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A DEFERRED PROOFS

A.1 DECOMPOSITION OF THE NTK OVER LAYERS

Consider a feedforward neural network, denoted by f(x) = hL ◦ . . . h1(x). We furthermore define:

zl = θ⊤l hl−1 (30)
hl = σ(zl) (31)
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In this way, we may calculate the parametric gradients as follows:

∇θlf =
∂f

∂zl
h⊤
l−1 (32)

vec(∇θlf) =

(
I ⊗ ∂f

∂zl

)
hl−1 (33)

vec(∇θlf(xi))
⊤vec(∇θlf(xj)) = hl−1(xi)

⊤
(
I ⊗ ∂f(xi)

∂zl

⊤)(
I ⊗ ∂f(xj)

∂zl

)
hl−1(xj) (34)

= hl−1(xi)
⊤
(
I ⊗ ∂f(xi)

∂zl

⊤
∂f(xj)

∂zl

)
hl−1(xj) (35)

=

(
∂f(xi)

∂zl

⊤
∂f(xj)

∂zl

)(
hl−1(xi)

⊤hl−1(xj)

)
(36)

The first term in this product defines functional similarity between points, while the second defines
representational similarity. Thinking of each term as a separate kernel, the overall layer kernel - ie
the product is defined via an AND operation. A similar formula holds for the other layers. The full
NTK is then given simply by:

K(xi, xj ; θ) =

L∑
l=1

(
∂f(xi)

∂zl

⊤
∂f(xj)

∂zl

)(
hl−1(xi)

⊤hl−1(xj)

)
(37)

=

L∑
l=1

Kl(xi, xj) (38)

In particular, we have:

K(x, x; θ) =

L∑
l=1

∣∣∣∣∣∣∣∣∂f(x)∂zl

∣∣∣∣∣∣∣∣2
2

∣∣∣∣∣∣∣∣hl−1(x)

∣∣∣∣∣∣∣∣2
2

(39)

Following the same logic, the full NTK is defined as an OR over all the layers. For INRs, these layers
tend to be frequency separated, so that lower layers correspond to lower frequencies.

A.2 DERIVATION OF THE DIFFUSION EQUATION

In this section, we study kernels of the form:

K(x, x+ u) = A(x)e−u2/2ξ2(x) (40)

= 2πξ2(x)A(x)N (u; 0, ξ2(x)I) (41)

Here, N (u;µ,Σ) denotes the d-dimensional; multivariate Gaussian Distribution:

N (u;µ(x),Σ(x)) =
1√

(2π)d detΣ(x)
exp

(
− 1

2
(u− µ(x))⊤Σ−1(x)(u− µ(x))

)
(42)

For our case, d = 2, and Σ(x) = ξ2(x)I . The determinant of the covariance is as follows:

detΣ(x) = (ξ2)2 detI = ξ4(x) (43)

We now consider the integral of the following quadratic form:∫
du (u⊤Hu) e−u2/2ξ2(x) = 2πξ2(x)

∫
du (u⊤Hu)N (u; 0, ξ2(x)I) (44)

= 2πξ2(x)EN (u;0,ξ2I)[u
⊤Hu] (45)

= 2πξ2(x)tr(HΣ(x)) (46)

= 2πξ4(x)tr(H) (47)

Now, let’s look at the following Taylor expansion:

r(x+ u) ≈ r(x) + u⊤∇xr +
1

2
u⊤(∇2

xr)u (48)
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When integrating the above in equation 3, the second term vanishes, because it involves a product of
symmetric and anti-symmetric functions. Thus, we have∫

du r(x+ u)K(x, x+ u) = A(x)

∫
du r(x+ u)e−u2/2ξ2(x) (49)

= A(x)

∫
du

[
r(x)e−u2/2ξ2(x) +

1

2
u⊤(∇2

xr)u e
−u2/2ξ2(x)

]
(50)

Leveraging our result for the quadratic term, we have, finally:∫
du r(x+ u)K(x, x+ u) = 2πξ2(x)A(x)r(x) + πξ4(x)A(x)tr(∇2

xr) (51)

= 2πξ2(x)A(x)r(x) + πξ4(x)A(x)∆2r (52)

Thus, the diffusion equation becomes:

