
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] See here:
shorturl.at/fnyOQ.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 6.1 and the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 6.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 6.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6.
(b) Did you mention the license of the assets? [Yes] We use the open-source academic

solver SCIP.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See here: shorturl.at/fnyOQ.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

shorturl.at/fnyOQ
shorturl.at/fnyOQ

A Primal Integral

If x is feasible and x∗ is an optimal (or best known) solution to (PMIP), the primal gap of x is defined
as

γ(x) :=

0, if |cTx| = |cTx∗|,
1, if cTx · cTx∗ < 0,
|cTx− cTx∗|

max{|cTx|, |cTx∗|}
, otherwise.

With xt denoting the incumbent at time t, the primal gap function p : R≥0 → [0, 1] is then defined as

p(t) :=

{
1, if no incumbent is found until time t,
γ(xt), otherwise.

For a time limit T ∈ R≥0, the primal integral P (T) is then given by the area underneath the primal
gap function p up to time T , i.e., P (T) :=

∑K
i=1 p(ti−1)(ti − ti−1), where K − 1 incumbents have

been found until time T , and t0 = 0, tK = T , and t1, . . . , tK−1 are the points in time at which new
incumbents are found.

B Formulating the Scheduling Problem as a MIQP

In this section, we present the exact formulation of Problem (PS) as a MIQP. First, we describe the
parameters and variables we need to formulate the problem. Then, we state the problem and explain
shortly what every constraint represents.

B.1 Parameters

– D, set of data points coming from a set of MIP instances X . Each data point is of the form
(h,N, τhN), where h ∈ H is a heuristic, N ∈ NX indexes a node of the B&B tree of X , and
τhN is the number of iterations h needed to find a solution to N (if h could not solve N , we
set τhN =∞).

– Th,∀h ∈ H, the maximum number of iterations h needed to find a solution, i.e., Th :=
max{τhN <∞ | N ∈ NX }.

– α ∈ [0, 1], minimal fraction of nodes the resulting schedule should solve.

B.2 Variables Describing the Schedule

– xhp ∈ {0, 1},∀h ∈ H,∀p ∈ {0, . . . , |H|}: The variable is set to 1 if h is executed at position
p in the schedule (if xh0 = 1 then h is not in the schedule).

– th ∈ [0, . . . , Th],∀h ∈ H: This integer variable is equal to the maximal number of iterations
h can use in the schedule (we set th = 0 if h is not in the schedule).

B.3 Auxiliary Variables

– ph ∈ {0, . . . , |H|},∀h ∈ H: This integer variable is equal to the position of h in the
schedule.

– shN ∈ {0, 1},∀h ∈ H,∀N ∈ NX : The variable is set to 1 if heuristic h solves node N in
the schedule.

– sN ∈ {0, 1},∀N ∈ NX : This variable is set to 1 if the schedule solves node N .

– pminN ∈ {1, . . . , |H|},∀N ∈ NX : This integer variable is equal to the position of the
heuristic that first solves node N in the schedule (if the schedule does not solve N , we set it
to |H|).

– zhN ∈ {0, 1},∀h ∈ H,∀N ∈ NX : This variable is set to 1 if h is executed before position
pminN .

14

– fhN ∈ {0, 1},∀h ∈ H,∀N ∈ NX : The variable is set to 1 if h is the heuristic that solves N
first, i.e., if ph = pminN .

– tN ∈ {1, . . . , 1 +
∑
h T

h},∀N ∈ NX : This integer variable is equal to the total number of
iterations the schedule needs to solve node N (if N is not solved by the schedule, we set it
to 1 plus the total length of the schedule, i.e., 1 +

∑
p

∑
h x

h
pt
h).

B.4 Formulation

In the following, we give an explicit formulation of (PS) as a MIQP. Note that some constraints use
nonlinear functions like the maximum/minimum of a finite set or the indicator function 1. These can
be easily linearized by introducing additional variables and constraints, thus the following formulation
is indeed a MIQP. For the sake of readability, we omit stating all the linearizations explicitly.

min
∑
N

tN (1)

s.t.
∑
h

xhp ≤ 1,∀p ∈ {1, . . . , |H|} (2)∑
p

xhp = 1,∀h ∈ H (3)

ph =
∑
p

pxhp ,∀h ∈ H (4)

Th(1− xh0) ≥ th,∀h ∈ H (5)

shN = max{0,min{1, th − τhN + 1}},∀h ∈ H,∀N ∈ NX (6)

sN = min{1,
∑
h

shN},∀N ∈ NX (7)

1

|NX |
∑
N

sN ≥ α (8)

pminN = min{phshN + (1− shN) | H|) | h ∈ H},∀N ∈ NX (9)

zhN = 1{ph<pmin
N },∀h ∈ H,∀N ∈ NX (10)

fhN = 1{ph=pmin
N },∀h ∈ H,∀N ∈ NX (11)

tN = sN (
∑
h

zhN t
h + fhNτ

h
N) + (1− sn)(1 +

∑
h,p

xhpt
h),∀N ∈ NX (12)

(1) calculates the total number of iterations the schedule needs to solve all nodes.

