APPENDIX: MULTI-HOP ATTENTION GRAPH NEURAL NETWORK

A ATTENTION DIFFUSION APPROXIMATION PROPOSITION

As mentioned in Section 2.2, we use the following equation and proposition to efficiently approxi-
mate the attention diffused feature aggregation AH ().

70 _— g®

ZFD = (1 - a)AZ® 4 aZ© M

Proposition 1. limy_, . Z5) = AH®

Proof. Let K > 0 be the total number of iterations (i.e., hop number for graph attention diffusion)
and we approximate H") by Z(%)_ After K-th iteration, we can get

K-1
ZK = ((1-a)fAX +a) (1-a)A)HDY)
=0

The term (1 — o) A% converges to 0 as a € (0,1] and Af; € (0,1] when K — oo, and thus
limg 00 25 = (3, a(1 —) AYHO = AHO, O

B CONNECTION TO TRANSFORMER

Given a sequence of tokens, the Transformer architecture makes uses of multi-head attention be-
tween all pairs of tokens, and can be viewed as performing message-passing on a fully connected
graph between all tokens. A naive application of Transformer on graphs would require computation
of all pairwise attention values. Such approach, however, would not make effective use of the graph
structure, and could not scale to large graphs. In contrast, Graph Attention Network (Velickovi¢
et al.| 2018)) leverages the graph structure and only computes attention values and perform message
passing between direct neighbors. However, it has a limited receptive field (restricted to one-hop
neighborhood) and the attention score (Figure 1) that is independent of the multi-hop context for
prediction.

Transformer consists of self-attention layer followed by feed-forward layer. We can organize the
self-attention layer in transformer as the following:

T

Vd

Attention matrix

Attention(Q, K, V') = softmax(

)V 3)

where Q@ = K = V. The softmax part can be demonstrated as an attention matrix computed by
scaled dot-product attention over a complete grap with self-loop. Computation of attention over
complete graph is expensive, Transformers are usually limited by a fixed-length context (e.g., 512
in BERT (Devlin et al.l 2019)) in the setting of language modeling, and thus cannot handle large
graphs. Therefore direct application of the transformer model cannot capture the graph structure in
a scalable way.

In the past, graph structure is usually encoded implicitly by special position embeddings (Zhang
et al.,|2020) or well-designed attention computation (Shiv & Quirk}[2019; Wang et al., 2019; Nguyen
et al.,2020). However, none of the methods can compute attention between any pair of nodes at each
layer.

In contrast, essentially MAGNA places a prior over the attention values via Personalized PageRank,
allowing it to compute the attention between any pair of two nodes via attention diffusion, without
any impact on its scalability. In particular, MAGNA can handle large graphs as they are usually
quite sparse and the graph diameter is usually quite smaller than graph size in practice, resulting in
very efficient attention diffusion computation.

' All nodes are connected with each other.

C SPECTRAL ANALYSIS BACKGROUND AND PROOF FOR PROPOSITION 2

Graph Fourier Transform. Suppose Ay v represents the attention matrix of graph G with A; ; >
0, and Z;V:l A;j=1.Let A=V AV ! be the Jordan’s decomposition of graph attention matrix
A, where V is the square NV x N matrix whose i-th column is the eigenvector v; of A, and A is the

diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e., A; ; = A;. Then,
for a given vector x, its Graph Fourier Transform (Sandryhaila & Moural 2013a) is defined as

&=V lz, “)

where V'~ is denoted as graph Fourier transform matrix. The Inverse Graph Fourier Transform is
defined as = V&, which reconstructs the signal from its spectrum. Based on the graph Fourier
transform, we can define a graph convolution operation on G as ¢ ®g y = V(V 1z © V~ly),
where ® denotes the element-wise product.

Graph Attention Diffusion Acts as A Polynomial Graph Filter. A graph filter (Tremblay et al.,
2018; |Sandryhaila & Moura, 2013a:b) h acts on x as h(A)x = Vh(A)V !, where h(A) =
diag(h(A1)---h(Ay)). A common choice for h in the literature is a polynomial filter of order
M, since it is linear and shift invariant (Sandryhaila & Moura, [2013a}b).

M M M
hA) =) BA =Y B(VAV T =V (Y gAYV 5)
£=0 £=0 =0

Comparing to the graph attention diffusion A = Y7« (1 — a)? A%, if we set B = a(1 — a), we

can view graph attention diffusion as a polynomial filter.

Spectral Analysis. The eigenvectors of the power matrix A2 are same as A, since A% =
(VAV - H)(VAV™Y) = VAV IV)AV~! = VA2V ~L By that analogy, we can get that
A" = VA"V L Therefore, the summation of the power series of A has the same eigenvectors as
A. Therefore by properties of eigenvectors and Equation 3, we obtain:

Proposition 2. The set of eigenvectors for A and A are the same.

