + (t− 1)SB)2)

)
(62)

≤ L2

(
1 +X2 +

T∑
u=1

(1 + (SX + uSB)2)

)
(63)

≤ L2

(
1 +X2 +

T∑
u=1

(1 + S2(X2 ++2uBX + u2B2))

)
(64)

≤ L2

(
1 +X2 + T (1 + S2X2) + S2BXT (T + 1) + S2B2T (T + 1)(2T + 1)

6

)
.

(65)

Finally:974

∥∇θL(ŷ, y)∥2 = O(L
√
X2 + T + TS2X2 +BS2XT 2 +B2S2T 3) (66)

= O
(
LX + L

√
T + LSX

√
T + L

√
BXST + LBST

3/2
)
. (67)

This upper bound depends (asymptotically) linearly of L,X, S,B, T
3/2, when other factors are kept975

fixed to non zero value.976

32

Case α ̸= 1. We introduce β = SB
1−α .977

∥∇θL(ŷ, y)∥22 =

T+1∑
t=1

∥∇btL(ŷ, y)∥22 + ∥∇Wt
L(ŷ, y)∥22 (68)

≤ L2

(
α2T

T+1∑
t=1

(((X − β) + α1−tβ)2 + α2−2t)

)
(69)

≤ L2α2T

(
T∑

u=0

(((X − β)2 + 2(X − β)α−uβ + α−2uβ2) + α−2u)

)
(70)

≤ L2α2T

(
(T + 1)(X − β)2 + 2(X − β)β

T∑
u=0

α−u + (β2 + 1)

T∑
u=0

α−2u

)
(71)

≤ L2α2T

(
(T + 1)(X − β)2 + 2(X − β)β

α− (1
α)

T

α− 1
+ (β2 + 1)

α2 − (1
α2)

T

α2 − 1

)
.

(72)
Finally:978

∥∇θL(ŷ, y)∥2 ≤ LαT

√
(T + 1)(X − β)2 + 2(X − β)β

α− (1
α)

T

α− 1
+ (β2 + 1)

α2 − (1
α2)T

α2 − 1
.

(73)
Now, the situation is a bit different for α < 1 and α > 1. One case corresponds to exploding gradient,979

and the other to vanishing gradient.980

When α < 1 we necessarily have β > 0, hence we obtain a crude upper-bound:981

∥∇θL(ŷ, y)∥2 = O

(
LαT

(
X
√
T +

1

(1− α2)

(√
XSB

αT
+

SB√
(1− α)

))
+

L

(1− α)
√
1− α

)
.

(74)
Once again B = 0 (network with no bias) leads to useful simplifications:982

∥∇θL(ŷ, y)∥2 = O

(
LαTX

√
T +

L√
(1− α)3

)
. (75)

This is a typical case of vanishing gradient since when T ≫ 1 the upper bound does not depend on983

the input scale X anymore.984

Similarly, we can perform the analysis for α > 1, which implies β < 0, yielding another bound:985

∥∇θL(ŷ, y)∥2 = O
(
L

αT

α− 1

(√
T (αX + SB) +

α(SB + α)√
α2 − 1

))
. (76)

Without biases we get:986

∥∇θL(ŷ, y)∥2 = O
(
L
αT+1

α− 1

(√
TX +

α√
α2 − 1

))
. (77)

We recognize an exploding gradient phenomenon due to the αT term.987

E.3 Variance of the gradient988

The result mentionned in section 3.1 is based on the following result, directly adapted from a classical989

result on concentration inequalities.990

Corollary 2. Concentration of stochastic gradient around its mean. Assume the samples (x, y)991

are i.i.d and sampled from an arbitrary distribution D. We introduce the R.V g = ∇θL(x, y) which is992

a function of the sample (x, y), and its expectation ḡ = E(x,y)∼D[∇θL(x, y)]. Then for all u ≥ 2√
b

993

the following inequality hold:994

P(∥1
b

b∑
i=1

gi − ḡ∥ > uK) ≤ exp

(
−
√
b

8
(u− 2√

b
)2

)
. (78)

33

Proof. The result is an immediate consequence of Example 6.3 p167 in [65]. We apply the theorem995

with the centered variable Xi =
1
b (gi − ḡ) that fulfills condition ∥Xi∥ ≤ ci

2 with ci =
4K
b since996

∥gi∥ ≤ K. Then for every t ≥ 2K√
b

we have:997

P(∥1
b

b∑
i=1

gi − ḡ∥ > t) ≤ exp

(
−
√
b

8K2
(t− 2K√

b
)2

)
. (79)

We conclude with the change of variables u = t
K .998

34

References999

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,1000

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC1001

conference on computer and communications security, pages 308–318, 2016.1002

[2] Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H Brendan1003

McMahan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Thakurta. How to dp-fy ml: A1004

practical guide to machine learning with differential privacy. arXiv preprint arXiv:2303.00654,1005