(2) and (3) guarantee that only one copy of each heuristic is run, and that every non-zero position is
occupied by at most one heuristic.

(4) calculates the position of a heuristic in the schedule.

(5) ensures that th = 0 if h is not in the schedule.

(6) forces shN to 1 if h solves node N in the schedule.

(7) forces sN to 1 if the schedule solves node N .

(8) guarantees that the schedules solves enough nodes.

(9) calculates the position of the first heuristic that solves N in the schedule.

(10) forces zhN to 1 if h is executed before position pminN .

(11) forces fhN to 1 if h is executed at position pminN .

(12) calculates the number of iterations necessary for the schedule to solve N .

15

C Pseudocode

In the following, we propose the greedy algorithm presented in Section 4 to obtain a heuristic
schedule.

Algorithm 1 Greedy algorithm to obtain a schedule
Input: Nodes NX , heuristicsH, data D, time frame T
Output: Greedy Schedule G
G← 〈〉
Nunsol ← NX
improve← TRUE
repeat

(h∗, τ∗)← argmax
(h,τ)∈A

[
|{N∈Nunsol|τN

h ≤τ}|
c(h,τ)

]
if |{N∈Nunsol|τN

h∗≤τ
∗}|

c(h,τ∗) > 0 then
G← G⊕ 〈(h∗, τ∗)〉
Nunsol ← Nunsol \ {N ∈ Nunsol | τNh∗ ≤ τ∗}

else
improve← FALSE

end if
until improve == FALSE

D Instances

In this section, we give a brief description of the two problems we consider in Section 6.2 and the
partition we use for our experiments.

D.1 Generalized independent set problem (GISP)

Let G = (V,E) be a graph and E′ ⊆ E a subset of removable edges. Each vertex has a revenue and
every edge has a cost associated with it. Then, GISP asks to select a subset of vertices and removable
edges that maximizes the profit, i.e., the difference of vertex revenue and edge costs. Thereby, no
edge should exist between two selected vertices v, u ∈ V , i.e., either we have that (v, u) /∈ E or
(v, u) ∈ E′ is removed.

We generate GISP instances in the following way. Given a graph, we randomize the set of removable
edges by setting the probability that an edge is in E′ to α = 0.75. Furthermore, we choose the
revenue for each node to be 100 and the cost of every edge as 1. This results in a configuration for
which it is difficult to find good feasible solutions as shown in Colombi et al. (2017).

We use this scheme to generate two types of instances. The first one takes graphs from the 1993
DIMACS Challenge which is also used by Khalil et al. (2017); Colombi et al. (2017). Thereby,
we focus on the same twelve dense graphs as well as the same train/test partition as in Khalil et al.
(2017). We generate 20 instances for every graph by using different random seeds, leaving us with
120 instances for training as well as testing. For the second group of GISP instances, we use randomly
generated graphs where the number of nodes is uniformly chosen from {L, . . . , U} for bounds
L,U ∈ N. An edge is added to the resulting graph with probability ᾱ = 0.1, giving us slightly less
dense graphs than the previous case. We denote these sets by [L,U]. For each set, we generate 25
instances for training and 10 for testing.

D.2 Fixed-Charge Multi-Commodity Flow Problem (FCMNF)

We are given a directed graph G = (V,A) and commodities k ∈ K such that a quantity of each k
needs to be routed from a source node to a destination node. Each arc a ∈ A is characterized by a
fixed cost that is only imposed when the arc is used, a maximal capacity, and a variable cost that
is proportional to the flow traversing a. Then, FCMNF asks for a minimal cost routing of every
commodity while respecting the arc capacities.

16

We generate FCMNF instances in the following way. Given a graph, we have 200 commodities with
random source/destination nodes. We choose the commodity quantities to be uniformly distributed
over [10, 100], the fixed cost over [1100, 5000], the capacity over [10, 20000] and the variable costs
over [11, 50]. To generate graphs, we again use the same randomized scheme as for GISP. For training,
we generate 20 instances with {40, . . . , 50} nodes and for testing 120 instances with {75, . . . , 125}
nodes.

E Implementation Details

Not every idea that works in theory can be directly translated to also work in practice. Hence, it is
sometimes inevitable to adapt ideas and make compromises when implementing a new method. In
this section, we touch upon aspects we needed to consider to ensure a reliable implementation of the
framework proposed in this paper.

Time as a measure of duration. A heuristic schedule controls two general aspects: The order and
the duration for which the different heuristics are executed. Even though it might seem intuitive
to use time to control the duration of a heuristic run, we use a suitable proxy measure for every
class of heuristics instead, as discussed in Section 3. There are two main problems that hinder us
from directly controlling time. First, time is generally not stable enough to use for decision-making
within an optimization solver. To make it somewhat reliable, we would need to solve instances
exclusively on a single machine at a time. Hence, it would not be possible to run instances in parallel
which would cause the solving process to be very expensive in practice. The second, even more
important problem is the following. Since the behavior of heuristics significantly depends on different
parameters, allowing the heuristic to run for a longer time does not necessarily translate to a increase
in success probability if crucial parameters are set to be very restrictive by default. That is why we
use a suitable proxy measure for time instead of time itself.