Lemma 1. Let \; and \; be the i-th eigenvalues of A and A, respectively. Then, we have

oo

VoS AN S a(l—)
Al_gﬁm_;au)N = T e ©6)

Proof. The symmetric normalized graph Laplacian of G is Ly, = I — D=2 AD™ =, where D
= diag([dy1,dz,- -+ ,dn]), and d; = Z;i‘f As A is the attention matrix of graph G, d; = 1 and
thus D = I. Therefore, Ly, =1 — A. Let \; be the eigenvalues of A, the eigenvalues of the

s_ymmetric normalized Laplacian of G Ly, is i =1-— _)\i. Meanwhile, for every eigenvalue
A; of the normalized graph Laplacian L,,, we have 0 < A; < 2 (Mohar et al.,|1991), and thus
—1<)\ <1.As0 < a < landthus |(1—a))\;| < (1—a) < 1. Therefore, ((1—a)\;)® — 0 when

a(1=((1=a) X)) _ oY]

K — 00, and Ay = limg 00 3y g (1 — @) A] = lim o0 SE0E=25 i

Section 3 Further defines the eigenvalues of the Laplacian matrices, 5\? and A/ respectively. They
satisfy: \Y =1 — \;and \Y =1 — \;, and A/ € [0, 2] (proved by (Ng et al.,2002)).

D GRAPH LEARNING TASKS

Node classification and knowledge graph link prediction are two representative and common tasks
in graph learning. We first define the task of node classification:

Definition 1. Node classification Suppose that X € RN»*? represents the node input features,
where each row x; = X;. is a d-dimensional vector of attribute values of node v; € V (1 < i < N).
V, C V consists of a set of labeled nodes, and the labels are from T, node classification is to learn
the map function f : (X,G) — T, which predicts the labels of the remaining un-labeled nodes
V/V.

Knowledge graph (KG) is a heterogeneous graph describing entities and their typed relations to
each other. KG is defined by a set of entities (nodes) v; € V, and a set of relations (edges) e =
(vs, 7%, v;) connecting nodes v; and v; via relation 7. We then define the task of knowledge graph
completion:

Definition 2. KG completion refers to the task of predicting an entity that has a specific relation
with another given entity (Wang et al., |2017), i.e., predicting head h given a pair of relation and
entity (r,t) or predicting tail t given a pair of head and relation (h,r).

E DATASET STATISTICS

Node classification. We show the dataset statistics of the node classification benchmark datasets in
Table [T

Table 1: Statistical Information on Node Classification Benchmarks

Name Nodes Edges Classes Features Train/Dev/Test

Cora 2,708 5,429 7 1,433 140/500/1,000

Citeseer 3,327 4,732 6 3,703 120/500/1,000

Pubmed 19,717 88,651 3 500 60/500/1,000

ogbn-arxivi 169,343 1,166,243 40 128 90,941/29,799/48,603

T The data is available at |https://ogb.stanford.edu/docs/
nodeprop/|

Knowledge Graph Link Prediction. We show the dataset statistics of the knowledge graph bench-
mark datasets in Table[2l

Table 2: Statistical Information on Benchmarks
Dataset #Entities #Relations #Train #Dev #Test #Avg. Degree
WNI18RR 40,943 11 86,835 3034 3134 2.19
FB15k-237 14,541 237 272,115 17,535 20,466 18.17

F KNOWLEDGE GRAPH TRAINING AND EVALUATION

Training. The standard knowledge graph completion task training procedure is as follows. We add
the reverse-direction triple (¢,7~1, k) for each triple (h,r,t) to construct an undirected knowledge
graph G. Following the training procedure introduced in (Balazevic et al., 2019} [Dettmers et al.|
2018), we use 1-N scoring, i.e. we simultaneously score entity-relation pairs (h,7) and (¢,7~ ")
with all entities, respectively. We explore KL diversity loss with label smoothing as the optimization
function.

Inference time procedure. For each test triplet (h,r,t), the head h is removed and replaced by
each of the entities appearing in KG. Afterward, we remove from the corrupted triplets all the ones
that appear either in the training, validation or test set. Finally, we score these corrupted triplets by
the link prediction models and then sorted by descending order; the rank of (h, 7, t) is finally scored.
This whole procedure is repeated while removing the tail ¢ instead of h. And averaged metrics are
reported. We report mean reciprocal rank (MRR), mean rank (MR) and the proportion of correct
triplets in the top K ranks (Hits@ K) for K =1, 3 and 10. Lower values of MR and larger values of
MRR and Hits@ K mean better performance.

