
Supplementary Material

Mathias Lechner∗∗
IST Austria

Klosterneuburg, Austria
mlechner@ist.ac.at

Ðord̄e Žikelić∗
IST Austria

Klosterneuburg, Austria
dzikelic@ist.ac.at

Krishnendu Chatterjee
IST Austria

Klosterneuburg, Austria
kchatterjee@ist.ac.at

Thomas A. Henzinger
IST Austria

Klosterneuburg, Austria
tah@ist.ac.at

A Proofs

Theorem 1. Let ε ∈ [0,∞]. Then each deterministic NN in {πw,b | (w,b) ∈ Wπ
ε } is safe if and

only if the system of constraints Φ(π,X0,Xu, ε) is not satisfiable.

Proof. We prove the equivalent claim that there exists a weight vector (w,b) ∈Wπ
ε for which πw,b

is unsafe if and only if Φ(π,X0,Xu, ε) is satisfiable.

First, suppose that there exists a weight vector (w,b) ∈Wπ
ε for which πw,b is unsafe and we want

to show that Φ(π,X0,Xu, ε) is satisfiable. This direction of the proof is straightforward since values
of the network’s neurons on the unsafe input give rise to a solution of Φ(π,X0,Xu, ε). Indeed, by
assumption there exists a vector of input neuron values x0 ∈ X0 for which the corresponding vector
of output neuron values xl = πw,b(x0) is unsafe, i.e. xl ∈ Xu. By defining xin

i , xout
i to be the vectors

of the corresponding input and output neuron values for the i-th hidden layer for each 1 ≤ i ≤ l − 1
and by setting x0,pos = ReLU(x0) and x0,neg = −ReLU(−x0), we easily see that these variable
values satisfy the Input-output conditions, the ReLU encoding conditions and the BNN input and
hidden layer conditions, therefore we get a solution to the system of constraints Φ(π,X0,Xu, ε).

We now proceed to the more involved direction of this proof and show that any solution to the system
of constraints Φ(π,X0,Xu, ε) gives rise to weights (w,b) ∈Wπ

ε for which πw,b is unsafe. Let x0,
xl, x0,pos, x0,neg and xin

i , xout
i for 1 ≤ i ≤ l − 1, be real vectors that satisfy the system of constraints

Φ(π,X0,Xu, ε). Fix 1 ≤ i ≤ l − 1. From the BNN hidden layers constraint for layer i, we have

(Mi − ε · 1)xout
i + (mi − ε · 1) ≤ xin

i+1 ≤ (Mi + ε · 1)xout
i + (mi + ε · 1). (1)

We show that there exist values W∗
i ,b
∗
i of BNN weights between layers i and i+ 1 such that each

weight value is at most ε apart from its mean, and such that xin
i+1 = W∗

i x
out
i +b∗i . Indeed, to formally

show this, we define Wπ
ε [i] to be the set of all weight vectors between layers i and i+ 1 such that

each weight value is distant from its mean by at most ε (hence, Wπ
ε [i] is a projection of Wπ

ε onto
dimensions that correspond to the weights between layers i and i+ 1). We then consider a continuous
function hi : Wπ

ε [i]→ R defined via

hi(Wi,bi) = Wix
out
i + bi.

Since Wπ
ε [i] ⊆ Rmi×ni × Rni is a product of intervals and therefore a connected set w.r.t. the

Euclidean metric and since hi is continuous, the image of Wπ
ε [i] under hi is also connected in R. But

note that
hi(Mi − ε · 1,mi − ε · 1) = (Mi − ε · 1)xout

i + (mi − ε · 1)

∗Equal Contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

and
hi(Mi + ε · 1,mi + ε · 1) = (Mi + ε · 1)xout

i + (mi + ε · 1),

with (Mi − ε · 1,mi − ε · 1), (Mi + ε · 1,mi + ε · 1) ∈ Wπ
ε [i]. Thus, for the two points to be

connected, the image set must also contain xin
i+1 which lies in between by eq. (1). Thus, there exists

(W∗
i ,b
∗
i) ∈Wπ

ε [i] with xin
i+1 = W∗

i x
out
i + b∗i , as desired.