Limitations of the shadow mode. To make sure we obtain data that is as independent as possible, the
heuristics run in shadow mode during data collection. This setting aims to ensure that the heuristics
only run in the background and do not report anything back to the solver. However, it is not possible
to hide all of the heuristic’s actions from SCIP. Since SCIP is not designed to have heuristics running
in the background, it is almost impossible to locate and adjust the lines of code that influence the
solving process globally without limiting the heuristic’s behavior too much. For instance, one way
of hiding all actions of diving heuristics would be turning off propagation while diving. Since this
would influence the performance of the heuristics considerably, the resulting data would not represent
how the heuristics behave in practice. That is why we settled with a shadow mode that hides most
(and the most influential) of the heuristic’s activities from SCIP.

F Complete Results

In the following, we present more detailed results. Table 3 shows the complete results of the transfer
learning experiments introduced in Section 6.2. Table 4 gives an overview of the performance of the
different schedules used in the transfer learning experiments over all test sets.

train

test
[150,160] [200,210] [250,260] [300,310] [350,360] [400,410] [450,460] [500,510] [550,560]

[150,160] 0.89 ± 0.23 0.76 ± 0.22 0.87 ± 0.37 0.95 ± 0.40 0.87 ± 0.28 0.86 ± 0.23 0.78 ± 0.24 0.80 ± 0.25 0.65 ± 0.24

[200,210] 0.94 ± 0.28 0.75 ± 0.25 0.82 ± 0.30 0.91 ± 0.34 0.93 ± 0.23 0.90 ± 0.28 0.83 ± 0.22 0.79 ± 0.20 0.66 ± 0.20

[250,260] 0.89 ± 0.28 0.69 ± 0.23 0.81 ± 0.34 0.94 ± 0.40 0.92 ± 0.23 0.96 ± 0.39 0.81 ± 0.24 0.76 ± 0.22 0.66 ± 0.20

[300,310] 0.87 ± 0.25 0.71 ± 0.26 0.83 ± 0.36 0.97 ± 0.39 0.92 ± 0.28 0.90 ± 0.35 0.81 ± 0.24 0.75 ± 0.24 0.61 ± 0.24

[350,360] 0.84 ± 0.24 0.70 ± 0.23 0.82 ± 0.36 0.91 ± 0.37 0.81 ± 0.26 0.86 ± 0.31 0.80 ± 0.21 0.75 ± 0.19 0.59 ± 0.20

[400,410] 0.90 ± 0.27 0.70 ± 0.23 0.83 ± 0.36 0.88 ± 0.32 0.77 ± 0.23 0.88 ± 0.30 0.81 ± 0.21 0.74 ± 0.20 0.58 ± 0.20

[450,460] 0.89 ± 0.25 0.70 ± 0.23 0.83 ± 0.36 0.88 ± 0.32 0.77 ± 0.23 0.88 ± 0.30 0.81 ± 0.21 0.74 ± 0.20 0.58 ± 0.20

[500,510] 0.89 ± 0.26 0.72 ± 0.22 0.84 ± 0.30 0.99 ± 0.42 0.92 ± 0.24 0.95 ± 0.46 0.81 ± 0.23 0.80 ± 0.25 0.61 ± 0.20

[550,560] 0.88 ± 0.26 0.72 ± 0.24 0.89 ± 0.42 0.95 ± 0.37 0.86 ± 0.27 0.90 ± 0.28 0.81 ± 0.20 0.78 ± 0.23 0.63 ± 0.21

SCIP_TUNED 0.89 ± 0.28 0.77 ± 0.23 0.99 ± 0.31 1.08 ± 0.45 1.05 ± 0.28 1.03 ± 0.38 0.94 ± 0.23 0.91 ± 0.28 0.76 ± 0.25

Table 3: Average relative primal integral (mean ± std.) of schedules (with diving heuristics) w.r.t.
default SCIP over GISP instances derived from random graphs. The first nine rows correspond to
schedules that were trained on instances of size [L,U]

17

SCHEDULE better primal integral better primal bound incumbents found by schedule heuristics

[150,160] 0.69 0.70 0.61

[200,210] 0.69 0.65 0.58

[250,260] 0.68 0.55 0.49

[300,310] 0.72 0.58 0.50

[350,360] 0.76 0.62 0.51

[400,410] 0.75 0.61 0.52

[450,460] 0.75 0.61 0.52

[500,510] 0.68 0.58 0.50

[550,560] 0.70 0.59 0.50

SCIP_TUNED - - 0.44

DEFAULT - - 0.33

Table 4: Fraction of instances for which the learned schedules (with diving heuristics) have a better
primal integral/bound at termination w.r.t. SCIP_TUNED (second and third column) and fraction of
incumbents that where found by heuristics in the schedule (fourth column). Only instances that were
not solved to optimality by both SCIP_TUNED and the schedule are considered in the third column.

18