2023.1006

[3] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to1007

sensitivity in private data analysis. In Theory of Cryptography: Third Theory of Cryptography1008

Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284.1009

Springer, 2006.1010

[4] Mário S Alvim, Miguel E Andrés, Konstantinos Chatzikokolakis, Pierpaolo Degano, and1011

Catuscia Palamidessi. Differential privacy: on the trade-off between utility and information1012

leakage. In Formal Aspects of Security and Trust: 8th International Workshop, FAST 2011,1013

Leuven, Belgium, September 12-14, 2011. Revised Selected Papers 8, pages 39–54. Springer,1014

2012.1015

[5] Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differential privacy.1016

In International Conference on Learning Representations, 2022.1017

[6] Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-1018

example gradient clipping. Proceedings on Privacy Enhancing Technologies, 2021(1), 2021.1019

[7] Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd:1020

A geometric perspective. Advances in Neural Information Processing Systems, 33:13773–13782,1021

2020.1022

[8] Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function approximation. In1023

International Conference on Machine Learning, pages 291–301. PMLR, 2019.1024

[9] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Founda-1025

tions and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.1026

[10] Leon Simon et al. Lectures on geometric measure theory. The Australian National University,1027

Mathematical Sciences Institute, Centre . . . , 1983.1028

[11] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-1029

fellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference1030

on Learning Representations, 2014.1031

[12] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generaliz-1032

ability of deep learning. arXiv preprint arXiv:1705.10941, 2017.1033

[13] Peter L Bartlett, Dylan J Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for1034

neural networks. In Proceedings of the 31st International Conference on Neural Information1035

Processing Systems, pages 6241–6250, 2017.1036

[14] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.1037

Improved training of wasserstein gans. In Advances in Neural Information Processing Systems,1038

volume 30, pages 5767–5777. Curran Associates, Inc., 2017.1039

[15] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.1040

Parseval networks: Improving robustness to adversarial examples. In International Conference1041

on Machine Learning, pages 854–863. PMLR, 2017.1042

[16] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural1043

networks by enforcing lipschitz continuity. Machine Learning, 110:393–416, 2021.1044

35

[17] Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse, and Jörn-Henrik Jacobsen.1045

Preventing gradient attenuation in lipschitz constrained convolutional networks. In Advances in1046

Neural Information Processing Systems (NeurIPS), volume 32, Cambridge, MA, 2019. MIT1047

Press.1048

[18] Louis Béthune, Thibaut Boissin, Mathieu Serrurier, Franck Mamalet, Corentin Friedrich, and1049

Alberto Gonzalez Sanz. Pay attention to your loss : understanding misconceptions about1050

lipschitz neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun1051

Cho, editors, Advances in Neural Information Processing Systems, 2022.1052

[19] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization1053

for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.1054

[20] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix1055

manifolds. Princeton University Press, 2008.1056

[21] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial1057

networks. In International conference on machine learning, pages 214–223. PMLR, 2017.1058

[22] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,1059

Greg Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,1060

Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,1061

Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,1062

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul1063

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,1064

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale1065

machine learning on heterogeneous distributed systems, 2015.1066

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,1067

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative1068

style, high-performance deep learning library. Advances in neural information processing1069

systems, 32, 2019.1070

[24] Lloyd N Trefethen and David Bau. Numerical linear algebra, volume 181. Siam, 2022.1071

[25] S Singla and S Feizi. Fantastic four: Differentiable bounds on singular values of convolution1072

layers. In International Conference on Learning Representations (ICLR), 2021.1073

[26] Airbus. Decomon. https://github.com/airbus/decomon, 2023.1074

[27] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya1075

Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified1076

robustness and beyond. Advances in Neural Information Processing Systems, 33:1129–1141,1077

2020.1078

[28] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for1079

certifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–1080

30, 2019.1081

[29] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neu-1082

ral network robustness certification with general activation functions. Advances in neural1083

information processing systems, 31, 2018.1084

[30] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially1085

private recurrent language models. In International Conference on Learning Representations,1086

2018.1087

[31] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight1088

analyses via couplings and divergences. Advances in Neural Information Processing Systems,1089

31, 2018.1090

[32] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled rényi differential1091

privacy and analytical moments accountant. In The 22nd International Conference on Artificial1092

Intelligence and Statistics, pages 1226–1235. PMLR, 2019.1093

36

https://github.com/airbus/decomon

[33] Yuqing Zhu and Yu-Xiang Wang. Possion subsampled rényi differential privacy. In International1094