ṙ = −2πξ2(x)A(x)r(x)− πξ4(x)A(x)∆2r

A.3 LOCAL CAUCHY APPROXIMATION OF THE CNTK

A.3.1 NOTATION AND DERIVATION

We consider an arbitrary vector valued function f(x), and consider the cosine of the angle between
f(x) and f(x + u) for small displacements u. To ease notation, let us make use of the following
shorthands:

a = f(x) (53)
b = f(x+ u) (54)
c = b− a (55)
J = ∇xa (56)

D = ∇x||a||2 (57)

To first order in u, we have:

b ≈ a+ u⊤J (58)

c ≈ u⊤J (59)

||b||2 ≈ ||a+ u⊤J ||2 (60)

= ||a||2 + u⊤D + ||u⊤J ||2 (61)

Our goal is to discern the local behaviour of the cosine of the angle θ between a and b (as illustrated
in Figure 7). To that end, our starting point is the law of cosines:

cosϕ =
||a||2 + ||b||2 − ||c||2

2||a|| ||b||
(62)

≈ 2||a||2 + u⊤D

2||a||2

(
1 +

u⊤D

||a||2
+

||u⊤J ||2

||a||2

)− 1
2

(63)

To proceed, note that, for small scalar ϵ, we have the following identity:

(1 + ϵ)
1
2 ≈ 1 +

ϵ

2
− ϵ2

8
(64)

Thus:

cosϕ ≈ 2||a||2 + u⊤D

2||a||2 + u⊤D + ||u⊤J ||2 − 1
16||a||2 (u

⊤D)2
(65)

(66)

For the NTK, where we will have a = ∇θf , ||a|| is so large that we may ignore the term of order
||a||−2. We illustrate our approximation in Figure 8.
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Figure 7: Triangle with vectors a, b, and b− a, inscribed in a circumcircle.

Figure 8: Cauchy Approximation of the Cosine NTK. Left: Sample image, and test point x = A.
Middle: visualization of CNTK(x, x+u) in the vicinity of the point A for small separations u. Right:
the Cauchy approximation, capturing both the range, orientation, and the local minima of the true
CNTK .

A.3.2 SPECIALIZATION FOR FEED FORWARD NEURAL NETWORKS

We want to consider the case where, per our previous derivation, a = ∇θf . This procedure is
straightforward for the biases. For the weights W (l)

ij , we have:

∂f(x; θ)

∂W
(l)
ij

=
∂f(x; θ)

∂z
(l)
i

h
(l−1)
j (x; θ) (67)

Therefore:

∂f2(x; θ)

∂xm∂W
(l)
ij

=
∂2f(x; θ)

∂xm∂z
(l)
i

h
(l−1)
j (x; θ) +

∂f(x; θ)

∂z
(l)
i

∂h
(l−1)
j (x; θ)

∂xm
(68)

≜ (J (l)
z )imh

(l−1)
j + (J

(l−1)
h )jm∂

z
(l)
i
f (69)

Before proceeding, let us note that the following holds:
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∑
i

(J (l)
z )im(∂

z
(l)
i
f) =

1

2
∂xm

||∇z(l)f ||2 (70)

∑
i

(J
(l)
h )imh

(l)
i =

1

2
∂xm

||h(l)||2 (71)

The covariance matrix in our Gaussian approximation is thus given by:

H
(l)
W =

∑
i,j

∂f2

∂xm∂W
(l)
ij

∂f2

∂xn∂W
(l)
ij

(72)

=
∑
i,j

(h
(l−1)
j )2(J (l)

z )im(J (l)
z )in + (∂

z
(l)
i
f)2(J

(l−1)
h )jm(J

(l−1)
h )jn

+(J (l)
z )im(∂

z
(l)
i
f)(J

(l−1)
h )jnh

(l−1)
j + (J (l)

z )in(∂z(l)
i
f)(J

(l−1)
h )jmh

(l−1)
j

(73)

= ||h(l−1)||2J (l)
z J (l)

z
⊤+||∇z(l)f ||2J (l−1)

h (J
(l−1)
h )⊤

+
1

4
∇x||h(l−1)||2 ⊗∇x||∇z(l)f ||2 +

1

4
∇x||∇z(l)f ||2 ⊗∇x||h(l−1)||2

(74)

