
OCTOPACK: Instruction Tuning Code Large Language Models

APPENDIX

Contents
A Contributions 22

B Artifacts 22

C COMMITPACK and COMMITPACKFT Languages 23

D Dataset Creation 29

E Comparing Data Before and After Filtering 32

F Comparing COMMITPACK and The Stack 32

G Pretraining on COMMITPACK 33

H HUMANEVALPACK Statistics 33

I Full Instruction Data Ablations 34

J Line Diff Format for Fixing Code 34

K Results on HUMANEVALFIXDOCS 37

L HUMANEVALFIX Bug Types 37

M Performance Breakdown by HUMANEVALFIX Bug Type 40

N HUMANEVALEXPLAIN with Fill-In-The-Middle 40

O HUMANEVALEXPLAIN BLEU and METEOR comparison 41

P Hyperparameters 41

Q Prompts 41

R Examples 45
R.1 OCTOCODER . 45
R.2 GPT-4 . 48
R.3 WizardCoder . 53
R.4 BLOOMZ . 54
R.5 StarCoder . 54
R.6 InstructCodeT5+ . 56
R.7 StarChat-� . 56
R.8 Diff Codegen . 58

S Limitations and Future Work 58

T Version Control 59

U OCTOBADPACK 60

21

OCTOPACK: Instruction Tuning Code Large Language Models

A CONTRIBUTIONS

Niklas Muennighoff created COMMITPACK and HUMANEVALPACK, wrote most of the paper and
led the project. Qian Liu devised many quality filters, ran SantaCoder ablations, investigated early
training decisions and helped edit the paper. Armel Zebaze created the Self-Instruct data and ran
numerous ablations. Niklas Muennighoff, Armel Zebaze and Qinkai Zheng created and evaluated
OCTOCODER and OCTOGEEX. Binyuan Hui pretrained SantaCoder, made major contributions to
the presentation and helped edit the paper. Terry Yue Zhuo ran GPT-4 evaluations and helped edit
the paper. Xiangru Tang provided help on several experiments for evaluation and helped edit the
paper. Leandro von Werra provided early guidance, suggested many quality filters and added the
commit data to StarCoder pretraining. Niklas Muennighoff, Qian Liu, Binyuan Hui, Swayam Singh
and Shayne Longpre conducted the data analysis. Shayne Longpre advised the project and made
large contributions to the paper.

B ARTIFACTS

Model Public Link

Other models

Diff Codegen 2B (Bradley et al., 2023) https://hf.co/CarperAI/diff-codegen-2b-v2

InstructCodeT5+ (Wang et al., 2023c) https://hf.co/Salesforce/instructcodet5p-16b

BLOOMZ (Muennighoff et al., 2022b) https://hf.co/bigscience/bloomz

StarChat-� (Tunstall et al., 2023) https://hf.co/HuggingFaceH4/starchat-beta

CodeGeeX2 (Zheng et al., 2023) https://github.com/THUDM/CodeGeeX2

SantaCoder (Allal et al., 2023) https://hf.co/bigcode/santacoder

StarCoder (Li et al., 2023b) https://hf.co/bigcode/starcoder

WizardCoder (Luo et al., 2023) https://hf.co/WizardLM/WizardCoder-15B-V1.0

GPT-4 (OpenAI, 2023) https://openai.com/gpt-4

Data Ablations (Appendix I) - Data

Filtered xP3x code https://hf.co/datasets/bigcode/xp3x-octopack

StarCoder Self-Instruct https://hf.co/datasets/codeparrot/self-instruct-starcoder

Filtered OASST https://hf.co/datasets/bigcode/oasst-octopack

Manual selection (Appendix I) https://hf.co/datasets/bigcode/co-manual

Data Ablations (Appendix I) - Models

Self-Instruct (SI) https://hf.co/bigcode/starcoder-s

OASST (O) https://hf.co/bigcode/starcoder-o

SI + O https://hf.co/bigcode/starcoder-so

xP3x + O https://hf.co/bigcode/starcoder-xo

COMMITPACKFT + O (Formatting) https://hf.co/bigcode/starcoder-co-format

COMMITPACKFT + O (Target loss) https://hf.co/bigcode/starcoder-co-target

COMMITPACKFT + O (Manual) https://hf.co/bigcode/starcoder-co-manual

COMMITPACKFT + xP3x + O https://hf.co/bigcode/starcoder-cxo

COMMITPACKFT + xP3x + SI + O https://hf.co/bigcode/starcoder-cxso

SantaCoder ablations (Appendix G, Appendix J)

Commit format Pretraining https://hf.co/bigcode/santacoderpack

Commit format Finetuning https://hf.co/bigcode/santacoder-cf

Line diff format Finetuning https://hf.co/bigcode/santacoder-ldf

Other datasets

COMMITPACK Metadata https://hf.co/datasets/bigcode/commitpackmeta

Main artifacts

COMMITPACK https://hf.co/datasets/bigcode/commitpack

COMMITPACKFT https://hf.co/datasets/bigcode/commitpackft

HUMANEVALPACK https://hf.co/datasets/bigcode/humanevalpack

OCTOGEEX https://hf.co/bigcode/octogeex

OCTOCODER https://hf.co/bigcode/octocoder

Table 3: Used and produced artifacts.

22

https://hf.co/CarperAI/diff-codegen-2b-v2
https://hf.co/Salesforce/instructcodet5p-16b
https://hf.co/bigscience/bloomz
https://hf.co/HuggingFaceH4/starchat-beta
https://github.com/THUDM/CodeGeeX2
https://hf.co/bigcode/santacoder
https://hf.co/bigcode/starcoder
https://hf.co/WizardLM/WizardCoder-15B-V1.0
https://openai.com/gpt-4
https://hf.co/datasets/bigcode/xp3x-octopack
https://hf.co/datasets/codeparrot/self-instruct-starcoder
https://hf.co/datasets/bigcode/oasst-octopack
https://hf.co/datasets/bigcode/co-manual
https://hf.co/bigcode/starcoder-s
https://hf.co/bigcode/starcoder-o
https://hf.co/bigcode/starcoder-so
https://hf.co/bigcode/starcoder-xo
https://hf.co/bigcode/starcoder-co-format
https://hf.co/bigcode/starcoder-co-target
https://hf.co/bigcode/starcoder-co-manual
https://hf.co/bigcode/starcoder-cxo
https://hf.co/bigcode/starcoder-cxso
https://hf.co/bigcode/santacoderpack
https://hf.co/bigcode/santacoder-cf
https://hf.co/bigcode/santacoder-ldf
https://hf.co/datasets/bigcode/commitpackmeta
https://hf.co/datasets/bigcode/commitpack
https://hf.co/datasets/bigcode/commitpackft
https://hf.co/datasets/bigcode/humanevalpack
https://hf.co/bigcode/octogeex
https://hf.co/bigcode/octocoder

OCTOPACK: Instruction Tuning Code Large Language Models

C COMMITPACK AND COMMITPACKFT LANGUAGES

COMMITPACK COMMITPACKFT
Language (#) MB Samples % (MB) MB Samples % (MB)

