A Auxiliary Proofs

A.1 Proof of Theorem[I]

Proof. Using Fenchel-Rockafellar’s duality theorem, the dual of (7) can be written as
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Fixing g € R and v € R™"~1) we can check using first order conditions that the optimal f(z) has
the closed form expression:
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Using this, the infinite dimensional optimization problem in (22) can be transformed to a finite
dimensional optimization problem:
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Alternatively, we can adapt the Laguerre cell notation in (2} to (23):
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where Ly, (g,7) = {x EX:y = argming’y,c(xuyj)}' -
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A.2  Proof of Theorem|[2]
Proof. We prove the result via uniform convergence:
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Clearly, it suffices to show that Es(-) converges uniformly to £(+). For a given g, -y, the dual objective
function and its’ empirical version can be written as
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Then we can rewrite the supremum in (24) as:
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Since | f(X)| < (RZ + R) forall f € F, X € X, it follows from Theorem 26.5 in [26] that with
probability 1 — 4,
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and the same also holds by replacing F' with —F'. Here
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is the standard definition of Rademacher complexity of the set ' o S. Since o; are i.i.d. Rademacher
random variables, it is easy to see that Rad,,,(F o S) = Rad,,(—F o S). Therefore we can use a
union bound to obtain that with probability 1 — ¢,
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It remains to bound the Rademacher complexity of the F' o .S. To do so, we use tools from learning
theory, and give the following bound on the fat-shattering dimension ([8]) of the hypothesis class F'.
Lemma 1. Under Assumption F has (-fat-shattering dimension of at most CO(Rz_”in)Qnlog(n),
where cg is some universal constant.

The proof of Lernmacan be found in the Appendix. The above bound on the fat-shattering dimension
can be used to bound the covering number (see Definition 27.1 of [26]) of F' o S. Theorem 1 from
[22] states that
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where B is a uniform bound on the absolute value of any f € F. Let B = (RZ + R), we have that
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Where we used Dudley’s chamlng 1ntegral (28] |16], Lemma and , and setting ¢ =
respectively. Plugging the above back to (27) and (24), we see that with probability 1 — 4,
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Conversely, ignoring the log terms, m needs to be at most on the order of O (
E(g*,7*) — £(gs,Hs) to be bounded by e with high probability.
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Proof of Lemmal[I]

G 2 . . .
Proof. Theorem 3 in [20] shows that fat; (Frnin) < C"(Rgij]“T)n logn. Since the shattering dimen-
sion is monotone in the size of the set, we are done.
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A.3 Experimental Setup

o - 02, 0
For the artificial data, the value utility vectors are generated from X = [1,0.7] — Z 08 0 4]
where Z ~ Unif(0,1) x Unif(0,1). For finding the optimal allocation policy on the artificial data,
we used Algorithm With T = 2-10°. For simulator data, we used T = 2.5 - 105. To generate
Figure we sampled 6000 points from the distribution and plotted them, colored by the allocation.
For Figure for each m we ran 16 trials, sampling a different set of m data points as our training data
per trial. All experiments are run on a 2019, 6-core Macbook Pro laptop. The simulator code is open
sourced by [21] at https://github.com/duncanmcelfresh/blood-matching-simulations,
and also included in the supplementary material.
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