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A LIMITATIONS

In this work, we validated our method on several benchmark datasets containing spurious correlations
from prior work (Sagawa et al., 2020a}; Liang & Zou, |2022;|Yang et al.,2023). However, we recognize
that the scale of these datasets are small, relative to typical SSL training corpora (e.g. ImageNet (Deng
et al.|[2009)). As these large datasets do not contain annotations of spurious features, we are unable to
evaluate our method in these settings. In addition, we primarily focus on SimSiam |Chen & He (2020)
in our experiments, as it does not rely on large batch sizes and shows improved performance for
smaller datasets. Moreover, we expect LATETVG to perform best in cases where Siamese encoders
coupled with stop-gradient operation are used when learning the representations.

B LATETVG ALGORITHM

We provide an algorithm representation of our proposed method LATETVG in Section 5.1 as follows.

Algorithm 1 Self-supervised Learning with LATETVG

1: Inputs: Encoder f parameterized by § = {W1,..., W, }, Projection head and predictor g,
Augmentation module 7, Threshold L, Pruning rate a, Training epochs N.

2: Initialize f with 6

3: foralli=1— N do
4: Stage 1: Self-supervised Training

5 foralli =1— N do

6 Draw two random augmentations ¢, ¢’ ~ T

7: 1 = t(x), 20 = /() > Generate views x1, x2 from input = using augmentation ¢

8: vy = f(z1) > Obtain encoded features from normal encoder f

9 Uy = f(x2) > Obtain encoded features from transformed encoder f
10 L = Loss(v1, 02; g) > Calculate contrastive loss given views v; and s
11: Update f, g to minimize £ > Update the encoder and other SSL parameters
12: Stage 2: Model Transformation
13: Compute the mask My, , = {ML ® Top,(W;) |l € [n]}

where Top,, (W;); ; = I(|W,, ;| in top a% of 0)

14: Update f with parameters =M La®0 > Magnitude pruning of weights

15: Return encoder f

C THEORETICAL ANALYSIS OF SPURIOUS CONNECTIVITY

Setup We consider the pre-text task of learning representations from unlabeled population data X’
consisting of unknown groups G which are not equally represented. For a given downstream task with
labeled samples, we assume that each = € X belongs to one of ¢ = |))| classes, and lety : X — [¢]
denote the ground-truth labeling function. Let us define a : X — [m] as the deterministic attribute
function creating groups (of potential different sizes) as G = Y x S.

Spectral Contrastive Learning In order to investigate why the invariant feature can be suppressed
in contrastive learning, we consider the setting from |HaoChen et al.|(2021) — Spectral Contrastive
learning, which achieves similar empirical results to other contrastive learning methods and is easier
for theoretical analysis.

Given the set of all natural data or data without any augmentation X, we use A(-|Z) to denote the

distribution of augmentations of Z € X. For instance, when Z represents an image, .A(:|Z) can be
the distribution of common augmentations that includes Gaussian blur, color distortion and random

cropping.

Let P be the population distribution over X’ from which we draw training data and test our final
performance. For any two augmented data points x, 2’ € X, the weight between a pair w, is the
marginal probability of generating the pair 2 and 2’ from a random data point Z ~ Pz:

Wer' = ]E:ENPT [A("E|QZ')A((L'/|E')}
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Define expansion between two sets similar toHaoChen et al.|(2021)) as below:

Zmesl,m’652 Wz
Zx€S1 Wy
where w, = 2'es Wazr- We note that this is similar to our definition of connectivity, where we

have assumed the marginal distribution over « is uniform, or w, = %

¢(51,52) =

Toy Setup Let the ground-truth labeling function y and the deterministic attribute function a,
determine the subgroup g = (y(z), a(z)) of a given sample x. We suppose we have n samples from
each subgroup, and that labels and attributes take binary Value

Suppose that each edge in the augmentation graph is given by connectivity terms «, 3, p, 7y as below:

Voo’ € X: Pi(z,2') = 1a(z) = a(2'), y(z) = y(2))p

+ 1(a(z) # a(z'), y(z) = y(z'))a
+ 1(a(x) = a(z’), y(z) # y(z'))B
+ 1(a(z) # a(@), y(x) # y(z'))y

We suppose that each edge in the augmentation graph is deterministically equal to one of the
connectivity terms, and make the following assumptions:

1. a > =, 8 > v — The probability that augmentation changes the spurious attribute only, or
the class only is both greater than the probability that augmentation changes both attribute
and class (at the same time).

2. p > a,p > [ — The probability that augmentation that keeps both attribute and class is
greater than the probability that it changes the spurious attribute only, or the class only is
both higher than the probability that augmentation changes both domain and class (at the
same time).

3. a > f3 or Assumption 3.2/~ The probability that augmentation changes the spurious feature
is higher than the probability of it changing the class, as observed in 4]

C.1 PROOF OF LEMMA

Proof. Let the A € R4"*4" be the adjacency matrix of the simplified augmentation graph. It is easy
to show that A is equivalent to adjacency matrix A up to a rotation where:

A=(B-7) L (121;) ® (1.1,))
+(@=7)(121;) @ L ® (1,1)
+(p—B—a+7) 1@ (1,1,)
+79-(L41)) ® (1,1,)
Where 1}, is used to denote the all-one vector of dimension & and let 15 be the normalized version.

For the case of n = 1, it is easy to show that the matrix is reduced to an adjacency matrix of 4 nodes,
each in one group, where the first two rows/columns correspond to samples with the same spurious
attribute, and odd or even rows correspond to samples that are from the same class, based on the
placements of a and 3 in the matrix.

Let I’ be an embedding matrix with u, on the z-th row which corresponds to the embeddings of
sample z, and consider the matrix factorization based form of the spectral contrastive loss as below

. - 2
Fen]%glxkﬁmf(F) =||A-FFT||,

It is enough to compute the eigenvectors of A, to obtain F. It is easy to compute the eigenvectors of
A similar to|Shen et al.|(2022)). The set of four sets of eigenvectors would be as below:

* For eigenvalue \y = p+ 8+ o+, the eigenvectoris 1o ® 1o ® 1,,.

"For an ease of notation and operations
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* For eigenvalue \y = p+ 3 — o — 7 the eigenvectors are [1 — 1]7 ® 1, ® 1,,.
* For eigenvalue \3 = p — 3+ a — ~y the eigenvectors are 1, @ [I — 1]7 @ 1,,.

* \y = p— [ — a+ v which is smaller than the first three eigenvalues, given the above
assumptions.

Thus F would be a rank-3 matrix with columns equal to /\; multiplied by each eigenvector. Given
the case of n = 1 explained above and by induction, it is easy to show that Ay corresponds to
the spurious attribute subspace, and A3 corresponds to the class. Projecting samples in A with
representations as rows of F', onto the spurious subspace suggests that the spurious feature takes
two values {—+v/A2, v/ A2}, and similarly, the invariant feature takes two values {—+/A3, v/ A3} in the
representation space learned by spectral contrastive loss. O

Intuitively, this means that with higher spurious connectivity —or higher weights on edges connecting
images that only share the same spurious attribute— spectral clustering will learn representations of
the population data based on the spurious feature, rather than the invariant feature.

D DATA AND MODELS

D.1 DATASETS
We make use of the following four image datasets:

e celebA (Liu et al.,[2015): Gender (Male, Female) is spuriously correlated with Hair color
(blond hair, not blond hair).

* waterbirds (Sagawa et al.||2020a)): Background (land, water) is spuriously correlated
with bird type (landbird, waterbird).

e cmnist (Colored MNIST): The color of the digit on the images is spuriously correlated
with the binary class based on the number. This is the same setup as |Arjovsky et al.|(2019),
except with no label flipping.