Total 3709175.78 57700105 100.0 1545.02 702062 100.0

json 583293.82 3495038 15.73 86.74 39777 5.61
xml 279208.68 1923159 7.53 23.68 9337 1.53
text 270662.6 1389525 7.3 66.66 46588 4.31
javascript 262824.84 5401937 7.09 125.01 52989 8.09
objective-c++ 239009.3 32227 6.44 0.38 86 0.02
python 234311.56 6189601 6.32 132.68 56025 8.59
c 200876.8 2779478 5.42 21.08 8506 1.36
c++ 186585.26 2402294 5.03 14.14 4992 0.92
markdown 171849.95 7645354 4.63 131.15 62518 8.49
java 127103.45 3744377 3.43 56.28 20635 3.64
html 105305.28 2366841 2.84 48.42 20214 3.13
yaml 100466.64 2592787 2.71 190.88 114320 12.35
go 86444.62 1183612 2.33 12.13 5004 0.79
csv 82946.19 79268 2.24 0.53 375 0.03
php 74961.64 2555419 2.02 60.22 24791 3.9
jupyter-notebook 66854.08 94000 1.8 0.1 48 0.01
gettext-catalog 62296.88 168327 1.68 0.13 72 0.01
sql 56802.76 132772 1.53 3.74 2069 0.24
unity3d-asset 39535.01 17867 1.07 0.16 101 0.01
typescript 39254.8 572136 1.06 14.28 5868 0.92
owl 36435.46 7458 0.98 0 0 0.0
ruby 35830.74 2928702 0.97 195.29 69413 12.64
c# 33669.65 923157 0.91 26.84 9346 1.74
nix 33547.92 221281 0.9 3.84 1593 0.25
shell 25109.95 1017977 0.68 66.86 31217 4.33
perl 21148.93 374266 0.57 4.99 2288 0.32
tex 17471.11 89283 0.47 0.56 307 0.04
css 16306.63 548818 0.44 9.36 5049 0.61
restructuredtext 15613.89 494037 0.42 15.73 6560 1.02
rust 15011.3 296214 0.4 7.24 2996 0.47
groff 12020.19 32923 0.32 0.4 192 0.03
ini 8375.16 297100 0.23 21.04 11360 1.36
scala 8325.96 316064 0.22 11.18 5040 0.72
coffeescript 6795.14 292446 0.18 16.96 5513 1.1
haskell 6306.12 217325 0.17 3.31 1389 0.21
swift 5902.72 319289 0.16 16.27 4849 1.05
lua 5763.12 139091 0.16 1.85 920 0.12
svg 5645.44 27095 0.15 0.25 169 0.02
gas 5585.38 15121 0.15 0.34 193 0.02
ocaml 5355.4 81360 0.14 0.7 333 0.05
erlang 5043.32 93685 0.14 1.19 480 0.08
makefile 4238.51 343379 0.11 2.53 960 0.16
asciidoc 4138.59 96671 0.11 1.86 523 0.12
emacs-lisp 3988.65 83228 0.11 1.97 1015 0.13
scss 3944.94 288190 0.11 13.21 6829 0.86
clojure 3523.41 158674 0.09 5.07 2403 0.33
org 3126.22 30198 0.08 0.27 136 0.02
common-lisp 2954.9 74628 0.08 1.45 778 0.09
diff 2586.05 21021 0.07 1.48 680 0.1
groovy 2569.14 110057 0.07 4.17 1486 0.27
html+erb 2450.68 225379 0.07 23.1 10910 1.5
nesc 2439.56 473 0.07 0.02 7 0.0

23

OCTOPACK: Instruction Tuning Code Large Language Models

dart 2395.8 56873 0.06 1.96 765 0.13
powershell 2289.28 55381 0.06 2.06 991 0.13
f# 2289.24 66840 0.06 0.66 254 0.04
dm 2223.14 55584 0.06 0.15 16 0.01
kotlin 2219.25 124266 0.06 5.37 2214 0.35
pascal 2194.68 42511 0.06 0.05 25 0.0
jsx 2124.74 139148 0.06 5.5 2199 0.36
viml 1948.21 74062 0.05 1.96 1063 0.13
actionscript 1844.15 28819 0.05 0.12 49 0.01
cython 1736.59 25927 0.05 0.31 123 0.02
turtle 1698.95 3882 0.05 0.05 21 0.0
less 1616.56 88634 0.04 3.72 1360 0.24
mathematica 1475.04 925 0.04 0.01 1 0.0
xslt 1441.46 27956 0.04 0.26 99 0.02
scheme 1249.24 30546 0.03 0.42 213 0.03
perl6 1223.16 12167 0.03 0.27 122 0.02
edn 1186.94 2289 0.03 0.09 48 0.01
fortran 1178.55 13463 0.03 0.14 70 0.01
java-server-pages 1173.07 53574 0.03 0.45 173 0.03
standard-ml 1133.48 20097 0.03 0.15 72 0.01
cmake 1132.07 58446 0.03 2.27 981 0.15
json5 1108.2 1827 0.03 0.08 33 0.01
vala 1104.51 14822 0.03 0.12 50 0.01
vue 1093.8 68967 0.03 1.38 587 0.09
freemarker 1032.33 36216 0.03 1.03 510 0.07
graphql 1004.84 2009 0.03 0.03 17 0.0
twig 958.96 39588 0.03 3.96 1610 0.26
tcl 869.83 16407 0.02 0.29 103 0.02
pod 859.02 14922 0.02 0.15 54 0.01
dockerfile 849.73 259379 0.02 0.1 39 0.01
yacc 845.7 8230 0.02 0.01 3 0.0
postscript 800.73 903 0.02 0.02 9 0.0
racket 796.64 16615 0.02 0.2 117 0.01
eagle 785.68 2237 0.02 0.01 4 0.0
haxe 772.9 28447 0.02 0.34 174 0.02
julia 752.07 22695 0.02 0.31 180 0.02
handlebars 740.82 49842 0.02 3.29 1429 0.21
smarty 720.94 41065 0.02 1.59 737 0.1
visual-basic 681.52 10511 0.02 0.15 48 0.01
literate-haskell 673.74 10729 0.02 0.02 7 0.0
smalltalk 665.89 11741 0.02 0.46 284 0.03
isabelle 655.82 8359 0.02 0.01 2 0.0
nimrod 652.86 12023 0.02 0.24 67 0.02
zig 621.38 4290 0.02 0.01 4 0.0
m4 603.58 12465 0.02 0.26 101 0.02
max 603.56 2259 0.02 0 0 0.0
elixir 558.12 35473 0.02 2.35 1150 0.15
mako 543.01 8943 0.01 0.76 170 0.05
arduino 534.18 32350 0.01 0.46 225 0.03
jade 531.4 46993 0.01 2.35 1119 0.15
haml 502.01 74792 0.01 10.74 4415 0.7
elm 481.97 18542 0.01 0.62 265 0.04
purebasic 474.28 36 0.01 0.02 5 0.0
coldfusion 470.78 9263 0.01 0.02 9 0.0
lean 470.03 7507 0.01 0.02 3 0.0
r 454.32 12858 0.01 0.23 121 0.01
cuda 437.67 11450 0.01 0.07 25 0.0
textile 425.12 18491 0.01 0.18 61 0.01
robotframework 421.61 9211 0.01 0.21 85 0.01