The contribution from the bias is comparatively simple:

Hb = JzJ
⊤
z (75)

A.4 DERIVATION OF THE CORRELATION LENGTHSCALE FROM THE CAUCHY APPROXIMATION

To determine the level sets of the Cauchy Approximation, we must solve:

CNTK(x, x+ u) =
2a2x + u⊤Dx

2a2x + u⊤
x D + u⊤Hxu

= c (76)

Rearranging, and collecting terms, we have:

2a2x + u⊤Dx − c(2a2x + u⊤
x D + u⊤Hxu) = 0 (77)

⇒ 2(1− c)a2x − c

(
− 1− c

c
u⊤Dx + u⊤Hxu

)
= 0 (78)

⇒ u⊤Hxu− 1− c

c
u⊤Dx =

2(1− c)

c
a2x (79)

⇒
(
u− 1− c

2c
H−1D

)⊤

H

(
u− 1− c

2c
H−1D

)
− (1− c)2

4c2
D⊤H−1D =

2(1− c)

c
a2x (80)

⇒

(
u− 1−c

2c H−1D

)⊤

H

(
u− 1−c

2c H−1D

)
2(1−c)

c a2x + (1−c)2

4c2 D⊤H−1D
= 1 (81)

This is the equation of an ellipse centred at u = 1−c
2c H−1D, and with shape matrix:

Σshape =
H

2(1−c)
c a2x + (1−c)2

4c2 D⊤H−1D
(82)

The area of this ellipse is (noting that H is a 2x2 matrix):

Aellipse =
π√

detΣshape

(83)

=
1√

detH

(
2(1− c)

c
a2x +

(1− c)2

4c2
D⊤H−1D

)
(84)

The correlation lengthscale is then obtained from:

ξ =
√

Aellipse/π (85)
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A.5 MINIMUM VALUE OF CNTK

We consider minimizing the following function:

f(u) =
Q(u)

P (u)
(86)

Q(u) = 2a2 + u⊤D (87)

P (u) = Q(u) + u⊤Hu (88)

Here, H is non-degenerate and positive definite. Thus:

∂f

∂u
=

∂uQP −Q∂uP

P 2
= 0 (89)

=⇒ ∂uQP = Q∂uP (90)

Thus:

(u⊤Hu)D = (4a2 + 2u⊤D)Hu (91)

Clearly u = 0 is a solution, and knowing that our expression locally approximates the cosine, we
expect this to be a maximum. To find the other solution, which will be a minima, we take the dot
product of both sides of the above equaiton with u. After simplifying, we obtain:

u⊤D = −4a2 (92)

If we insert this into equation 91, we get:

(u⊤Hu)D = −4a2Hu (93)

⇒ (u⊤Hu)H−1D = −4a2u (94)

⇒ (u⊤Hu)(D⊤H−1D) = 16a4 (95)

⇒ u⊤Hu =
16a4

DH−1D
(96)

Armed with an expression for u⊤D and u⊤Hu, we derive the following formula for the min:

fmin =
2a2 + u⊤D

2a2 + u⊤D + u⊤Hu

∣∣∣∣
u=argminf

(97)

=
2a2 − 4a2

2a2 − 4a2 + 16a4

DH−1D

(98)

=
DH−1D

DH−1D − 8a2
(99)

A.6 RELATING LOSS GRADIENT VARIANCE TO THE NTK

Our goal is to quantify the amount of noise in the gradients of the local loss L(xi) =
1
2r(xi; θ)

2. We
have, in terms of the Jacobian Jip = ∂θpf(xi), the following sample matrix for the gradients:

G = RJ (100)

Here we have defined:
R = diag(r) (101)

For a dataset with N samples, the sample mean and covariance are given by:

µ =
1

N
G⊤1N (102)

=
1

N
J⊤r (103)

C =
1

N
J⊤R2J − µµ⊤ (104)
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Figure 9: Images used for training INRs

From the cycle property of the trace, we have:
tr(J⊤R2J) = tr(R2JJ⊤) (105)

= tr(R2KNTK). (106)
We also have:

Tr(µµ⊤) = ||µ||2 (107)

=
1

N2
r⊤JJ⊤r (108)

=
1

N2
r⊤KNTKr (109)