* spurcifarl0 (Spurious CIFAR10) (Nagarajan et al.,[2020): The color of lines on the
images spuriously correlated with the class.

* metashift (Liang & Zoul|[2022) We consider the Cats vs Dogs task where Background
(indoor, outdoor) is spuriously correlated with pet type (cat, dog).

Note that each data contains both labels (or core attribute) y, and spurious attribute a. We then use
the group information g = (y, a) to partition dataset splits into groups.

D.2 METHODS AND HYPERPARAMETERS

We use SimSiam (Chen & Hel 2020) with ResNet encoders to train both base models and LATETVG
. We select ResNet-18 models as the backbone for all datasets except for celebA, which we use
ResNet-50 models.

For each dataset, we use the following set of hyperparameters for SimSiam training.

Dataset Learning Rate Batch Size Weight Decay Number of Epochs
celebA 0.01 128 le-4 400
cmnist le-3 128 le-5 1000
metashift 0.05 256 0.001 400
spurcifarl10 0.02 128 Se-4 800
waterbirds 0.01 64 le-3 800

The specific augmentations that we used for learning the representations, are exactly similar to the
SimSiam |Chen & He|(2020) paper but without color jitter.

Note that the model architecture and parameters for SSL-BASE and SSL-LATE-TVG are exactly the
same, but SSL-LATE-TVG uses the pruning hyperparameters to prune the encoder during training.
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Computational Cost The SSL-LateTVG model updates the same number of parameters as SSL-
Base during training, with the forward pass keeping both the original and pruned encoder. The
pruning operation is cost O(n) where n is the number of parameters. So any FLOPs used for the extra
pruning mechanism will be very small compared to a single forward pass.

D.3 THE ROLE OF DOWNSTREAM REGULARIZATION

We investigate the impact of regularization techniques during downstream Linear probing. Interest-
ingly, we find that the presence and type of regularization has a notable effect on the accuracy of
the worst-performing group, with improvements of approximately 10% on the celebA dataset and
7% on the metashift dataset. We hypothesize that the minority samples contribute more to the
variance of the linear models, and the additional regularization helps penalize them, leading to a
reduction in the variance of the downstream models.

Table 5: Accuracy (%) of SimSiam models pretrained on each dataset with random initialization.

Average Worst-Group
None L1 L2 None L1 L2
celebA 785 819 828 66.1 775 76.7
cmnist 80.5 80.8 827 763 789 813

metashift 542 598 563 41.8 48.1 456
spurcifarl0 69.3 725 734 41.1 451 49.0
waterbirds 520 512 505 474 475 472

E MEASURING SPURIOUS CONNECTIVITY IN AUGMENTATIONS

In this section, we present our methodology for measuring spurious connectivity in augmentations.
We conduct experiments on four datasets, and our goal is to quantify the extent to which samples
within the training set are connected to each other through the spurious attribute, as opposed to the
core feature.

To estimate the average connectivity between two groups, denoted as g; and gs, specified by class-
attribute pairs (y, a) and (y’, a’), we follow the algorithm outlined below:

Initially, we label all training examples belonging to group g; or class y and attribute a as 0, and all
training examples belonging to group g,. Next, we train a classifier to distinguish between the two
groups. The error of this classifier would be a proxy for “the probability of augmented images being
assigned to the other group”, or how close they are in the augmentation space. Instead of training a
large classifier from scratch for each pair, we use CLIP’s representations in Section and assume
that it is extracting all necessary features for distinguishing between the two groups. In Section[5.2.3]
we instead use the representations learned by each SSL model.

We train a linear model on these features to distinguish between each of the two groups. It is important
to note that the augmentations used in our experiments are the classical augmentations commonly
employed in SimSiam, excluding Gaussian blur. Subsequently, we create the test set following a
similar process, where images are labeled based on their group or class-attribute pairs. The trained
linear classifier is evaluated on this strongly augmented test set. The test error of the classifier serves
as an estimate for the connectivity between the two pairs, providing insights into the degree of
connectivity based on the spurious attribute.