24

OCTOPACK: Instruction Tuning Code Large Language Models

abap 409.62 1955 0.01 0.01 1 0.0
rdoc 397.03 38760 0.01 0.55 270 0.04
llvm 382.2 10727 0.01 1.6 780 0.1
ada 380.7 13258 0.01 0.73 265 0.05
batchfile 372.16 43674 0.01 2.98 1466 0.19
qml 361.45 19360 0.01 0.94 368 0.06
jasmin 359.82 4782 0.01 0.05 9 0.0
assembly 343.62 8126 0.01 0.17 105 0.01
g-code 334.96 3690 0.01 0.04 7 0.0
cucumber 331.38 26677 0.01 2.59 976 0.17
html+php 323.35 18381 0.01 0.33 150 0.02
kicad 321.94 759 0.01 0 0 0.0
api-blueprint 317.85 4765 0.01 0.06 23 0.0
eiffel 311.48 373 0.01 0.01 2 0.0
toml 292.68 63517 0.01 5.58 3424 0.36
modelica 284.62 2611 0.01 0.04 15 0.0
bitbake 277.58 43239 0.01 4.46 1308 0.29
lex 275.96 705 0.01 0 0 0.0
stylus 273.06 21967 0.01 0.95 480 0.06
protocol-buffer 254.12 9202 0.01 0.52 181 0.03
unknown 252.23 30570 0.01 3.05 1597 0.2
nit 244.54 4951 0.01 0.02 3 0.0
factor 241.19 15378 0.01 0.36 113 0.02
xs 239.04 3215 0.01 0.02 7 0.0
sass 230.65 23144 0.01 1.36 705 0.09
pir 230.2 6231 0.01 0.08 23 0.01
html+django 217.04 10535 0.01 0.85 399 0.06
mediawiki 214.32 10188 0.01 0.08 33 0.01
logos 212.3 1733 0.01 0.04 19 0.0
genshi 209.3 956 0.01 0.02 3 0.0
coldfusion-cfc 208.16 4410 0.01 0.05 20 0.0
xtend 179.54 7775 0.0 0.13 55 0.01
sqf 168.66 7778 0.0 0.09 45 0.01
vhdl 155.95 2185 0.0 0.02 5 0.0
antlr 143.55 3651 0.0 0.03 15 0.0
systemverilog 140.19 3944 0.0 0.08 35 0.01
hcl 136.75 13379 0.0 0.91 421 0.06
asp 136.1 4286 0.0 0.09 22 0.01
nsis 129.12 4048 0.0 0.06 15 0.0
inform-7 120.19 184 0.0 0.01 2 0.0
slim 119.04 18726 0.0 2.06 1052 0.13
groovy-server-pages 117.37 6695 0.0 0.07 25 0.0
ceylon 116.14 7256 0.0 0.1 49 0.01
fish 111.28 15351 0.0 1.33 813 0.09
processing 108.58 5912 0.0 0.07 35 0.0
component-pascal 105.5 43 0.0 0 0 0.0
lasso 104.17 67 0.0 0 0 0.0
glsl 99.49 9478 0.0 0.34 164 0.02
saltstack 98.2 12314 0.0 1.41 617 0.09
xbase 94.42 1670 0.0 0.01 3 0.0
autohotkey 94.22 1452 0.0 0.02 15 0.0
liquid 93.79 2651 0.0 0.09 30 0.01
purescript 92.41 5024 0.0 0.17 80 0.01
agda 92.06 4956 0.0 0.02 10 0.0
inno-setup 91.36 3014 0.0 0.06 16 0.0
oz 90.48 1551 0.0 0.03 8 0.0
chapel 89.62 26447 0.0 0.04 20 0.0
arc 87.21 758 0.0 0.01 2 0.0
opencl 86.43 2489 0.0 0.05 23 0.0

25

OCTOPACK: Instruction Tuning Code Large Language Models

graphviz-dot 85.8 1525 0.0 0.07 35 0.0
pawn 85.42 580 0.0 0.01 3 0.0
jsoniq 75.15 1343 0.0 0.01 6 0.0
bluespec 72.38 2500 0.0 0.01 2 0.0
smali 71.38 174 0.0 0 0 0.0
krl 69.87 1879 0.0 0.02 4 0.0
maple 68.28 1311 0.0 0.01 2 0.0
unrealscript 67.67 585 0.0 0.01 1 0.0
ooc 63.19 3416 0.0 0.04 15 0.0
pure-data 62.62 603 0.0 0.01 1 0.0
xquery 61.96 2237 0.0 0.08 39 0.01
dcl 59.64 833 0.0 0.04 19 0.0
moonscript 59.21 1951 0.0 0.02 10 0.0
awk 57.18 2206 0.0 0.1 52 0.01
pike 52.87 1262 0.0 0.02 6 0.0
livescript 51.23 5194 0.0 0.13 63 0.01
solidity 50.86 3689 0.0 0.08 37 0.01
monkey 48.26 1367 0.0 0.02 4 0.0
jsonld 48.01 462 0.0 0.02 6 0.0
zephir 42.68 1265 0.0 0.02 4 0.0
crystal 41.92 4217 0.0 0.35 182 0.02
rhtml 41.02 4551 0.0 0.35 135 0.02
stata 40.68 1344 0.0 0.02 10 0.0
idris 39.9 3025 0.0 0.13 38 0.01
raml 39.39 948 0.0 0.03 9 0.0
openscad 37.73 2178 0.0 0.05 21 0.0
red 35.26 1108 0.0 0.01 1 0.0
c2hs-haskell 34.47 1021 0.0 0.01 2 0.0
cycript 33.96 197 0.0 0 0 0.0
applescript 33.51 1304 0.0 0.04 19 0.0
mupad 32.49 178 0.0 0.02 4 0.0
literate-agda 31.38 567 0.0 0.01 1 0.0
boo 31.17 26289 0.0 0.01 2 0.0
sourcepawn 29.53 717 0.0 0.01 3 0.0
qmake 29.51 3632 0.0 0.32 140 0.02
ragel-in-ruby-host 28.3 888 0.0 0.01 4 0.0
io 27.95 1247 0.0 0.01 4 0.0
desktop 27.65 5021 0.0 0.36 186 0.02
propeller-spin 26.77 625 0.0 0.01 1 0.0
thrift 26.75 1007 0.0 0.08 28 0.01
volt 25.05 1660 0.0 0.02 9 0.0
xproc 24.21 914 0.0 0.02 3 0.0
igor-pro 23.75 388 0.0 0.01 1 0.0
lolcode 23.74 24861 0.0 0 0 0.0
html+eex 21.41 2100 0.0 0.29 135 0.02
logtalk 20.43 1035 0.0 0.06 21 0.0
mirah 20.1 706 0.0 0.04 16 0.0
gnuplot 19.68 889 0.0 0.03 17 0.0
literate-coffeescript 19.02 1041 0.0 0.05 19 0.0
jflex 18.61 555 0.0 0.01 1 0.0
emberscript 18.39 1024 0.0 0.02 7 0.0
cobol 17.0 24953 0.0 0 0 0.0
yang 16.94 597 0.0 0.02 6 0.0
rebol 16.47 239 0.0 0.01 3 0.0
linker-script 16.08 1604 0.0 0.08 37 0.01
cartocss 15.92 555 0.0 0.01 3 0.0
urweb 13.07 304 0.0 0.02 6 0.0
rmarkdown 13.03 750 0.0 0 0 0.0
darcs-patch 13.01 80 0.0 0 0 0.0

