
Published in Transactions on Machine Learning Research (04/2025)

A Technical definitions and proofs

A.1 Log-Sobolev inequalities

Definition A.1 (Logarithmic Sobolev inequality). A random variable Θ with density πΘ on Rdθ satisfies a
logarithmic Sobolev inequality (or log-Sobolev inequality) if there exists a constant C <∞ such that

E
[
h(θ) log

(
h(θ)

E[h(θ)]

)]
≤ C

2 E
[
∥∇h(θ)∥2h(θ)

]
(14)

holds for any smooth function h : Rdθ → R≥0. The smallest constant C = C(πΘ) such that (14) holds is
called the log-Sobolev constant of Θ.
Definition A.2 (Subspace logarithmic Sobolev inequality). A random variable Θ with density πΘ on Rdθ

satisfies the subspace logarithmic Sobolev inequality if there exists a constant C <∞ such that for any unitary
matrix W ∈ Rdθ×dθ and for any block decomposition W = [Wt W⊥] with Wt ∈ Rdθ×t, t ≤ dθ, and for any
θ⊥ ∈ Rdθ−t, the conditional random variable Θt|Θ⊥ = θ⊥ with Θt = W⊤

t Θ and Θ⊥ = W⊤
⊥ Θ satisfies the

log-Sobolev inequality with constant
C(πΘt|Θ⊥=θ⊥) ≤ C. (15)

The smallest constant C = C(πΘ) for which (15) holds for all conditionals is called the subspace log-Sobolev
constant of Θ.

A.2 Proof of Theorem 3.2

Let

J∗(θ) = 1
2Eπ

∥∥∥∥wθ(x, y)−∇x log
(
πX|Y (x|y)
ρ(x)

)∥∥∥∥2

2
.

We expand the squared norm to obtain

J∗(sθ) = 1
2Eπ

[
wθ(x, y)⊤wθ(x, y) +∇x log

(
πX|Y (x|y)
ρ(x)

)⊤

∇x log
(
πX|Y (x|y)
ρ(x)

)

− 2wθ(x, y)⊤∇x log
(
πX|Y (x|y)
ρ(x)

)]
.

Note the second term, ∇x log
(

πX|Y (x|y)
ρ(x)

)⊤
∇x log

(
πX|Y (x|y)

ρ(x)

)
, does not depend on the network parameters,

and thus need not be included in our optimization objective. The following steps rewrites the third term
into quantities we can evaluate:

EπX,Y

[
wθ(x, y)⊤∇x log

(
πX|Y (x|y)
ρ(x)

)]
= EπY

EπX|Y

[
wθ(x, y)⊤∇x

(
πX|Y (x|y)
ρ(x)

)
ρ(x)

πX|Y (x|y)

]
= EπY

∫
πX|Y (x|y)wθ(x, y)⊤∇x

(
πX|Y (x|y)
ρ(x)

)
ρ(x)

πX|Y (x|y) dx

= EπY

∫
ρ(x)wθ(x, y)⊤∇x

(
πX|Y (x|y)
ρ(x)

)
dx

= −EπY

∫
Tr(∇x(ρ(x)wθ(x, y)⊤)

(
πX|Y (x|y)
ρ(x)

)
dx

= −EπY

∫
πX|Y (x|y)

[
∇xρ(x)⊤

ρ(x) wθ(x, y) + Tr(∇xwθ(x, y))
]

= −EπY
EπX|Y

∇x log ρ(x)⊤wθ(x, y) + Tr(∇xwθ(x, y))
= −EπX,Y

∇x log ρ(x)⊤wθ(x, y) + Tr(∇xwθ(x, y)).

22

Published in Transactions on Machine Learning Research (04/2025)

The fourth line follows from integration by parts. This leads to the final result that

J∗(sθ) = Eπ

[
1
2wθ(x, y)⊤wθ(x, y) + Tr(∇xwθ(x, y)) +∇x log ρ(x)⊤wθ(x, y)

]
+ Eπ

[
∇x log

(
πX|Y (x|y)
ρ(x)

)⊤

∇x log
(
πX|Y (x|y)
ρ(x)

)]
.