By applying this methodology to all four datasets, we obtain results regarding the average spurious
connectivity compared to the invariant connectivity. Table @ summarizes the findings, revealing
that, across all datasets, the average spurious connectivity is higher than the invariant connectivity.
Furthermore, we validate that both these connectivity values are higher than the probability of
simultaneously changing both the spurious attribute and the invariant attribute. These observations
indicate that the samples within the training set are more likely to be connected to each other through
the spurious attribute, rather than the core feature. This finding suggests a preference of the contrastive
loss for alignment based on the spurious attribute rather than class alignment.
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F ADDITIONAL RESULTS FOR LATETVG

F.1 LATETVG REDUCES BACKGROUND RELIANCE IN HARD IMAGENET

We evaluate LATETVG on the Hard ImageNet dataset (Moayeri et al., |2022), which consists of
15 challenging ImageNet classes where models rely heavily on spurious correlations. The authors
provide spuriousness rankings that enable creating a balanced subset.

In our experiments, we train the SSL model on the full Hard ImageNet train split, and train the linear
classifier on the spurious-balanced subset. This tests the model’s ability to learn representations
without exploiting spurious cues.

We then evaluate the downstream classifier on four different dataset splits as below:

* None: Original test split

* Gray: The object region is grayed out by replacing RGB values with the mean RGB value.
This removes texture/color cues.

* Gray BBox: The object region is removed by replacing it with the mean RGB value of the
surrounding bounding box region. This ablates shape cues.

* Tile: The object region is replaced by tiling the surrounding bounding box region. This also
ablates shape cues.

A classifier relying on the spurious (i.e. non-object) features will achieve high performance in all
evaluation splits. However, a classifier relying on the invariant features should perform decently on
the original test split, but exhibit greatly reduced accuracy on the other splits. Thus, we desire high
accuracy for the None split, and low accuracy for the other three splits.

Comparing the results to section 7 from (Moayeri et al.,|2022), we find that the gap between None and
other three splits is already large in SSL-base, and SSL-LateTVG is further decreasing the accuracy
in the spurious datasets. This shows that the SSL-LateTVG encoder relies less on the spurious feature
to predict the labels, which degrades the performance on splits that try remove the core feature.

We do not tune the hyperparameters in this experiment, but we find that for all sets of hyperparameters,
SSL-LateTVG results in lower downstream accuracy on Gray, Gray BBox, and Tile splits as shown
in Table

Algorithm | Pruning threshold, percentage | None t Gray | Gray BBox| Tile |
SSL-BASE | - | 795 61.6 535 58.1
46, 0.5 78.0 59.5 51.1 52.1
47,0.5 76.7 59.1 49.6 544
SSL-LATETVG | 4g"¢ g 739 561 480 513
49,0.8 68.4 50.7 424 447

Table 6: We train SimSiam models with a ResNet-50 backbone on unlabeled data from Hard ImageNet
containing spurious correlation, we then train the downstream linear classifier on a balanced subset,
and evaluate the downstream model on splits containing spurious features — LATETVG degrades the
performance on these splits, without hyperparameter tuning

F.2 LATETVG CLOSES THE GAP TO SUPERVISED PRE-TRAINING

Self-supervised pretraining has shown a lot of promise in bridging the gap to supervised approaches
in general representation learning. In this section, we explore whether this trend holds true for
pre-training with data containing spurious correlations. To perform this analysis, we start with the
same encoder model and vary only the pretraining strategy while fixing other aspects of the training,
such hyperparameter selection and model selection.