26

OCTOPACK: Instruction Tuning Code Large Language Models

csound 12.85 229 0.0 0.01 4 0.0
squirrel 12.84 531 0.0 0.01 4 0.0
apl 12.56 586 0.0 0.02 7 0.0
hlsl 12.17 1529 0.0 0.03 11 0.0
latte 11.89 1380 0.0 0.02 7 0.0
pony 11.84 624 0.0 0.05 16 0.0
ioke 10.86 373 0.0 0.04 25 0.0
hy 10.51 879 0.0 0.04 12 0.0
uno 10.36 628 0.0 0.01 2 0.0
pan 10.34 637 0.0 0.05 23 0.0
xojo 10.31 642 0.0 0 0 0.0
papyrus 10.26 130 0.0 0 0 0.0
stan 10.25 540 0.0 0 0 0.0
slash 9.9 640 0.0 0.01 4 0.0
supercollider 9.8 318 0.0 0.01 2 0.0
vcl 9.46 747 0.0 0.04 18 0.0
smt 9.03 117 0.0 0.01 3 0.0
glyph 8.95 7 0.0 0 0 0.0
wisp 8.74 262 0.0 0.01 3 0.0
renpy 8.3 421 0.0 0.02 3 0.0
clips 7.73 450 0.0 0 0 0.0
dns-zone 7.56 54 0.0 0.01 2 0.0
sas 7.54 269 0.0 0.01 1 0.0
rouge 7.2 396 0.0 0.1 41 0.01
ec 7.03 94 0.0 0 0 0.0
dylan 6.82 280 0.0 0.01 2 0.0
tcsh 6.52 748 0.0 0.02 10 0.0
aspectj 6.33 451 0.0 0.02 8 0.0
netlogo 6.3 140 0.0 0 0 0.0
gap 6.1 46 0.0 0 0 0.0
fancy 5.95 675 0.0 0.02 8 0.0
coq 5.74 80 0.0 0 0 0.0
click 5.74 9 0.0 0 0 0.0
capn-proto 5.64 330 0.0 0.04 12 0.0
flux 5.57 47 0.0 0.01 3 0.0
forth 5.51 265 0.0 0.01 2 0.0
ats 5.42 383 0.0 0.01 3 0.0
netlinx 5.17 144 0.0 0.01 1 0.0
clean 5.07 171 0.0 0.01 1 0.0
parrot-assembly 4.66 227 0.0 0.01 2 0.0
alloy 4.64 203 0.0 0 0 0.0
lfe 4.58 287 0.0 0.02 6 0.0
gdscript 4.49 460 0.0 0.03 9 0.0
augeas 4.44 395 0.0 0.04 13 0.0
sparql 4.4 1036 0.0 0.04 23 0.0
lilypond 4.31 265 0.0 0.01 6 0.0
scilab 4.09 375 0.0 0.02 10 0.0
autoit 4.06 279 0.0 0 0 0.0
myghty 3.86 105 0.0 0 0 0.0
blitzmax 3.74 220 0.0 0.01 1 0.0
creole 3.42 337 0.0 0.01 2 0.0
harbour 3.34 107 0.0 0.01 1 0.0
piglatin 3.17 513 0.0 0.02 11 0.0
opa 3.16 211 0.0 0 0 0.0
sage 3.03 414 0.0 0.01 1 0.0
ston 2.85 414 0.0 0.01 6 0.0
maxscript 2.8 47 0.0 0 0 0.0
lsl 2.68 74 0.0 0.01 3 0.0
gentoo-ebuild 2.58 601 0.0 0.06 16 0.0

27

OCTOPACK: Instruction Tuning Code Large Language Models

nu 2.38 170 0.0 0.01 2 0.0
bro 2.34 333 0.0 0.01 3 0.0
xc 2.02 88 0.0 0 0 0.0
j 1.81 142 0.0 0 0 0.0
metal 1.72 151 0.0 0.02 4 0.0
mms 1.54 91 0.0 0.01 1 0.0
webidl 1.51 96 0.0 0.05 6 0.0
tea 1.47 29 0.0 0 0 0.0
redcode 1.27 149 0.0 0 0 0.0
shen 1.2 71 0.0 0 0 0.0
pov-ray-sdl 1.14 104 0.0 0.01 5 0.0
x10 1.01 33 0.0 0 0 0.0
brainfuck 0.96 167 0.0 0.01 2 0.0
ninja 0.95 187 0.0 0.03 14 0.0
golo 0.9 115 0.0 0 0 0.0
webassembly 0.86 83 0.0 0 0 0.0
self 0.82 15 0.0 0 0 0.0
labview 0.81 61 0.0 0 0 0.0
octave 0.8 12 0.0 0 0 0.0
pogoscript 0.8 74 0.0 0 0 0.0
d 0.8 20 0.0 0 0 0.0
http 0.74 140 0.0 0.03 19 0.0
ecl 0.66 48 0.0 0.01 4 0.0
chuck 0.58 99 0.0 0 0 0.0
gosu 0.52 60 0.0 0 0 0.0
parrot 0.52 17 0.0 0 0 0.0
opal 0.47 69 0.0 0 0 0.0
objective-j 0.46 37 0.0 0 0 0.0
kit 0.41 48 0.0 0 0 0.0
gams 0.38 18 0.0 0 0 0.0
prolog 0.28 35 0.0 0 0 0.0
clarion 0.27 13 0.0 0 0 0.0
mask 0.25 37 0.0 0.01 4 0.0
brightscript 0.24 28 0.0 0 0 0.0
scaml 0.18 31 0.0 0.01 1 0.0
matlab 0.16 29 0.0 0 0 0.0
idl 0.15 1 0.0 0 0 0.0
ags-script 0.12 31 0.0 0 0 0.0
lookml 0.12 10 0.0 0 0 0.0
apacheconf 0.11 59 0.0 0.01 2 0.0
oxygene 0.1 9 0.0 0 0 0.0
txl 0.1 3 0.0 0 0 0.0
gf 0.09 39 0.0 0 0 0.0
renderscript 0.06 54 0.0 0 0 0.0
mtml 0.05 13 0.0 0.01 2 0.0
unified-parallel-c 0.05 6 0.0 0 0 0.0
dogescript 0.04 10 0.0 0 0 0.0
gentoo-eclass 0.04 6 0.0 0 0 0.0
zimpl 0.04 7 0.0 0 0 0.0
irc-log 0.04 9 0.0 0 0 0.0
fantom 0.03 11 0.0 0 0 0.0
numpy 0.03 1 0.0 0 0 0.0
cirru 0.02 4 0.0 0 0 0.0
xpages 0.02 7 0.0 0.01 1 0.0
nginx 0.02 6 0.0 0.01 2 0.0
objdump 0.02 1 0.0 0 0 0.0
python-traceback 0.02 10 0.0 0 0 0.0
realbasic 0.01 1 0.0 0 0 0.0
befunge 0.01 2 0.0 0 0 0.0

28

OCTOPACK: Instruction Tuning Code Large Language Models

bison 0.01 1 0.0 0 0 0.0
m 0.01 1 0.0 0 0 0.0
omgrofl 0.01 1 0.0 0 0 0.0

Table 4: Programming language distribution of COMMITPACK and COMMITPACKFT. Short-
cuts: MB=Megabytes, owl=web-ontology-language, pir=parrot-internal-representation, dcl=digital-
command-language, mms=module-management-system, gf=grammatical-framework

D DATASET CREATION

COMMITPACK We use the GitHub archive available on GCP which contains metadata from GitHub
commits up to 2016.4 It contains around 3TB of GitHub activity data for more than 2.8 million GitHub
repositories including more than 145 million unique commits, over 2 billion different file paths and
the contents of the latest revision for 163 million files.5 We apply the filters in Table 5 to this dataset.
The resulting dataset containing only metadata is uploaded at https://hf.co/datasets/big
code/commitpackmeta. As the activity dataset only contains commit ids without the actual code
changes, we scrape the code from GitHub. We use the metadata and the GitHub API to scrape the
changed file prior and after the respective commit. Some repositories referenced in the activity data
are no longer accessible, thus we discard them. This results in COMMITPACK with approximately 4
terabytes uploaded at https://hf.co/datasets/bigcode/commitpack.