A.3 Proof of Theorem 3.3

We start by stating a result achieved in the proof of Corollary 2.11 of Zahm et al. (2022). Let U = [Ur U⊥] ∈
Rn×n be a unitary matrix, and define P⊥ = U⊥U

⊤
⊥ . Let w(x, y) = ∇x log

(
πX|Y (x|y)/ρ(x)

)
. Then

E
[
DKL(πX|Y ||π̃X|Y)

]
≤ 1

2E∥P⊥w∥2.

Indeed it is from this result the diagnostic matrix is derived, noting that

E∥P⊥w∥2 = E
[
Tr(P⊥ww

⊤P⊥)
]

= P⊥ E
[
ww⊤]︸ ︷︷ ︸

HX
CDR

P⊥.

Let wθ denote our approximation of the w. We have the following chain of inequalities:

E
[
DKL(πX|Y ||π̃X|Y)

]
≤ 1

2E∥P⊥w∥2

= 1
2E∥P⊥(w − wθ + wθ)∥2

≤ 1
2
(
2E∥P⊥(w − wθ)∥2 + 2E∥P⊥wθ∥2)

≤ E∥w − wθ∥2 + E∥P⊥wθ∥2,

where the third step follows from the triangle inequality, and the fourth step follows given P⊥ is an orthogonal
projector. We assume E∥w − wθ∥2 < ϵ. Taking U to be the eigenvectors of the estimated diagnostic matrix
ĤX

CDR = E
[
wθw

⊤
θ

]
, yields E∥P⊥wθ∥2 =

∑
k>r λk, completing the result.

A.4 Proof of Theorem 5.1

Proof. This can be seen by considering the eigenvalue expansion of A

A =
d∑

i=1
λiϕrϕ

⊤
r .

Then

ΦrΦ⊤
r A =

d∑
i=1

λi(ΦrΦ⊤
r)ϕrϕ

⊤
r =

d∑
i=1

λiΦr(Φ⊤
r ϕr)ϕ⊤

r =
r∑

i=1
λiϕrϕ

⊤
r

given the orthogonality of the eigenvectors. Therefore

PA = A−
r∑

i=1
λiϕrϕ

⊤
r =

d∑
i=r+1

λiϕrϕ
⊤
r

and PAP =
∑d

i=r+1 λiϕrϕ
⊤
r follows similarly.

23

Published in Transactions on Machine Learning Research (04/2025)

A.5 Proof of Theorem 5.2

We first note that
∇ywP (x, y) = PX∇y∇xh(x, PY y)PY

where h(x, y) = ∇y∇x log πX,Y (x, y). Substituting wP into the definitions of the diagnostic matrices yields

H̃CDR = PX EπX,Y

∇x log
(
πX|Y (x|PY y)

ρ(x)

)
∇x log

(
πX|Y (x|PY y)

ρ(x)

)⊤


︸ ︷︷ ︸
H

PX

H̃Y
CMI = PY EπX,Y

[
∇y∇xh(x, PY y)⊤PXPX∇y∇xh(x, PY y)

]︸ ︷︷ ︸
H′

PY .

B Additional details for the numerical results

B.1 Score ratio network hyperparameters

For each problem we use the Adam (Kingma & Ba, 2015) optimizer with a learning rate 5× 10−3 and batch
size 1000 to train the network. We take the nuclear norm regularization parameters to be λ1 = 1/n and
λ2 = 1/m, where n and m are the parameter and observation dimensions. As discussed in Song et al. (2020),
directly evaluating the trace operator in the objective function F is prohibitively expensive for even moderate
dimensions n, and so we also make use of the sliced-score matching method proposed in that work with 100
projections. The network ψθ were taking to be fully connected. Table 1 summarizes all hyperparameter
choices for the score ratio network. These parameters include the network depth (i.e., number of hidden
layers), width (i.e., layer dimension), the training set size and number of epochs.