For the input and the first hidden layer, from the BNN input layer constraint we know that

(M0−ε·1)x0,pos+(M0+ε·1)x0,neg+(m0−ε·1) ≤ xin
1 ≤ (M0+ε·1)x0,pos+(M0−ε·1)x0,neg+(m0+ε·1).

Again, define Wπ
ε [0] to be the set of all weight vectors between the input and the first hidden layer

such that each weight value is distant from its mean by at most ε. Consider a continuous function
h0 : Wπ

ε [0]→ R defined via
h0(W0,b0) = W0x0 + b0.

Let Msign(x0) be a matrix of the same dimension as M0, with each column consisting of 1’s if the
corresponding component of x0 is nonnegative, and of −1’s if it is negative. Then note that

h0(M0 − ε ·Msign(x0),m0 − ε · 1) = (M0 − ε · 1)x0,pos + (M0 + ε · 1)x0,neg + (m0 − ε · 1)

and

h0(M0 + ε ·Msign(x0),m0 + ε · 1) = (M0 + ε · 1)x0,pos + (M0 − ε · 1)x0,neg + (m0 + ε · 1).

Since (M0−ε ·Msign(x0),m0−ε ·1), (M0 +ε ·Msign(x0),m0 +ε ·1) ∈Wπ
ε [0], analogous image

connectedness argument as the one above shows that there exist values W∗
0,b
∗
0 of BNN weights such

tha (W∗
0,b
∗
0) ∈Wπ

ε [0], and such that xin
1 = W∗

0x0 + b∗0.

But now, collecting W∗
0,b
∗
0 and W∗

i ,b
∗
i for 1 ≤ i ≤ l − 1 gives rise to a BNN weight vector

(W∗,b∗) which is contained in Wπ
ε . Furthermore, combining what we showed above with the

constraints in Φ(π,X0,Xu, ε), we get that:

• x0 ∈ X0, xl ∈ Xu, from the Input-output condition in Φ(π,X0,Xu, ε);
• xout

i = ReLU(xin
i) for each 1 ≤ i ≤ l − 1, from the ReLU-encoding;

• xin
1 = W∗

0x0 + b∗0 and xin
i+1 = W∗

i x
out
i + b∗i for each 1 ≤ i ≤ l − 1, as shown above.

Hence, xl ∈ Xu is the vector of neuron output values of πW∗,b∗ on the input neuron values x0 ∈ X0,
so as (W∗,b∗) ∈Wπ

ε we conclude that there exists a deterministic NN in {πw,b | (w,b) ∈Wπ
ε }

which is not safe. This concludes the proof.

Theorem 2. If there exists a Wπ
ε -safe positive invariant, then each trajectory in Trajε is safe.

Proof. Let Inv be a Wπ
ε -safe positive invariant. Given a trajectory (xt,ut)

∞
t=0 in Trajε, we need to

show that xt 6∈ Xu for each t ∈ N≥0. Since Inv ∩ Xu = ∅, it suffices to show that xt ∈ Inv for each
t ∈ N≥0. We prove this by induction on t.

The base case x0 ∈ Inv follows since x0 ∈ X0 ⊆ Inv. As an inductive hypothesis, suppose now that
xt ∈ Inv for some t ∈ N≥0. We need to show that xt+1 ∈ Inv.

Since the trajectory is in Trajε, we know that the BNN weight vector (wt,bt) sampled at the time-step
t belongs to Wπ

ε , i.e. (wt,bt) ∈ Wπ
ε . Thus, since xt ∈ Inv by the induction hypothesis and since

Inv is closed under the system dynamics when the sampled weight vector is in Wπ
ε , it follows that

xt+1 = f(xt,ut) = f(xt, πwt,bt(xt)) ∈ Inv. This concludes the proof by induction.

Theorem 3. The loss function L is nonnegative for any neural network g, i.e. L(g) ≥ 0. Moreover, if
Inv is a Wπ

ε -safe positive invariant and Lcls the 0/1-loss, then L(gInv) = 0. Hence, neural networks
gInv for which Inv is a Wπ

ε -safe positive invariant are global minimizers of the loss function L when
Lcls is the 0/1-loss.