Description Details
License Only keep samples licensed as MIT, Artistic-2.0, ISC, CC0-1.0, EPL-1.0, MPL-

2.0, Apache-2.0, BSD-3-Clause, AGPL-3.0, LGPL-2.1, BSD-2-Clause or with-
out license.

Length Only keep code where the commit message has at least 5 and at most 10,000
characters

Noise Remove code where the lowercased commit message is any of ’add files via
upload’, "can’t you see i’m updating the time?", ’commit’, ’create readme.md’,
’dummy’, ’first commit’, ’heartbeat update’, ’initial commit’, ’mirroring from
micro.blog.’, ’no message’, ’pi push’, ’readme’, ’update’, ’updates’, ’update
_config.yaml’, ’update index.html’, ’update readme.md’, ’update readme’, ’up-
dated readme’, ’update log’, ’update data.js’, ’update data.json’, ’update data.js’,
’pi push’ or starts with ’merge’

Single file Remove samples that contain changes across multiple files
Opt-out Remove samples from repositories owned by users that opted out of The

Stack (Kocetkov et al., 2022)

Table 5: COMMITPACK filters.

COMMITPACKFT Prior work has shown the importance of careful data filtering to maintain
quality (Yin et al., 2018; Dhole et al., 2021; Laurençon et al., 2022; Longpre et al., 2023b; Singh
et al., 2024). To create a smaller version focused on commits that resemble high-quality instructions,
we further filter COMMITPACK to create COMMITPACKFT using the steps outlined in Table 6.
We also checked for any contamination with HumanEval (Chen et al., 2021) but did not find any
solution or docstring present in COMMITPACKFT. This is likely because our commit data only
goes up to 2016, which is several years prior to the release of HumanEval. Our filters reduce the
dataset by a factor of around 1000 resulting in close to 2 gigabytes across 277 languages. To gain
a deeper understanding of the rich content within COMMITPACKFT, we analyze commits on its
Python subset (56K samples). We first collect the most prevalent commit domain by prompting
GPT-4 with: "I’d like to know the main types of commits on Github and

aim to cover as comprehensively as possible.". Subsequently, we use GPT-4 to
classify each sample using the prompt in Figure 5. The task distribution is visualized in Figure 2.

4https://www.gharchive.org/
5https://github.blog/2016-06-29-making-open-source-data-more-available/

29

https://hf.co/datasets/bigcode/commitpackmeta
https://hf.co/datasets/bigcode/commitpackmeta
https://hf.co/datasets/bigcode/commitpack

OCTOPACK: Instruction Tuning Code Large Language Models

Description Details
Length Remove samples where the before code has more than 50,000 characters
Length Remove samples where the after code has 0 characters
Difference Remove samples where the before and after code are the same (e.g. file name

changes)
Difference Remove samples that contain a hashtag (to avoid references to issues)
Extension Remove samples where the filename of the code after has an atypical extension

for the programming language (e.g. only keep ’.py’ for Python)
Filename Remove samples where the filename is contained in the commit message (as we

do not use the filename in finetuning)
Length Only keep samples where the commit message has more than 10 and less than

1000 characters
Words Only keep samples where the commit message can be split into more than 4 and

less than 1000 space-separated words
Clean Remove any appearances of ’[skip ci]’, ’[ci skip]’, sequences at the beginning

or end that are in brackets, sequences at the beginning that end with ’:’ and strip
whitespace at the beginning or end

Capitalized Only keep samples where the message starts with an uppercase letter
Tokens Only keep samples where the concatenation of the code before, a special token

and the code after has at least 50 tokens and at most 768 tokens according to
the StarCoder tokenizer

Instructions Only keep samples where the lowercased commit message starts with any of
the words in Table 7

Noise Remove samples where the lowercased commit message contains any of ’auto
commit’, ’update contributing’, ’<?xml’, ’merge branch’, ’merge pull request’,
’signed-off-by’, "fix that bug where things didn’t work but now they should",
"put the thingie in the thingie", "add a beter commit message", "code review",
"//codereview", "work in progress", "wip", "https://", "http://", "| leetcode",
"cdpcp", " i ", "i’ve" , "i’m" or both "thanks to" and "for"

Regex Remove samples where the lowercased commit message has a match for
any of the regular expressions (?:v)?\d+\.\d+\.\d+(?=$|\S),
^[a-f0-9]+(?:-[a-f0-9]+)*$, ([a-f0-9]{40}),
issue\s*\d+, bug\s*\d+ or feature\s*\d+

Downsample With 90% probability remove samples where the commit message starts with
"Bump", "Set version" or "Update version"

Table 6: COMMITPACKFT filters applied to COMMITPACK. With the commit message we refer
to the commit message subject only, not the body.

30

OCTOPACK: Instruction Tuning Code Large Language Models

"abort’, ’accelerate’, ’access’, ’accumulate’, ’add’, ’address’, ’adjust’, ’advance’, ’align’, ’al-
lot’, ’allow’, ’amplify’, ’annotate’, ’append’, ’apply’, ’archive’, ’arrange’, ’attach’, ’augment’,
’automate’, ’backup’, ’boost’, ’break’, ’bring’, ’brush up’, ’build’, ’bump’, ’call’, ’change’,
’check’, ’choose’, ’clarify’, ’clean’, ’clear’, ’clone’, ’comment’, ’complete’, ’compress’, ’con-
catenate’, ’configure’, ’connect’, ’consolidate’, ’convert’, ’copy’, ’correct’, ’cover’, ’create’,
’customize’, ’cut’, ’deal with’, ’debug’, ’decipher’, ’declare’, ’decommission’, ’decomplexify’,
’decompress’, ’decrease’, ’decrypt’, ’define’, ’delete’, ’deploy’, ’designate’, ’destroy’, ’detach’,
’determine’, ’develop’, ’diminish’, ’disable’, ’discard’, ’disentangle’, ’dismantle’, ’divide’,
’document’, ’downgrade’, ’drop’, ’duplicate’, ’edit’, ’embed’, ’emphasize’, ’enable’, ’encrypt’,
’enforce’, ’enhance’, ’enlarge’, ’enumerate’, ’eradicate’, ’escalate’, ’establish’, ’exclude’,
’exit’, ’expand’, ’expedite’, ’expire’, ’extend’, ’facilitate’, ’fix’, ’format’, ’gather’, ’generalize’,
’halt’, ’handle’, ’hasten’, ’hide’, ’implement’, ’improve’, ’include’, ’increase’, ’increment’,
’indent’, ’index’, ’inflate’, ’initialize’, ’insert’, ’install’, ’integrate’, ’interpolate’, ’interrupt’,
’introduce’, ’isolate’, ’join’, ’kill’, ’leverage’, ’load’, ’magnify’, ’maintain’, ’make’, ’man-
age’, ’mark’, ’mask’, ’mend’, ’merge’, ’migrate’, ’modify’, ’monitor’, ’move’, ’multiply’,
’normalize’, ’optimize’, ’orchestrate’, ’order’, ’package’, ’paraphrase’, ’paste’, ’patch’, ’plug
’, ’prepare’, ’prepend’, ’print’, ’provision’, ’purge’, ’put’, ’quit’, ’raise’, ’read’, ’reannotate’,
’rearrange’, ’rebase’, ’reboot’, ’rebuild’, ’recomment’, ’recompile’, ’reconfigure’, ’reconnect’,
’rectify’, ’redact’, ’redefine’, ’reduce’, ’refactor’, ’reformat’, ’refresh’, ’reimplement’, ’rein-
force’, ’relocate’, ’remove’, ’rename’, ’reorder’, ’reorganize’, ’repackage’, ’repair’, ’rephrase’,
’replace’, ’reposition’, ’reschedule’, ’reset’, ’reshape’, ’resolve’, ’restructure’, ’return’, ’revert’,
’revise’, ’revoke’, ’reword’, ’rework’, ’rewrite’, ’rollback’, ’save’, ’scale’, ’scrub’, ’secure’,
’select’, ’send’, ’set’, ’settle’, ’simplify’, ’solve’, ’sort’, ’speed up’, ’split’, ’stabilize’, ’standard-
ize’, ’stipulate’, ’stop’, ’store’, ’streamline’, ’strengthen’, ’structure’, ’substitute’, ’subtract’,
’support’, ’swap’, ’switch’, ’synchronize’, ’tackle’, ’tag’, ’terminate’, ’test’, ’throw’, ’tidy’,
’transform’, ’transpose’, ’trim’, ’troubleshoot’, ’truncate’, ’tweak’, ’unblock’, ’uncover’,
’undo’, ’unify’, ’uninstall’, ’unplug’, ’unpublish’, ’unravel’, ’unstage’, ’unsync’, ’untangle’,
’unwind’, ’update’, ’upgrade’, ’use’, ’validate’, ’verify’, ’watch’, ’watermark’, ’whitelist’,
’withdraw’, ’work’, ’write"