Problem r′, s′ Hidden layers Layer dimension Training set size Epochs
Embedded banana 10, NA 1 32 1K 5

Darcy (single network) 30, 30 3 30 90K 3
Darcy (ℓ = 1, 2, 3) 10, 10 3 30 90K 3

Flux 1, 100 3 200 10K 100
Energy market 1, 90 3 128 20K 30

Table 1: Summary of score network hyperparameter choices

B.2 Approximate inference via measure transport

Our underlying motivation for reducing the parameter and observation dimensions is to improve the per-
formance of approximate sampling methods. One sampling strategy that has recently grown in popularity
is parametric measure transport (which encompasses normalizing flows), where one attempts to couple the
target distribution π (e.g., the posterior distribution of interest) with a tractable reference distribution ρ (in
our case the standard Gaussian distribution) using a map S so that S♯ρ = π. Having access to this map
permits generating i.i.d. samples from the target distribution by generating reference samples z(n) ∼ ρ and
evaluating the map at these samples S−1(z(n)) ∼ π. We direct an interested reader to Marzouk et al. (2016);
Papamakarios et al. (2021) and references therein for a comprehensive review of such methods.

In general, the accuracy of the generated posterior samples depends on (1) the expressivity of the transport
map class, and (2) the ability to optimize the transport map. In practice, it is often seen that large training
sets and computational effort are required to optimize expressive maps for high dimensional problems.
Brennan et al. (2020); Baptista et al. (2022) show that dimension reduction can improve the fidelity of
approximate posteriors, especially in the data- and compute-limited regimes.

In the numerical experiments of Sections 6.3 and 6.4, we utilize unconstrained monotonic neural networks
(UMNNs) (Wehenkel & Louppe, 2019) implemented within the nflows software package (Durkan et al.,

24

Published in Transactions on Machine Learning Research (04/2025)

2020) as the underlying transport map class. The map S : Rn × Rdim(y) → Rn for sampling conditional
distributions depends on the conditioning variable y. For an (n = 1)-dimensional parameter, the map takes
the form

S(y, x) =
∫ x

0
f(y, t;ϕ)dt+ β,

where f : Rdim(y) × R× Rdim(ϕ) → R>0 is a strictly positive parametric function and β ∈ R is a scalar bias
term. The function f can be made arbitrarily complex using an unconstrained neural network whose output
is forced to be strictly positive through a shifted ELU activation unit. Here ϕ denotes the parameters of
this neural network, meaning the map parameters we train are (ϕ, β). For both example, the underlying
networks have 5 hidden layers. We let the number of hidden features scale with the input-dimension, taking
it to be equal to ⌈1.5 dim(y)⌉. We train the map using Adam (Kingma & Ba, 2015) using a step-size of
5 × 10−4. 10% of the training samples were held out to be a validation set and training was stopped when
the objective evaluated on this validation set plateaus in value.

B.3 Derivation of the posterior and score function for the Flux problem

The flux is defined as
q = log

∫
ΓB

eϱ∇u · n ds ∈ R, (16)

where ΓB = [0, 1] × {0} denotes the bottom boundary of the domain. As done section 6.2, we express the
log-diffusivity field ϱ in the Karhunen-Loève expansion of the Gaussian prior with coefficients x, defining the
mapping Q : R100 → R

q = Q(x).

The target posterior for this problem, πQ|Y , can then be written as the following integral via change of
measure formula

πQ|Y (q|y) =
∫

Q−1(q)

πX|Y (x|y)
∥∇xQ(x)| |dx.

We note here that evaluating the unnormalized posterior and thus the posterior score function is intractable,
as it requires the computing the integral over the pre-image of the mapping Q.

25

	Introduction
	Background
	Gradient-based dimension reduction
	Approximating score functions

	Score ratio matching
	Structure-exploiting networks and regularization
	Deflating score-ratio matching
	Numerical examples
	Distribution with planted low-dimensional structure
	PDE-constrained inverse problem
	Flux, a quantity-of-interest inference example
	Energy price modeling

	Conclusions and future work
	Technical definitions and proofs
	Log-Sobolev inequalities
	Proof of thm:score-ratio-obj
	Proof of thm:cdr-error-eps
	Proof of thm:scorematching:deflationA
	Proof of prop:scorematching:deflatedscore

	Additional details for the numerical results
	Score ratio network hyperparameters
	Approximate inference via measure transport
	Derivation of the posterior and score function for the Flux problem