Proof. Recall, the loss function L for a neural network g is defined via

L(g) =
1

|Dspec|
∑

(x,y)∈Dspec

Lcls
(
g(x), y

)
+ λ

1

|Dce|
∑

(x,x′)∈Dce

Lce
(
g(x), g(x′)

)
, (2)

2

where λ is a tuning parameter and Lcls a binary classification loss function, e.g. the 0/1-loss
L0/1(z, y) = 1[1[z ≥ 0] 6= y] or the logistic loss Llog(z, y) = z − z · y + log(1 + exp(−z))
as its differentiable alternative. The term Lce is the counterexample loss which we define via

Lce(z, z
′) = 1

[
z > 0

]
1
[
z′ < 0

]
Lcls
(
z, 0
)
Lcls
(
z′, 1

)
. (3)

The fact that L(g) ≥ 0 for each neural network g follows immediately from the fact that summands
in the first sum in eq. (2) are loss functions which are nonnegative, and summands in the second sum
are products of indicator and nonnegative loss functions and therefore also nonnegative.

We now show that, if Lcls is the 0/1-loss, L(gInv) = 0 whenever Inv is a Wπ
ε -safe positive invariant,

which implies the global minimization claim in the theorem. This follows from the following two
items:

• For each (x, y) ∈ Dspec, we have Lcls
(
gInv(x), y

)
= 0. Indeed, for (x, y) to be added to

Dspec in Algorithm 1, we must have that either x ∈ X0 and y = 1, or that x ∈ Xu and y = 0.
Thus, since Inv is assumed to be a Wπ

ε -safe positive invariant, gInv correctly classifies (x, y)
and the corresponding loss is 0.

• For each (x,x′) ∈ Dce we have Lce
(
gInv(x), gInv(x′)

)
= 0. Indeed, since

Lce(g
Inv(x), gInv(x′)) = 1

[
gInv(x) > 0

]
1
[
gInv(x′) < 0

]
Lcls
(
gInv(x), 0

)
Lcls
(
gInv(x′), 1

)
,

for the loss to be non-zero we must have that gInv(x) ≥ 0 and gInv(x) < 0. But this is
impossible since Inv is assumed to be a Wπ

ε -safe positive invariant and (x,x′) was added
by Algorithm 1 as a counterexample to Dce, meaning that x′ can be reached from x by
following the dynamics function and sampling a BNN weight vector in Wπ

ε . Therefore, by
the closedness property of Wπ

ε -safe positive invariants when the sampled weight vector is in
Wπ
ε , we cannot have both gInv(x) ≥ 0 and gInv(x) < 0. Hence, the loss must be 0.

Theorem 4. If the verifier in Algorithm 1 shows that constraints in three checks are unsatisfiable,
then the computed Inv is indeed a Wπ

ε -safe positive invariant. Hence, Algorithm 1 is correct.

Proof. The fact that the first check in Algorithm 1 correctly checks whether there exist x,x′ ∈ X0

and a weight vector (w,b) ∈Wπ
ε such that x′ = f(x, πw,b(x)) with gInv(x) ≥ 0 and gInv(x′) < 0

follows by the correctness of our encoding in Section 4.1, which was proved in Theorem 1. The fact
that checks 2 and 3 correctly check whether for all x ∈ X0 we have gInv(x) ≥ 0 and for all x ∈ Xu
we have gInv(x) < 0, respectively, follows immediately from the conditions they encode.

Therefore, the three checks together verify that (1) Inv is closed under the system dynamics whenever
the sampled weight vector is in Wπ

ε , (2) Inv contains all initial states, and (3) Inv contains no unsafe
states. As these are the 3 defining properties of Wπ

ε -safe positive invariants, Algorithm 1 is correct
and the theorem claim follows.

B Safe exploration reinforcement learning algorithm

Algorithm 1 shows our sketch of how standard RL algorithms, such as policy gradient methods and
deep Q-learning, can be adapted to a safe exploration setup by using the safe weight sets computed
by our method.