Table 7: Commit message starting words allowed in COMMITPACKFT.

Please categorize the following commit message, which may fall into more than one category.

Category
Bug fixes, New features, Refactoring/code cleanup, Documentation, Testing, User interface,
Dependencies, Configuration, Build system/tooling, Performance improvements, Formatting/Linting,
Security, Technical debt repayment, Release management, Accessibility, Deprecation, Logging/In-
strumentation, Internationalization

Commit Message
Add the blacklist checking to the bulk

Classification
Bug fixes, New features

Commit Message
{COMMIT_MESSAGE}
Classification

Figure 5: GPT-4 1-shot prompt for classifying commits in COMMITPACKFT.

31

OCTOPACK: Instruction Tuning Code Large Language Models

xP3x We use a subset of xP3x (Muennighoff et al., 2022b) focusing on code datasets consisting of
APPS (Hendrycks et al., 2021), CodeContests (Li et al., 2022b), Jupyter Code Pairs,6 MBPP (Austin
et al., 2021), XLCoST (Zhu et al., 2022), Code Complex (Jeon et al., 2022), Docstring Corpus
(Barone & Sennrich, 2017), Great Code (Hellendoorn et al., 2019) and State Changes.7

OASST We reuse a filtered variant of OASST (Köpf et al., 2023) from prior work (Dettmers et al.,
2023) and apply additional filters to remove responses that refuse to comply with the user request. To
compute the programming languages and code fraction for OASST depicted in Table 1, we count all
responses containing e.g. ‘‘‘python or ‘‘‘py for the Python programming language. There are
code samples that are not enclosed in backticks or do not specify the language, thus we are likely
underestimating the actual fraction of code data for OASST in Table 1.

E COMPARING DATA BEFORE AND AFTER FILTERING

In Table 8 we compare word statistics prior to and after filtering COMMITPACK to create COMMIT-
PACKFT. The mean commit subject and message length increases suggesting that messages are more
informative in COMMITPACKFT. The code lengths decrease significantly as we limit the number of
allowed tokens in the filters in Table 6. This is intended, as we would like to maximize the amount
of training signal per token. The code before and after the commit are usually largely the same.
By filtering for short samples, we ensure that there are more differences between the code before
and after, thus making the model learn faster. The percentage of code changed between pre- and
post-commit is 77.6/59.1 = 1.31 (a 31% increase) as opposed to 3269.8/3269.9 = 1.007 (a 0.7%
increase). Thus, the filtered data carries significantly more signal per token with fewer repetitions of
the code prior to the commit.

Metric Before Filter After Filter Difference

Subject Length (words) 5.7±0.02 6.9±0.01 +1.28
Message Length (words) 8.7±0.06 9.9±0.05 +1.34
Pre-Commit Code Length (words) 3269.9±298.8 59.1±0.19 -3210.9
Post-Commit Code Length (words) 3269.8±299.5 77.6±0.23 -3214.2

Table 8: The effect of data filters on subject, message, and code lengths. We compare differences
in word statistics of COMMITPACK and COMMITPACKFT.

F COMPARING COMMITPACK AND THE STACK

In Table 9 we provide statistics on repositories and usernames of COMMITPACK and The Stack (Ko-
cetkov et al., 2022). COMMITPACK contains a total of 1,934,255 repositories. Around half (49.3%) of
them are also in The Stack. However, The Stack only provides the raw code files of these repositories
from some fixed point in time. COMMITPACK contains the changes made to the code files in the form
of commits. Thus, the same code file may appear multiple times in COMMITPACK for each change
that was made to it. Therefore, The Stack only contains 3 terabytes of data, while COMMITPACK
contains close to 4.

Statistic (#) COMMITPACK The Stack 1.2 Shared Shared (%)

Repositories 1,934,255 18,712,378 954,135 49.3%
Usernames 825,885 6,434,196 663,050 80.3%

Table 9: Overlap in repositories and usernames of COMMITPACK and The Stack.

6
https://hf.co/datasets/codeparrot/github-jupyter-text-code-pairs

7
https://hf.co/datasets/Fraser/python-state-changes

32

https://hf.co/datasets/codeparrot/github-jupyter-text-code-pairs
https://hf.co/datasets/Fraser/python-state-changes

OCTOPACK: Instruction Tuning Code Large Language Models

G PRETRAINING ON COMMITPACK

Due to the scale of COMMITPACK, it is also adequate as a large-scale pretraining dataset. We
have included parts of COMMITPACK during the pretraining of StarCoder (Li et al., 2023b) in the
format of <commit_before>code_before<commit_msg>message<commit_after>
code_after. We also pretrain a new model, named SANTACODERPACK, with the same architec-
ture as SantaCoder (Allal et al., 2023) on COMMITPACK using this format. We filter COMMITPACK
for our six evaluation languages and samples that fit within 8192 tokens leaving us a total of 35B
tokens. Following prior work (Muennighoff et al., 2023), we train on this data repeated close to 4
times for a total of 131B tokens taking 14 days. Detailed hyperparameters are in Appendix P.

In Table 10, we benchmark StarCoder and SANTACODERPACK on HUMANEVALFIX using the
above-detailed commit format. We find that the commit format leads to very strong performance
for StarCoder often surpassing the instruction tuned OCTOCODER from Table 2. However, this
pretraining format is not suitable for HUMANEVALEXPLAIN limiting its universality. For SAN-
TACODERPACK, we find performance comparable to SantaCoder, including checkpoints at 131B
and 236B tokens. SANTACODERPACK performs slightly worse on Python than SantaCoder. We
hypothesize that this discrepancy is due to a multilingual tax, as SANTACODERPACK needs to
accommodate three additional coding languages (Go, C++ and Rust). SantaCoder has thus more
capacity allocated to Python, JavaScript, and Java.

SANTACODERPACK may also be bottlenecked by its small model size of 1.1B parameters. More
research into what exactly happens during pretraining (Xia et al., 2022; Biderman et al., 2023a) and
how to unify pretraining and instruction tuning are needed. Prior work has also found that including
raw code data during pretraining benefits some natural language tasks (Muennighoff et al., 2023;
Soldaini et al., 2024; Groeneveld et al., 2024). Future work may consider the effects of including
code commit data on natural language tasks.