Thus the variance of the loss gradients is given by:

σ2
θ =

1

N
Tr(R2KNTK)− 1

N2
r⊤KNTKr (110)

B EXPERIMENTAL DETAILS

B.1 MODEL TRAINING

All our SIREN models are trained on the images shown in Figure 9, which we obtain through the
python package scikit-image (Van der Walt et al., 2014), and the ImageNet dataset (Deng et al., 2009).
These images are down-sampled to a resolution of 64× 64 for training, but as a validation task, we
track the reconstruction error on the images downsampled to 256 × 256 resolution. Our SIREN
models are implemented using Pytorch (Paszke et al., 2019), and trained using NVIDIA RTX A6000
48GB GPUs for 10000 epochs, using full batch gradient descent with a learning rate of 1e-3. In our
experimental sweeps, we consider the following ranges:

• Random seeds from interval [0, 5].
• Width from set {64, 128}.
• Depth from set {3, 4, 5}.
• ω0 from set {15, 30, 60, 90}.
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B.2 ORDER PARAMETER ESTIMATION

Analytical Order Parameters: To compute the NTK, we use a manual implementation of backprop-
agation to compute the gradients ∇z(l)f(x) for each layer, along with the hidden activations h(l)(x).
The NTK is then constructed efficiently using the decomposition across layers outlined in Section
A.1. To evaluate the local structure components a and D defined in equations 16 and 17, we obtain
the spatial gradients using functorch (Horace He, 2021). We also assemble the H defined in equation
18 in this way, except we leverage the decomposition outlined in Section A.3.2 to streamline this
process, and occupy less memory.

Empirical Order Parameters: Below we describe the estimation procedure for each of the empirical
order parameters.

• To estimate the correlation functions empirically, we group pairs of datapoints into 50 bins
based on a uniform division of the range of distances. Based on the coordinate range, the
minimum distance is 0, and the maximum distance is 2

√
2. Within each bin, we evaluate the

mean of the CNTK , defining c(ϵ). Based on these groups, we estimate our order parameters
as follows:

– To estimate the asymptotic value c∞, we compute the mean value of c(ϵ) over the last
ten bins (corresponding to points with the furthest separation).

– Given the asymptotic value, we rescale all c(ϵ) → c̃(ϵ) = c(ϵ)
1−c∞

, and then use linear
interpolation to find the value of ϵ for which c̃(ϵ) = 0.5, the FWHM. We then have
ξcorr = FWHM√

2 ln 2
.

• As an additional measure of the correlation length-scale (which we will use in Appendix
D), we may calculate the number of points NC for which CNTK is greater than some cutoff
(we use 1

2 (1 + c∞)). The effective correlation lenght-scale is then given by
√

NCdA/π,
where dA is the area of the coordinate grid cells. We denote this estimate ξFWHM .

• To estimate AUC(v0,∇I), the ground truth edges are identified using the Canny Edge De-
tector distributed through scikit-image (Van der Walt et al., 2014). We then evaluate the Area
Under the Receiver Operating Characteristic Curve (ROC AUC) using the implementation
in scikit-learn (Pedregosa et al., 2011). The principal eigenvector v0, and the principal eigen-
value λ0, are both computed using our own implementation of the Randomized Singular
Value Decomposition built with pytorch (Paszke et al., 2019), using 3 iterations and 10
oversamples.

• To evaluate the Centred Kernel Alignment, in order to prevent zero modes from obscuring
alignment, the following centred-variant of the normalized Hilbert-Schmidt Information
Criterion (HSIC) is employed:

CKA(K,K ′) =
Tr(KcK

′
c)√

Tr(KcKc)Tr(K ′
cK

′
c)

(111)

Here, Kc denotes that a centrering operation has been applied, and is defined as:

Kc = (I − 1

n
11⊤)K(I − 1

n
11⊤) (112)

For both KX and KY , we use bandwidths κ = 0.1.

Identifying Critical Points:

• For the gradient variance σ2
θ and the loss rate L̇eval, the location, and confidence region,

for the critical points are identified using the peak detection algorithm distributed through
scipy.signal (Virtanen et al., 2020). We filter for peaks with prominence greater than 0.5.