C Experimental details

In this section, we describe the details of our experimental evaluation setup. The code and pre-trained
network parameters are attached in the supplementary materials. Each policy is a ReLU network
consisting of three layers. The first layer represents the input variables, the second one is a hidden
layer with 16 neurons, and the last layer are the output variables. The size of the first and the last layer
is task dependent and is shown in Table 1. The Wπ

ε -safe positive invariant candidate network differs
from the policy network in that its weights are deterministic, it has a different number of hidden units
and a single output dimension. Particularly, the invariant networks for the linear dynamical system

3

Algorithm 1 Safe Exploration Reinforcement Learning

Input Initial policy π0, learning rate α, number of iterations N
for i ∈ 1, . . . N do
ε← find safe ε for πi−1
collect rollouts of πi−1 with rejection sampling ε
compute ∇µi−1 for parameters µi−1 of πi−1 using DQN/policy gradient
µi ← µi−1 − α∇µi−1 (gradient descent)
project µi back to interval [µi−1 − ε, µi−1 + ε]

end for
Return πN

Experiment Input dimension Hidden size Output dimension

Linear dynamical system 2 16 1
Inverted pendulum 2 16 1
Collision avoidance 3 16 3

Table 1: Number of dimensions of the policy network for the three experiments.

and the inverted pendulum have 12 hidden units, whereas the invariant network for the collision
avoidance task has 32 neurons in its hidden layer. The policy networks are trained with a N (0, 0.1)
(from second layer on) and N (0, 0.05) (all weights) prior for the Bayesian weights, respectively.
MILP solving was performed by Gurobi 9.03 on a 4 vCPU with 32GB virtual machine.

Linear dynamical system The state of the linear dynamical system consists of two variables (x, y).
The update function takes the current state (xt, yt) with the current action ut and outputs the next
states (xt+1, yt+1) governed by the equations

yt+1 = yt + 0.2 · clip±1(ut)

xt+1 = xt + 0.3yt+1 + 0.05 · clip±1(ut),

where the function clip±1 is defined by

clip±z(x) =


−z if x ≤ −z
z if x ≥ z
x otherwise.

The set of unsafe states is defined as {(x, y) ∈ R2 | |(x, y)|∞ ≥ 1.2}, and the initial states as
{(x, y) ∈ R2 | |(x, y)|∞ ≤ 0.6}.

Inverted pendulum The state of the inverted pendulum consists of two variables (θ, θ̇). The
non-linear state transition is defined by

θ̇t+1 = clip±8
(
θ̇t +

−3g · angular(θt + π)

2l
+ δt

7.5clip±1(ut)

(m · l2)

)
θt+1 = θt + θ̇t+1 ∗ δt,

where g = 9.81, l = 1, δt = 0.05 and m = 0.8 are constants. The function angular is defined using
the piece-wise linear composition

angular(x) =


angular(x+ 2π) if x ≤ π/2
angular(x− 2π) if x > 5π/2
x−2π
π/2 if 3π/2 < x ≤ 5π/2

2− x
π/2 if π/2 < x ≤ 3π/2.

The set of initial states are defined by {(θ, θ̇) ∈ R2 | |θ| ≤ π/6 and |θ̇| ≤ 0.2}. The set of unsafe
states are defined by {(θ, θ̇) ∈ R2 | |θ| ≥ 0.9 or |θ̇| ≥ 2}.

4

Collision avoidance The state of the collision avoidance environment consists of three variables
(px, ax, ay), representing the agent’s vertical position and the vertical and the horizontal position
of an intruder. The intruder moves toward the agent, while the agent’s vertical position must be
controlled to avoid colliding with the intruder. The particular state transition is given by

px,t+1 = px,t + ut
ax,t+1 = ax,t
ay,t+1 = ay,t − 1.

Admissible actions are defined by ut ∈ {−1, 0, 1}. The set of initial states are defined as
{(px, ax, ay) ∈ Z3 | |px| ≤ 2 and |ax| ≤ 2 and ay = 5}. Likewise, the set of unsafe states
are given by {(px, ax, ay) ∈ Z3 | |px − ax| ≤ 1 and ay = 5}.

5

	Proofs
	Safe exploration reinforcement learning algorithm
	Experimental details