Model (#) Python JavaScript Java Go C++ Rust Avg.
SantaCoder (131B tokens) Instruct Format 6.5 4.2 2.9 - - - -
SantaCoder (236B tokens) Instruct Format 7.1 4.2 1.8 - - - -
SANTACODERPACK (131B tokens) Commit Format 3.2 4.9 1.8 3.6 4.2 1.7 3.3

StarCoder Commit Format 32.7 33.6 33.0 31.9 31.6 20.2 30.5

Table 10: Zero-shot pass@1 (%) performance on HUMANEVALFIX of pretraining experiments.

H HUMANEVALPACK STATISTICS

Table 11 displays statistics of HUMANEVALPACK. Docstrings are largely the same across languages
leading to similar statistics except for Rust. As Rust is already a very verbose language as seen by
its maximum solution length in Table 11, we do not include examples of how to call the function at
the end of its docstrings (see Python docstrings with examples in e.g. Figure 11). Rust also has type
annotations for every function so providing these examples is not as needed as it is for e.g. JavaScript
which lacks type annotations.

Statistic (#) Python JavaScript Java Go C++ Rust
Docstring Avg. Length (chars) 354 352 357 365 352 231
Docstring Min. Length (chars) 56 56 56 56 56 23
Docstring Max. Length (chars) 1207 1207 1211 1207 1207 1067

Solution Avg. Length (chars) 181 234 259 354 295 339
Solution Min. Length (chars) 16 19 18 29 17 17
Solution Max. Length (chars) 864 1325 1399 1333 1144 2157

Table 11: Statistics of HUMANEVALPACK computed across the 164 samples for each language.

33

OCTOPACK: Instruction Tuning Code Large Language Models

I FULL INSTRUCTION DATA ABLATIONS

We provide tabular results of the ablations from Figure 4 in Table 12. We
try some additional mixtures, however, none of them perform better than COM-
MITPACKFT + OASST. We experiment with changing the formatting to be
<commit_before>old code<commit_msg>message<commit_after>new code for
COMMITPACKFT and <commit_before><commit_msg>input<commit_after>output
for OASST referred to as the "Formatting" ablation. We hypothesized that aligning the formatting
during instruction tuning with the commit format that we used during pretraining (Appendix G)
would improve performance. While it seems to improve performance for HUMANEVALFIX
compared to our default formatting (see Figure 18), it reduces performance on the other tasks leading
to a worse average score of 35.3 in Table 12. "Target Loss" refers to an ablation where we mask
loss for inputs as is commonly done during instruction tuning (Muennighoff et al., 2022b). While
this leads to the best performance on HUMANEVALSYNTHESIZE, its average performance is worse
compared to COMMITPACKFT + OASST, where the loss is computed over the full sequence. We
also perform an ablation where we manually select 1178 high-quality samples (725 from OASST and
89, 61, 86, 72, 70 and 75 from COMMITPACKFT for Python, JavaScript, Java, Go, C++ and Rust,
respectively). However, this manual selection did not outperform random selection for OCTOCODER.
It performed better for OCTOGEEX, however, hence we used it for OCTOGEEX. We hypothesize that
our models could achieve significantly better performance by further improving the quality of the
instruction data beyond. This may necessitate very careful human selection of samples and manual
editing of the data to ensure a uniform style in the outputs. We leave such explorations to future work.

HUMANEVALPACK Python
Instruction Tuning Dataset (#) Fix Explain Synthesize Average
Without instruction tuning 8.7 0.0 33.6 14.1

Self-Instruct (SI) 23.6 0.6 43.0 22.2
OASST 23.1 34.5 46.4 34.7
SI + OASST 24.9 28.7 46.2 33.3
xP3x + OASST 28.4 28.4 45.0 33.9
COMMITPACKFT + OASST 30.4 35.1 46.2 37.2
COMMITPACKFT + OASST (Formatting) 31.1 28.9 45.8 35.3
COMMITPACKFT + OASST (Target loss) 29.8 31.2 47.8 36.3
COMMITPACKFT + OASST (Manual) 27.2 29.6 45.8 34.2
COMMITPACKFT + xP3x + OASST 30.9 29.5 45.9 35.4
COMMITPACKFT + SI + xP3x + OASST 31.4 33.8 46.0 37.1

Table 12: Zero-shot pass@1 (%) performance across the Python split of HUMANEVALPACK for
StarCoder instruction tuning data ablations.

J LINE DIFF FORMAT FOR FIXING CODE

We finetune SantaCoder to experiment with different formatting strategies for fixing bugs comparing
full code generation and code diff generation. When fixing a code bug, usually only a small part of
the code needs to change. Only generating the code diff corresponding to the necessary change can
make inference significantly more efficient by avoiding repeated characters in the output generation.
We finetune SantaCoder on the Python, Java and JavaScript subset of COMMITPACKFT. We exclude
other languages as SantaCoder has only been pretrained on these three languages (Allal et al., 2023).

Commit Format For full code generation, we reuse the format that we employed for commits in
StarCoder pretraining from Appendix G: <commit_before>code_before<commit_msg>
message<commit_after>code_after. However, SantaCoder has not seen this format during
pretraining and does not have special tokens like StarCoder for the delimiters. Thus, for SantaCoder
e.g. <commit_before> is tokenized as [’<’, ’commit’, ’_’, ’before’, ’>’].

34

OCTOPACK: Instruction Tuning Code Large Language Models

Unified diff format For code diff generation, a simple solution is using the unified diff format,8
which is a standard way to display changes between code files in a compact and readable format
(Lehman et al., 2022; Jung, 2021; Xu et al., 2022b; Monperrus et al., 2021). We depict an example of
this format in Figure 6. However, the unified diff format still requires the model to output several
unchanged lines below and after the actual modification. Thus, its efficiency gains are limited and
there is still unnecessary duplication of the input.

from typing import List

def has_close_elements(numbers: List[float],
threshold: float) -> bool:
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers)
:

if idx != idx2:

distance = elem - elem2

if distance < threshold:

return True

return False

from typing import List

def has_close_elements(numbers: List[float],
threshold: float) -> bool:
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers)
:

if idx != idx2:

distance = abs(elem - elem2)

if distance < threshold:

return True

return False

@@ -4,7 +4,7 @@

for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):

if idx != idx2:

- distance = elem - elem2

+ distance = abs(elem - elem2)

if distance < threshold:

return True

Figure 6: The first problem from the HUMANEVALFIX Python split and the necessary change
to fix the bug in unified diff format. Top: Code with and without the bug from Figure 11. Bottom:
Necessary change to fix the bug in unified diff format.

- 7 distance = elem - elem2

+ 7 distance = abs(elem - elem2)

Figure 7: The line diff format for the problem from Figure 6.

Line diff format To address the inefficiencies of the unified diff format, we propose the line diff
format for representing code differences. There are two requirements for our format: (1) The diff
can be unambiguously applied to the code before the commit to generate the code after the commit,
and (2) the code diff should be as short as possible to maximize efficiency by avoiding the inclusion
of unchanged code. In Figure 7, we show how our format addresses these. The line diff format
keeps track of each change sequentially line-by-line to ensure the code can be correctly modified.
By focusing only on the lines that change, we reduce the number of characters in the diff by 70%
compared to the unified diff representation in Figure 6.

Both the unified diff format and our line diff format require the model to predict line numbers.
This is very challenging when training on raw code as models need to count and keep track of line
numbers. To simplify line number prediction, we automatically add line numbers to the raw code in
the finetuning dataset for the line diff format. This allows the model to simply copy the line number
into the output simplifying the diff generation. However, it diminishes efficiency slightly by adding
additional input tokens that the model needs to process.