Conference on Machine Learning, pages 7634–7642. PMLR, 2019.1095

[34] Yuqing Zhu and Yu-Xiang Wang. Improving sparse vector technique with renyi differential1096

privacy. Advances in Neural Information Processing Systems, 33:20249–20258, 2020.1097

[35] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations1098

symposium (CSF), pages 263–275. IEEE, 2017.1099

[36] Ilya Mironov, Kunal Talwar, and Li Zhang. R\’enyi differential privacy of the sampled gaussian1100

mechanism. arXiv preprint arXiv:1908.10530, 2019.1101

[37] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent1102

neural networks. In International conference on machine learning, pages 1310–1318. Pmlr,1103

2013.1104

[38] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with1105

gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.1106

[39] Ugo Tanielian and Gerard Biau. Approximating lipschitz continuous functions with groupsort1107

neural networks. In International Conference on Artificial Intelligence and Statistics, pages1108

442–450. PMLR, 2021.1109

[40] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal1110

parametrisation of recurrent neural networks using householder reflections. In International1111

Conference on Machine Learning, pages 2401–2409. PMLR, 2017.1112

[41] Shuai Li, Kui Jia, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep neural1113

networks. IEEE transactions on pattern analysis and machine intelligence, 43(4):1352–1368,1114

2019.1115

[42] Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley1116

transform. In International Conference on Learning Representations, 2021.1117

[43] Sahil Singla and Soheil Feizi. Skew orthogonal convolutions. In International Conference on1118

Machine Learning, pages 9756–9766. PMLR, 2021.1119

[44] El Mehdi Achour, François Malgouyres, and Franck Mamalet. Existence, stability and scalability1120

of orthogonal convolutional neural networks. The Journal of Machine Learning Research,1121

23(1):15743–15798, 2022.1122

[45] Sahil Singla and Soheil Feizi. Improved techniques for deterministic l2 robustness. arXiv1123

preprint arXiv:2211.08453, 2022.1124

[46] Xiaojun Xu, Linyi Li, and Bo Li. Lot: Layer-wise orthogonal training on improving l2 certified1125

robustness. arXiv preprint arXiv:2210.11620, 2022.1126

[47] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,1127

2004.1128

[48] Mathieu Serrurier, Franck Mamalet, Alberto González-Sanz, Thibaut Boissin, Jean-Michel1129

Loubes, and Eustasio Del Barrio. Achieving robustness in classification using optimal transport1130

with hinge regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision1131

and Pattern Recognition, pages 505–514, 2021.1132

[49] Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlingsson.1133

Tempered sigmoid activations for deep learning with differential privacy. In Proceedings of the1134

AAAI Conference on Artificial Intelligence, volume 35, pages 9312–9321, 2021.1135

[50] Florian Tramèr and Dan Boneh. Differentially private learning needs better features (or much1136

more data), 2021.1137

[51] Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-1138

ing high-accuracy differentially private image classification through scale. arXiv preprint1139

arXiv:2204.13650, 2022.1140

37

[52] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale1141

image recognition. arXiv preprint arXiv:1409.1556, 2014.1142

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image1143

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,1144

pages 770–778, 2016.1145

[54] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas1146

Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-1147

mixer: An all-mlp architecture for vision. Advances in neural information processing systems,1148

34:24261–24272, 2021.1149

[55] David Goldberg. What every computer scientist should know about floating-point arithmetic.1150

ACM computing surveys (CSUR), 23(1):5–48, 1991.1151

[56] Hadi Jooybar, Wilson WL Fung, Mike O’Connor, Joseph Devietti, and Tor M Aamodt. Gpudet:1152

a deterministic gpu architecture. In Proceedings of the eighteenth international conference on1153

Architectural support for programming languages and operating systems, pages 1–12, 2013.1154

[57] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas.1155

Efficient and accurate estimation of lipschitz constants for deep neural networks. Advances in1156

Neural Information Processing Systems, 32, 2019.1157

[58] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and1158

Trends® in Machine Learning, 8(3-4):231–357, 2015.1159

[59] Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine1160

Learning Research, 2:499–526, 2002.1161

[60] Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics,1162

141(1):148–188, 1989.1163

[61] Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially1164

private learning with adaptive clipping. Advances in Neural Information Processing Systems,1165

34:17455–17466, 2021.1166

[62] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine1167

learning algorithms. Advances in neural information processing systems, 25, 2012.1168

[63] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-1169

band: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine1170

Learning Research, 18(1):6765–6816, 2017.1171

[64] Tom Sander, Pierre Stock, and Alexandre Sablayrolles. Tan without a burn: Scaling laws of1172

dp-sgd. arXiv preprint arXiv:2210.03403, 2022.1173

[65] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A1174

nonasymptotic theory of independence. Oxford university press, 2013.1175

38