• For the minCNTK , we linearly interpolate to find the time t where minCNTK crosses
0. To compute the confidence interval, we also track the cumulative std of minCNTK ,
denoted ϵ(t). We then use the same linear interpolation strategy to find the times where
minCNTK = ϵ(t) and minCNTK = −ϵ(t).
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Figure 10: Image Properties Affect Detection of Phase Transitions. Left: Impact of the image
variance on NTK alignment, as measured by occurrence of edge alignment. Center: Impact of
variance in the image gradient on the occurrence of loss rate collapse. Right: Impact of the maximum
image gradient on the spectral gap, another measure of NTK alignment. Line of best fit is shown as a
red dashed line, with Pearson correlation displayed in the legend.
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Figure 11: Image Properties Affect Model Performance. Plotting measures of image complexity
against the best super-resolution reconstruction score. Line of best fit is shown as a red dashed line,
with Pearson correlation displayed in the legend. We see a strong correlation between the std of the
magnitude of the image gradients, and the performance achievable with our hyperparameter sweep.

• For all other parameters, we fit a sigmoid using the curve fitting function from scipy.optimize,
with the default settings. The curve we fit has the form:

f(x;A,B, µ,w) = A+ (B −A)

(
1 + e−(x−µ)/w

)−1

(113)

We identify the time t = µ with the critical point, with confidence region defined by µ± 2w.
For MAG-Ma, the critical point occurs when the order parameter begins to deviate from 0.
Thus, we take µ− 2w as the critical point, with confidence interval [µ− 3w, µ− w].

C OCCURRENCE RATES OF PHASE TRANSITIONS

C.1 IMPACT OF IMAGE FEATURES

There are three main cases in which a critical point cannot be reliably identified in an order parameter
trajectory:

1. Peaks in the gradient variance σθ may be absent, or not prominent enough, to be detected
using a standard peak detector. This happened in 21% of our experiments.

2. A zero-crossing cannot be found for the minCNTK because, at initialization, it is already
less than 0. This happened in 51% of our experiments.
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3. Edges do not feature prominently in the principal eigenvector v0 of the NTK, so that
AUC(v0,∇I) remains close to 0.5 throughout training. This happened in 39% of our
experiments.

It is important to note, phase transitions may still occur even during these failure modes - the shift
in the order parameter may be simply too weak to be identified by the change detection algorithm
outlined in Section . It is for this reason that we employ multiple order parameters to identify the
same transition, For example, AUC(v0,∇I), λ0, and CKA(KY ,KNTK) all exhibit critical behaviour
during NTK Alignment4.

Nevertheless, it is instructive to identify what properties of image datasets may be used to predict
the aforementioned failure modes. To this end, for each experimental run, we determine if any of
the previously mentioned failure modes has occurred, and then record the frequency of success for
each image studied. In Figure 10, we see that these frequencies correlate with the complexity of the
image, as measured by its variance, and the variance of its gradient magnitude. These same properties
correlate strongly with the best model performance achieved across all hyperparams (Figure 11).
These correlations give additional support to the mechanism described in Section 3.3, whereby
SIREN models struggle to fit edges as they have sharp gradients. In this way, NTK alignment may
be a symptom that the model is struggling to learn from the data, and has begun the process of
memorization. As other authors have postulated, memorization occurs at the transition between the
fast and slow learning phases (Shwartz-Ziv & Tishby, 2017), which accounts for the coincidence
between these two transitions.

Finally, on the right side of Figure 10, we investigate a potential mechanism by which image properties
induce these transitions. Our analysis in Section 3.3 suggests that an important prerequisite for edge
alignment to occur is the divergence of the principal eigenvalue in comparison to the next leading
eigenvalue (the spectral gap). We see that the max value of the spectral gap across all experimental
runs correlates strongly with the maximum magnitude of the image gradient.

C.2 IMPACT OF HYPERPARAMETERS

The broad effects of varying depth and ω0 on AUC(v0,∇I) are summarized in Table 1. To gain
deeper insight into how these parameters influence the principal eigenvector, we examine the two
case studies illustrated in Figure 12. A larger ω0, by narrowing the correlation lengthscale, increases
the number of points the model memorizes. Initially, this results in an increase to AUC(v0,∇I), but
as ω0 grows, noise is memorized as well, obscuring the edges. By contrast, increasing depth makes
v0 less uniform, concentrating it around the edges.

