
A Auxiliary Proofs

A.1 Proof of Theorem 1

Proof. Using Fenchel-Rockafellar’s duality theorem, the dual of (7) can be written as
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Fixing g 2 Rn and � 2 Rn(n�1), we can check using first order conditions that the optimal f(x) has
the closed form expression:
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Using this, the infinite dimensional optimization problem in (22) can be transformed to a finite
dimensional optimization problem:
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Alternatively, we can adapt the Laguerre cell notation in (2) to (23):
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where Lyi(g, �) =

(
x 2 X : yi = argmin
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)
.

A.2 Proof of Theorem 2

Proof. We prove the result via uniform convergence:
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Clearly, it suffices to show that ES(·) converges uniformly to E(·). For a given g, �, the dual objective
function and its’ empirical version can be written as
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Then we can rewrite the supremum in (24) as:
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Since |f(X)|  (Rx̄ + R) for all f 2 F,X 2 X , it follows from Theorem 26.5 in [26] that with
probability 1� �,
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and the same also holds by replacing F with �F . Here
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is the standard definition of Rademacher complexity of the set F � S. Since �i are i.i.d. Rademacher
random variables, it is easy to see that Radm(F � S) = Radm(�F � S). Therefore we can use a
union bound to obtain that with probability 1� �,
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It remains to bound the Rademacher complexity of the F � S. To do so, we use tools from learning
theory, and give the following bound on the fat-shattering dimension ([8]) of the hypothesis class F .

Lemma 1. Under Assumption 1, F has ⇣-fat-shattering dimension of at most
c0(Rx̄+R)2

⇣2 n log(n),
where c0 is some universal constant.

The proof of Lemma 1 can be found in the Appendix. The above bound on the fat-shattering dimension
can be used to bound the covering number (see Definition 27.1 of [26]) of F � S. Theorem 1 from
[22] states that
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where B is a uniform bound on the absolute value of any f 2 F . Let B = (Rx̄+R), we have that

Radm(F � S)

 inf
�0>0

(
4�0 + 12

Z B

�0

r
logN (�, F, || · ||2)

m
d�

)

 inf
�0>0

(
4�0 + 12

p
c1c0

c2
B

r
n log n

m

Z B

�0

s

log

✓
2B

�

◆
d�

)

=c
0
r

n log n(logm)3

m

Where we used Dudley’s chaining integral [28, 16], Lemma 1 and (28), and setting �
0 = 1p

m

respectively. Plugging the above back to (27) and (24), we see that with probability 1� �,
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Conversely, ignoring the log terms, m needs to be at most on the order of Õ
�
n
✏2

�
in order for

E(g⇤, �⇤)� E(ĝS , �̂S) to be bounded by ✏ with high probability.

Proof of Lemma 1

Proof. Theorem 3 in [20] shows that fat⇣(Fmin)  c0(Rx̄+R)2

⇣2 n log n. Since the shattering dimen-
sion is monotone in the size of the set, we are done.
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A.3 Experimental Setup

For the artificial data, the value utility vectors are generated from X = [1, 0.7] � Z


0.2, 0
0.8, 0.4

�

where Z ⇠ Unif(0, 1)⇥ Unif(0, 1). For finding the optimal allocation policy on the artificial data,
we used Algorithm 1 with T = 2 · 105. For simulator data, we used T = 2.5 · 106. To generate
Figure 2 we sampled 6000 points from the distribution and plotted them, colored by the allocation.
For Figure 4, for each m we ran 16 trials, sampling a different set of m data points as our training data
per trial. All experiments are run on a 2019, 6-core Macbook Pro laptop. The simulator code is open
sourced by [21] at https://github.com/duncanmcelfresh/blood-matching-simulations,
and also included in the supplementary material.
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