Experimental Setup. We use the multi-layer MAGNA as encoder for both FB15k-237 and
WNI18RR. We randomly initialize the entity embedding and relation embedding as the input of
the encoders, and set the dimensionality of the initialized entity/relation vector as 100 used in Dist-
Mult (Yang et al.| [2015). We select other MAGNA model hype-parameters, including number of
layers, hidden dimension, head number, top-k, learning rate, hop number, teleport probability « and
dropout ratios (see the settings of these parameter in Table [5] of Appendix), by a random search
during the training.

https://ogb.stanford.edu/docs/nodeprop/
https://ogb.stanford.edu/docs/nodeprop/

G HYPER-PARAMETER SETTINGS FOR NODE CLASSIFICATION

The best models are selected according to the classification accuracy on the validation set by early
stopping with window size 200.

For each data set, the hyper-parameters are determined by a random search (Bergstra & Bengio}
2012), including learning rate, hop number, teleport probability o and dropout ratios. The hyper-
parameter search space is show in Tables [3| (for Cora, Citeseer and Pubmed) and [(for ogbn-arxiv).

Table 3: Hyper-parameter search space used for node classification on Cora, Citeseer and Pubmed

Hyper-parameters Search Space Type
Hidden Dimension 512 Fixed"™
Head Number 8 Fixed
Layer Number 6 Fixed
Learning rate [5x107°,107%] Range*
Hop Number [2,3,---,10] Choice®
Teleport probability o [0.05,0.6] Range
Dropout (attention, feature) [0.1,0.6] Range
Weight Decay [1076,1077] Range
Optimizer Adam Fixed

F Fixed: a constant value;
* Range: a value range with lower bound and higher bound;
¢ Choice: a set of values.

Table 4: Hyper-parameter search space used for node classification on ogbn-arxiv

Hyper-parameters Search Space ~ Type

Hidden Dimension 128 Fixed
Head Number 8 Fixed
Layer Number 2 Fixed
Learning rate [0.001,0.01] Range
Hop Number [3,4,5,6] Choice
Teleport probability « [0.05,0.6] Range
Dropout (attention, feature) [0.1,0.6] Range
Weight Decay [107°,10%] Range
Optimizer Adam Fixed

H HYPER-PARAMETER SETTING FOR LINK PREDICTION ON KG
For each KG, the hyper-parameters are determined by a random search (Bergstra & Bengio, [2012),
including number of layers, learning rate, hidden dimension, batch-size, head number, hop number,

teleport probability o and dropout ratios. The hyper-parameter search space is show in Table 5]

Table 5: Hyper-parameter search space used for link prediction on KG

Hyper-parameters Search Space Type

Initial Entity/Relation Dimension 100 Fixed
Number of layers [2, 3] Choice
Learning rate [107%,5 x 1073] Range
Hidden Dimension [256, 512, 768] Choice
Batch size [1024,2048,3072] Choice
Head Number [4, 8] Choice
Hop Number [2,3,4,5,6] Choice
Teleport probability « [0.05,0.6] Range
Dropout (attention, feature) [0.1,0.6] Range
Weight Decay [10710,1078] Range
Optimizer Adam Fixed

Table 6: Comparison of Diffusion GCN and MAGNA for Node classification accuracy on Cora,
Citeseer, Pubmed.
Model Cora Citeseer Pubmed
Diffusion-GCN (PPR) (Klicpera et al.] 2019’ 83.6+£02 734+03 787+04"
Diffusion-GCN (PPR) + LayerNorm + FF 83.4+04 723404 78.1+0.5
MAGNA 854+06 73.7+£05 814+£02

[

FF: Feed Forward (FF) layer, and our implementation is based on Diffu-
sion GCN in pytorch geometric (https://github.com/rustyls/pytorch_|
geometric).

*: The best number derived from Diffusion GCN with “PPR”. This is different from the
number in Table 1 of main body, which comes from Diffusion GCN with “Heat”.

I RESULTS

Comparison to Diffusion GCN.

Diffusion-GCN (Klicpera et all 2019) is also based on Personal Page-Rank (PPR) propagation.
Specifically, it performs propagation over the adjacent matrix. Comparing to MAGNA, there is no
LayerNorm and Feed Forward layers in standard Diffusion GCN. To clarify how much of the gain in
performance depends on the page-rank-based propagation compared to the attention propagation in
MAGNA, we add the two modules: LayerNorm and Feed Forward layer, into Diffusion-GCN, and
conduct experiments over Cora, Citeseer and Pubmed, respectively. Table [f] shows the comparison
results. From this table, we observe that adding layer normalization and feed forward layer gets the
similar GNN structure to MAGNA, but does not benefit for node classification. And this implies
that the PPR based attention propagation in MAGNA is more effective than PPR propagation over
adjacent matrix in Diffusion GCN.