4Also note, even when AUC(v0,∇I) is weak, edges are still visible in the principal eigenvector, as seen in
Figure 12
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Figure 12: Variation in NTK Alinment with Hyperparameters. Principle eigenvectors of the NTK
at the end of training. Top three rows: the coffee dataset. Bottom three rows: the sax dataset. Best
performing architecture highlighted in blue.
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Figure 13: Effect of Hyperparameters on Correlation Functions At Initialization: In ReLU-PE
models, the Gaussian approximation of the CNTK correlation function is poor for all depths, due to
high-variance, long range interactions. By contrast, for SIREN models, there is much less variance,
and the range of the interactions shrinks for increasing ω0.

D COMPARISON WITH RELU ACTIVATIONS

To justify our focus on sinusoidal neural networks, in this section we examine the learning dynamics
of ReLU-MLPs, based on the positional encoding scheme used in (Mildenhall et al., 2020). The
positional encoding layer is kept static, and we pre-compute the nyquist frequencies corresponding to
our image size (64× 64), as is done in (Sitzmann et al., 2020). We denote this architecture ReLU-PE.
All other architectural choices are identical to those described in Appendix B. We observe a number
of differences between SIRENs and ReLU-PEs (visualized in Figure 14):

• Firstly, SIREN models exhibit strong locality: over the course of training, the asymptotic
value of the CNTK decays to 0, whereas it grows in ReLU-PE models. What’s more, the
range of interaction as measured by ξFWHM is larger in ReLU-PE models. An example
comparing the correlation functions for both architectures is shown in Figure 13.

• Secondly, learning is much slower in ReLU-PE models than it is in SIRENs. One explanation
for this is that there is more gradient confusion (Sankararaman et al., 2020), that is, the
minimum value of the CNTK is lower. In particular, minCNTK is less than zero across all
ReLU-PE runs, so that these models are always operating in the ”slow” phase of learning.

• The principal eigenvalue λ0 of the NTK grows to be orders of magnitude larger for SIREN
models than for ReLU-PE models. That said, tangent kernel alignment still occurs in
ReLU-PE models, it is just a much slower process. In Figure15, we train a 7-layer deep,
128-unit wide MLP full-batch with a learning rate of 1e− 3 for 250k epochs, varying only
the activation function. To reach the edge-alignment achieved by a SIREN model after 453
epochs, the ReLU-PE model must train for 239986 epochs. We also see that more of the
edges are present in the principal eigenvector of the SIREN model’s NTK.

• At initialization, MAG-Ma is orders of magnitude lower for SIREN models than for Relu-PE
models, indicating the latter are already operating in a phase where translational symmetry
is broken.

In summary, while ReLU-PE models exhibit Neural Tangent Kernel alignment, it is a much slower,
non-local process, that does not coincide with loss-rate collapse or translational symmetry breaking.

E IMPLICATIONS OF LOCAL IMAGE STRUCTURE ON FEATURE LEARNING

We are now positioned to elucidate the features learned during NTK alignment. As proposed in
the previous section, the local structure of the NTK adapts to the spatial variations in parameter
gradients. In this section, we delve into the spectral consequences of this adaptation. We contend
that the principal eigenvectors evolve into edge detectors, resembling the auto-correlation structure
tensors commonly employed in traditional computer vision. This observation reinforces the concept
of translation symmetry breaking: in computer vision, the utility of auto-correlation structure tensors
stems from the premise that the most informative features are those that minimize redundancy. The
auto-correlation function quantifies this through metrics of translational symmetry breaking.
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Figure 14: Learning Trajectories for SIREN and ReLU-PE models: Histograms visualizing the
distribution of various order parameters throughout training. See Section B for full details on models
and datasets used.
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Figure 15: NTK alignment in SIREN and ReLU-PE models: The principal eigenvectors of the
NTK at the end of training. Final AUC(v1,∇I) for the ReLU-PE is 0.754, whereas AUC(v0,∇I)
for the SIREN model is 0.804. The training time required to achieve an edge-alignment score greater
than 0.75 for the SIREN model was 453 epochs, whereas for the ReLU-PE model it was 239986
epochs.