We emphasize that this is an unfair comparison to begin with, since supervised pretraining requires
labeled data whereas SSL does not, hence reducing the annotation budget drastically as shown in
table [7. However, the goal of this experiment to understand to what extent do SSL models and
specifically LATETVG , compare with ERM based supervised pretraining strategies.
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Table 7: Accuracy (%) of SSL models pre-trained on each dataset versus features of a supervised
model: Representations obtained from the supervised featurizer are more predictive of the core
feature than SimCLR and SimSiam featurizers

Average Accuracy Worst-Group Accuracy

SimCLR SimSiam Supervised SimCLR SimSiam Supervised

celebA 82.1 81.9 91.9 76.7 71.5 81.7
cmnist 82.5 82.1 98.4 81.7 80.7 94.9
metashift 55.1 55.8 89.8 45.5 423 83.5
spurcifarl0 69.3 75.1 89.9 36.5 434 79.6
waterbirds 47.5 50.7 67.9 43.8 48.3 41.1

Table [§ shows the results of our experiment — we have compared both average and worst group
accuracies for the SSL-based and ERM-based encoders across all our evaluation datasets. In terms
of worst group accuracy it is clear that LATETVG narrows the gap between the SSL baseline
and the ERM model significantly — 17% relative improvement for cmnist to 50% in the case of
spurcifarl0. In the case of celebA, we even outperform the ERM baseline. Similar to previous
experiments, the relative boost in performance from LATET VG is higher for cases where the base
encoder is weaker, indicating the strength of our final layer augmentation in extracting useful signal
relevant to the core features during pretraining.

Table 8: LATETVG with SimSiam closes the gap between SSL baseline and supervised pre-training
on worst group and average accuracy.

Average Accuracy Worst-group Accuracy
SSL-BASE SSL-LATE-TVG SUPERVISED SSL-BASE SSL-LATE-TVG SUPERVISED
celebA 81.9 88.9 91.9 71.5 83.1 81.7
cmnist 82.1 80.6 98.4 80.7 83.1 94.9
metashift 55.8 70.1 89.8 423 79.6 83.5
spurcifarl0 75.1 76.1 89.9 434 61.4 79.6
waterbirds 50.7 54.8 67.9 48.3 56.3 41.1

F.3 SSL-LATETVG OUTPERFORMS BASELINE ACROSS HYPER-PARAMETER SETTINGS

Disrupting the features and creating new views of the pairs is possible even with small amounts
of pruning. We run a grid-search over the last three to five convolutional layers of ResNet models
depending on the dataset, and choose pruning percentages varying between [0.5,0.7,0.8,0.9, 0.95].
We find that in the metashift dataset, all hyperparameter settings improve the worst-group
accuracy and outperform the baseline. Average and worst-group accuracies of different pruning
hyperparameters on the metashift and celebA datasets is show in in figure [d]

e SSL-Base ) e SSL-late-TVG
e SSL-late-TVG @ "~ e SSL-Base

o
o
=3

Worst-group accuracy
°
° ¢
3
Worst-group accuracy
o
%
&

o
o
S

°
[
&
'o
o
...
°
@
3

°
a
&
o
@
8
[
[
0. 9 O

I
N
@

o
IS
o

0.550 0.575 0.600 0.625 0.650 0.675 0.700 0.725 0.82 0.83 084 085 086 087 0.88 0.89
Averaae accuracv Averaae accuracv

Figure 4: Downstream worst-group accuracy of SSL-Late-TVG on the metashift (left) and
celebA (right) datasets as we vary the model pruning hyperparameters.

Additionally, instead of choosing the best-performing model, we consider top 5 models across

different pruning hyperparameters, and report the performance in Table[9] Even in this scenario, we
observe large performance gains with LATETVG .
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Table 9: LATETVG improves baseline worst group and average accuracy of SSL models.