Meanwhile, we also conduct depth analysis over Diffusion-GCN in Fig. [T] over the dataset “Cora”
to compare with MAGNA and GAT. From this figure, we observe that deep Diffusion GCN (even
with residual connection) suffers from degrading performance as well, due to the over-smoothing
problem 2018). This is because of that, Diffusion GCN first applies Personal Page-Rank
over the adjacent matrix to get a dense connected graph, and then performs top-k or threshold se-
lection to a sparse graph. Finally, it makes use of the standard GCN over the sparse graph for node
classification. In other words, the sparse graph construction is independent of GCN learning, and
thus Diffusion GCN still suffers from over-smoothing.

90 s MAGNA GAT mmm Diff-GCN (PPR)

80| | l l
2073 6 8 12 24

Depth of GNN layers
Figure 1: Model Depth Analysis on Cora dataset w.r.t. MAGNA, GAT and Diffusion-GCN (with
residual connection), respectively.

o))
o

Accuracy (%)

N
o

Comparison over Random Splitting.

We also randomly split nodes in each graph for training, validation and testing following the same
ratio in the standard data splits. We conduct experiments with MAGNA, Diffusion GCN (PPR) and
GAT over 10 different random splits over Cora, Citeseer and Pubmed, respectively. For each algo-
rithm, we apply random search (Bergstra & Bengiol 2012)) for hype-parameter tuning. We report the

NEW

NEW

NEW

https://github.com/rusty1s/pytorch_geometric
https://github.com/rusty1s/pytorch_geometric

Table 7: Results of MAGNA on Citeseer, Cora and Pubmed with random splitting. The baselines
are Diffusion GCN with PPR and GAT.
Model Cora Citeseer Pubmed
Diffusion GCN (PPR) (Klicpera et al.[2019) | 83.6 £ 1.8 71.7 1.1 79.6 £2.5
Diffusion GCN (PPR) + (LayerNorm & FF) | 83.3+£19 69.7+1.2 79.7+£23

GAT (Velickovic et al..[2018) 822+14 71012 783+30
GAT + (LayerNorm & FF) 8254+22 695+1.1 782+20
MAGNA 836+t12 721+12 803+24

average classification accuracy with standard deviation over 10 different splits in Table|/| From this
table, we observe that MAGNA gets the best average accuracy over all data sets. However, it is noted
that the standard deviation is quite large comparing to the that from the standard split in Table [6]
This means that the performance is quite sensitive to the graph split. This observation is consistent
wit the conclusion in (Weithua Hul [2020): random splitting is often problematic in graph learning as
they are impractical in real scenarios, and can lead to large performance variation. Therefore, in our
main results, we use the standard split and also record standard deviation to demonstrate significance
of the results.

REFERENCES

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for knowledge
graph completion. In EMNLP, 2019.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. JMLR, pp.
281-305, 2012.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In AAAZ, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Johannes Klicpera, Stefan Weilenberger, and Stephan Giinnemann. Diffusion improves graph learn-
ing. In NeurlPS, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In AAAI 2018.

Bojan Mohar, Y Alavi, G Chartrand, and OR Oellermann. The laplacian spectrum of graphs. Graph
theory, combinatorics, and applications, pp. 871-898, 1991.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In NeurIPS, 2002.

Xuan-Phi Nguyen, Shafiq Joty, Steven CH Hoi, and Richard Socher. Tree-structured attention with
hierarchical accumulation. In /CLR, 2020.

Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on graphs: Graph fourier
transform. In ICASSP, 2013a.

Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on graphs. TSP, pp. 1644—
1656, 2013b.

Vighnesh Shiv and Chris Quirk. Novel positional encodings to enable tree-based transformers. In
NeurIPS, 2019.

Nicolas Tremblay, Paulo Gongalves, and Pierre Borgnat. Design of graph filters and filterbanks. In
Cooperative and Graph Signal Processing, pp. 299-324. Elsevier, 2018.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. TKDE, pp. 2724-2743, 2017.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen. Tree transformer: Integrating tree structures
into self-attention. In EMNLP, 2019.

Marinka Zitnik Yuxiao Dong Hongyu Ren Bowen Liu Michele Catasta Jure Leskovec Weihua Hu,
Matthias Fey. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In /CLR, 2015.

Jiawei Zhang, Haopeng Zhang, Li Sun, and Congying Xia. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

	Attention Diffusion Approximation Proposition
	Connection to Transformer
	Spectral Analysis Background and Proof for Proposition 2
	Graph Learning Tasks
	Dataset Statistics
	Knowledge Graph Training and Evaluation
	Hyper-parameter Settings for Node Classification
	Hyper-parameter Setting for Link Prediction on KG
	Results