Per the discussion in Section 3.3, the principal eigenvector is closely related to the auto-correlation
function. By leveraging the decomposition of the NTK in equation 36, we may relate to the features
considered in computer vision. Let us define:

w(l)(u;x) = 1 + h(l−1)(x)⊤h(l−1)(x+ u) (114)
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Figure 16: Hyperparameters Affect Local NTK Structure. Boxplots visualizing the distribution of
structural parameters for the CNTK . Top row: variation in the initial correlation lengthscale ξcorr(0).
Bottom row: variation in the initial asymptotic value of the CNTK (C∞(0)).

so that the largest contribution comes from the immediate neighbourhood of x. This motivates us to
perform a Taylor expansion of the remaining terms as follows:

Kl1 =
∑
u

Kl(x, x+ u) (115)

=
∑
u

wl(u;x)
∑
d

∂f(x)

∂zld

∂f(x+ u)

∂zld
(116)

≈
∑
u

wl(u;x)
∑
d

(
∂f(x)

∂zld

∂f(x)

∂zld
+ h.o.t

)
(117)

= tr(Al(xi)) + h.o.t (118)

Here, Al denotes the structure tensor used in the Harris-Corner detector (Harris & Stephens, 1988).
Accordingly, we see that K1 - and thus, the principle eigenvector - assess the extent of local
translational symmetry disruption near a point x. This principle underlies feature selection in computer
vision, a concept mirrored in NTK feature learning, as evidenced by the principal eigenvectors that
are predominantly maximized around dataset edges and corners.

It is crucial to highlight that Al pertains to the structure tensor of a specific layer l. Collectively, the
entire DNN’s NTK facilitates feature selection across a scale pyramid.

F EVALUATING FIDELITY OF APPROXIMATION

F.1 LOCAL STRUCTURE OF THE NTK

As described in Section 3.1, INRs are often carefully designed to ensure a diagonally dominant
NTK (Tancik et al., 2020; de Avila Belbute-Peres & Kolter, 2022; Liu et al., 2023). In higher
dimensions, diagonal dominance is equivalent to a bias towards local interactions. We see in Figure
16 the hyperparameters that most affect this local structure: we observe that, while depth has a small
impact on the initial correlation lengthscale ξcorr(0), higher values of ω0 cause the CNTK to become
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depth ω0 ξ minCNTK v0

3 15 0.984± 0.010 0.897± 0.065 0.977± 0.012
30 0.867± 0.155 0.915± 0.053 0.983± 0.007
60 0.652± 0.444 0.941± 0.043 0.987± 0.004
90 0.733± 0.346 0.966± 0.020 0.986± 0.006

4 15 0.968± 0.031 0.948± 0.037 0.979± 0.008
30 0.734± 0.190 0.965± 0.034 0.984± 0.007
60 0.684± 0.386 0.961± 0.033 0.984± 0.010
90 0.941± 0.092 0.963± 0.033 0.983± 0.009

5 15 0.955± 0.044 0.939± 0.035 0.975± 0.010
30 0.780± 0.146 0.963± 0.032 0.980± 0.008
60 0.828± 0.237 0.969± 0.034 0.979± 0.038
90 0.967± 0.031 0.976± 0.031 0.980± 0.011

Table 2: Fidelity of Cauchy Approximation: Pearson correlation between the true order parameter
and predictions using the local Cauchy Approximation. Mean and standard deviation are calculated
over the spread of models and datasets described in Section B.

dramatically more localized. The converse is true for the asymptotic value C∞(0): ω0 has a minor
effect, but increasing depth leads to stronger interactions across large distances.

F.2 CAUCHY APPROXIMATION

To ascertain the fidelity of the Cauchy Approximation, we estimate the Pearson correlation between
the true values of the correlation lengthscale ξ and minCNTK , and the prediction based only on the
local model. We choose this metric because the identification of critical points is insensitive to linear
transformations. The results are shown in Table 2. Similarly, we evaluate our approximation of the
principle eigenvector v0, by looking at the absolute cosine distance between our approximation and
the ground-truth.