Worst-group Accuracy

‘ celebA cmnist metashift spurcifarl0 waterbirds

SSL-BASE 77.52 80.7+2.71 42.33+2.32 43.44+8.87 48.3+1.82

SSL-LATE-TVG | 81.83+1.75 77.18+1.59 60.34+0.97 54.58+1.74 51.87+2.37
Average Accuracy

‘ celebA cmnist metashift spurcifarl0 waterbirds

SSL-BASE 81.94 82.08+1.17 55.8+2.11 75.05+0.19 50.68+1.27

SSL-LATE-TVG | 87.32+1.46 79.74+1.19 69.7+2.09 75.68+0.72 55.36+0.72

F.4 WHAT FEATURES DOES LATETVG LEARN?

Recall that we motivated LATETV G by explaining that more difficult features could be learned in
the later layers of an encoder, and by removing the spurious feature from the encoder, we force the
model to learn more complex features. In this section, we use Grad-CAM Selvaraju et al.| (2016)
to compare the SSL-base and SSL-LATETVG . We consider the representations that SSL-base and
SSL-LATETVG learn for metashift, and use that to visualize the final layer of the encoder. We
choose the best-performing LATETVG model based on downstream worst-group accuracy. We
visualize the parts of the image that both SSL-Base and LATETVG attend to, in majority [5, and
minority [6] groups.

Y=1A=1 Y=1A=1 Y=1A=1 Y=1A=1 Y=1A=1 Y=1A=1 Y=1A=1 Y=1A=1

Figure 5: We use Grad-CAM to explain the ResNet-18 SSL-base (top), and SSL-LATETVG model
(bottom) for majority examples

Y=1,A=0 Y=0,A=1 Y=0,A=1 ) Y=0,A=1 Y=0,A=1 Y=0,A=1 Y=0A=1

Figure 6: We use Grad-CAM to explain the ResNet-18 SSL-base (top), and SSL-LATET VG model
(bottom) for minority examples

F.5 ADDITIONAL DOWNSTREAM IMBALANCE RESULTS

For both the best downstream linear model chosen based on worst-group accuracy, and linear models
with no regularization, we observe the same trend for the datasets shown in Figure[7]

G SPURIOUS LEARNING IN SELF-SUPERVISED REPRESETATIONS

G.1 ADDITIONAL RE-SAMPLING RESULTS

We present the complete table from experiment in section [4.4]
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Figure 7: Effect of changing minority weight in downstream training set on metashift. Left (no
regularization), Right (Downstream hyperparameters tuned)

Table 10: Downstream performance Accuracy (%) of linear models; For each dataset, we pre-train
the model on up-sampled, down-sampled, and balanced training sets

Dataset SSL Train Set Average Worst Group
Balanced 86.4 75.8

celebA Downsampled 83.2 77.8
Original 81.9 77.5

Upsampled 86.3 81.6

Balanced 75.4 72.0

st Downsampled 74.7 70.1
cmnLs Original 82.1 80.7
Upsampled 77.7 75.4

Balanced 60.7 38.5

. Downsampled 55.7 46.2
metashift Original 55.8 423
Upsampled 64.4 45.1

Balanced 68.7 35.2

Farl0 Downsampled 53.1 29.0
Spurcitar Original 75.0 43.4
Upsampled 57.4 24.1

Balanced 53.1 51.3

. Downsampled 51.0 48.8
waterbirds Original 50.7 483
Upsampled 55.2 48.0

G.2 IMAGENET PRE-TRAINED SELF-SUPERVISED MODELS

We obtain pre-trained ResNet50 encoders with SimSiam, SimCLR, and CLIP training strategies, and
evaluate the accuracy of core feature prediction similar to the previous sections.

Table 11: Worst-group Accuracy (%) of ImageNet pre-trained models when evaluated on each dataset
using a linear probe.

Dataset CLIP ERM;, SimCLR;, SimSiam;,

celebA 87.2 79.4 87.2 84.4
cmnist 88.9 85.4 85.5 86.4
metashift 83.1 83.1 79.7 69.5
waterbirds 81.1 84.3 78.8 79.3
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