Finally, in Section 3.3, we approximated the principal eigenvector v0 of the NTK K with the row
mean K1/1⊤1. The median cosine alignment between the row mean and the true v0 was found to
be 0.99995 across all epochs surveyed, across all models and datasets. The IQR is 0.00446. The
strength of this approximation is a testament to the extreme spectral gap of the NTK, which itself is a
consequence of NTK alignment.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ORDER PARAMETER TRAJECTORIES FOR SINGLE RUNS

This section contains additional illustrations of the order parameter trajectories, and the corresponding
confidence region estimates, similar to the left side of Figure 4. The results are shown in Figure 17.
Each model is a 5 layer deep, 128-unit wide SIREN network, trained with full-batch gradient-descent
with a learning rate of 1e-3.

G.2 INFLUENCE OF HYPERPARAMETERS ON ORDER PARAMETER TRAJECTORIES

In this section, we show that the analysis in Section 4.3 generalizes beyond the cameraman dataset.
Figures 18-20 showcase the effect of depth. Figures 21-23 showcase the effect of the bandwidth
parameter ω. The experimental settings are identical to those described in Section 4.3, just applied to
different datasets.

We additionally track the CKA between the NTK and a static RBF kernel with fixed bandwidth KX ,
as described in 4.1. The evolution of this hyperparameter reflects the evolution of the correlation
lengthscale ξcorr. When this value is large (as it is when ω0 is small), the NTK has a broad diagonal,
and thus overlaps well with the RBF. Over the course of training, ξcorr shrinks, and thus, so does
CKA(KX ,KNTK).
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Figure 17: Alignment of Order Parameters. Order parameter evolution and critical points during
training of a SIREN model. The red vertical lines denote the location of the critical points, and the
green vertical lines denote confidence regions.

30



Under review as a conference paper at ICLR 2024

10
0

10
1

10
2

10
3

10
4

Epoch

0.6

0.4

0.2

0.0

minCNTK
depth

3
4
5

10
0

10
1

10
2

10
3

10
4

Epoch

0.05

0.06

0.07
corr

depth

3
4
5

10
0

10
1

10
2

10
3

10
4

Epoch

0.1

0.2

0.3

0.4

0.5
CKA(KX, KNTK)

depth

3
4
5

Figure 18: Effect of depth on Critical Behaviour (Microphone): Average MSEs, in order of
ascending depth: 2.561e−2 ± 9.355e−5, 2.555e−2 ± 8.970e−5, 2.572e−2 ± 7.209e−5. Dashed
vertical lines denote the location of the peak of the loss rate L̇eval, marking the phase transition.
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Figure 19: Effect of depth on Critical Behaviour (Sax): Average MSEs, in order of ascending
depth: 1.628e−2 ± 1.312e−4, 1.513e−2 ± 3.384e−5, 1.494e−2 ± 6.605e−5. Dashed vertical lines
denote the location of the peak of the loss rate L̇eval, marking the phase transition.
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Figure 20: Effect of depth on Critical Behaviour (Violin): Average MSEs, in order of ascending
depth: 6.885e−3 ± 1.677e−4, 5.930e−3 ± 5.016e−5, 5.665e−3 ± 3.640e−5. Dashed vertical lines
denote the location of the peak of the loss rate L̇eval, marking the phase transition.
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Figure 21: Effect of ω0 on Critical Behaviour (Microphone): Average MSEs, in order of ascending
ω0: 2.601e−2 ± 1.804e−4, 2.566e−2 ± 1.327e−4, 2.572e−2 ± 7.209e−5, 2.807e−2 ± 7.688e−4.
Dashed vertical lines denote the location of the peak of the loss rate L̇eval, marking the phase
transition.
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Figure 22: Effect of ω0 on Critical Behaviour (Sax): Average MSEs, in order of ascending ω0:
1.680e−2± 1.666e−4, 1.561e−2± 6.552e−5, 1.494e−2± 6.605e−5, 1.639e−2± 3.938e−4. Dashed
vertical lines denote the location of the peak of the loss rate L̇eval, marking the phase transition.
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Figure 23: Effect of ω0 on Critical Behaviour (Violin): Average MSEs, in order of ascending ω0:
7.223e−3±1.503e−4, 6.305e−3±3.139e−5, 5.665e−3± 3.640e−5, 6.698e−3± 3.359e−4. Dashed
vertical lines denote the location of the peak of the loss rate L̇eval, marking the phase transition.
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