As summarized in Table 13, finetuning SantaCoder using the line diff format significantly improves
performance compared to prior finetuning on HUMANEVALFIX across all languages. It also out-
performs finetuning using the commit format, which only provides gains on JavaScript and Java
compared to no finetuning. However, finetuning on the diff format may converge slower than the
commit format as the diff format significantly differs from the raw code seen during pretraining.

8
https://en.wikipedia.org/wiki/Diff#Unified_format

35

https://en.wikipedia.org/wiki/Diff#Unified_format

OCTOPACK: Instruction Tuning Code Large Language Models

Figures 8, 9, 10 show line diff generations of our model. A limitation of our current line diff im-
plementation is that it does not handle code insertion well. The inserted lines may change the line
numbers of all following lines, which can result in problems when applying the diff. Further, the
diff format is not useful for HUMANEVALEXPLAIN and HUMANEVALSYNTHESIZE. Future work
could consider training models that can both be instructed to use the line diff format, such as for
HUMANEVALFIX, but also explain or synthesize code without producing a diff.

Model Python JavaScript Java
SantaCoder 7.1 4.2 1.8
SantaCoder + Commit format finetuning 3.8 5.3 9.2
SantaCoder + Line diff format finetuning 9.9 9.7 10.0

Table 13: Zero-shot pass@1 (%) performance on HUMANEVALFIX of SantaCoder formatting
experiments.

- 3 let depth = 0, max_depth = 0;

+ 3 let depth = 0, max_depth = 1;

- 12 return max_depth;

+ 12 return max_depth - 1;

- 14 return paren_string.split(’ ’)

- 15 .filter(x => x != ’’)

- 16 .map(x => parseParenGroup(x));

- 17 }

+ 14 let paren_list = paren_string.split(’ ’);

+ 15 let nested_parens = paren_list.map(x => parseParenGroup(x));

+ 16 return nested_parens.reduce((prev, curr) => {

+ 17 if (prev == 0) {

+ 18 return curr;

+ 19 } else {

+ 20 return curr - 1;

+ 21 }

+ 22 });

+ 23 }

Figure 8: A line diff generation of our model on a JavaScript HUMANEVALFIX problem.

- 18 if (current_depth < 0) {

+ 18 if (current_depth < 0 && current_string.length() > 0) {

Figure 9: A line diff generation of our model on a Java HUMANEVALFIX problem.

36

OCTOPACK: Instruction Tuning Code Large Language Models

- 2 for i, l1 in enumerate(l):
- 3 for j in range(i, len(l)):
+ 2 for i in range(0, len(l)):
+ 3 for j in range(i+1, len(l)):

Figure 10: A line diff generation of our model on a Python HUMANEVALFIX problem.

K RESULTS ON HUMANEVALFIXDOCS

The default version of HUMANEVALFIX does not include docstrings, but only provides the unit tests
to the model alongside the buggy function. An alternative is providing docstrings as the source of
ground truth for the model to fix the buggy function. Solving from docstrings is generally easier for
models than from tests, as models can also solve it via pure code synthesis without looking at the
buggy function at all. We provide results of some models on this variant in Table 14. For StarCoder,
we distinguish two prompting formats: An instruction to fix bugs like in Figure 3 or the commit
format it has seen during pretraining (Appendix G). OCTOCODER performs strongly on this variant.
However, directly using StarCoder with the commit format from pretraining (Appendix G) is slightly
better. This is in line with the commit format from pretraining also performing slightly better on
HUMANEVALFIX in Table 10 compared to OCTOCODER in Table 2. Diff Codegen 2B (Bradley et al.,
2023) performs poorly as its predicted code diffs are often irrelevant to the actual bug, see Figure 39.

Model Python JavaScript Java Go C++ Rust Avg.

Non-permissive models

GPT-4 88.4 80.5 82.9 81.1 82.3 68.9 80.7

Permissive Models

Diff Codegen 2B 0.0 0.1 0.0 0.3 0.0 0.2 0.1
StarCoder Commit Format 58.8 49.2 43.9 55.2 51.5 41.8 50.1
StarCoder Instruct Format 41.7 30.7 44.3 34.5 28.7 14.0 26.5
OCTOCODER 53.8 48.1 54.3 54.9 49.2 32.1 48.7

Table 14: Zero-shot pass@1 (%) performance on HUMANEVALFIXDOCS.

L HUMANEVALFIX BUG TYPES

Table 15 contains an overview of bugs that were manually added by one of the authors to HumanEval
solutions for the construction of HUMANEVALFIX. Figures 11-16 contain an example of each type
from the Python split. The bug type for each problem is the same across all programming languages
in HUMANEVALFIX, but for a few samples it affects a different part of the solution due to the code
solutions not being perfectly parallel across languages.

Bug type Subtype Explanation Example Count

Missing logic Misses code needed to solve the problem Figure 11 33
Excess logic Contains excess code leading to mistakes Figure 12 31

Wrong logic

Value misuse An incorrect value is used Figure 13 44
Operator misuse An incorrect operator is used Figure 14 25
Variable misuse An incorrect variable is used Figure 15 23
Function misuse An incorrect function is used Figure 16 8

Total 164

Table 15: HUMANEVALFIX bug types.

37

OCTOPACK: Instruction Tuning Code Large Language Models

from typing import List

def has_close_elements(numbers: List[float
], threshold: float) -> bool:
""" Check if in given list of numbers,

are any two numbers closer to
each other than

given threshold.
>>> has_close_elements([1.0, 2.0,

3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0,

4.0, 5.0, 2.0], 0.3)
True
"""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(
numbers):

if idx != idx2:

distance = abs(elem -

elem2)

if distance < threshold:

return True

return False

from typing import List

def has_close_elements(numbers: List[float
], threshold: float) -> bool:
""" Check if in given list of numbers,

are any two numbers closer to
each other than

given threshold.
>>> has_close_elements([1.0, 2.0,

3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0,

4.0, 5.0, 2.0], 0.3)
True
"""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(
numbers):

if idx != idx2:

distance = elem - elem2

if distance < threshold:

return True

return False

Figure 11: Missing logic bug example. The buggy code (right) misses the ’abs’ statement.

def truncate_number(number: float) ->

float:
""" Given a positive floating point

number, it can be decomposed into
and integer part (largest integer

smaller than given number) and
decimals

(leftover part always smaller than 1).

Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0

def truncate_number(number: float) ->

float:
""" Given a positive floating point

number, it can be decomposed into
and integer part (largest integer

smaller than given number) and
decimals

(leftover part always smaller than 1).

Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0 + 1.0

Figure 12: Excess logic bug example. The buggy code (right) incorrectly adds 1 to the result.

from typing import List, Tuple

def sum_product(numbers: List[int]) ->

Tuple[int, int]:
""" For a given list of integers,

return a tuple consisting of a
sum and a product of all the
integers in a list.

Empty sum should be equal to 0 and
empty product should be equal to
1.

>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24)
"""
sum_value = 0

prod_value = 1

for n in numbers:

sum_value += n

prod_value *= n

return sum_value, prod_value

from typing import List, Tuple

def sum_product(numbers: List[int]) ->

Tuple[int, int]:
""" For a given list of integers,

return a tuple consisting of a
sum and a product of all the
integers in a list.

Empty sum should be equal to 0 and
empty product should be equal to
1.

>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24)
"""
sum_value = 0

prod_value = 0

for n in numbers:

sum_value += n

prod_value *= n

return sum_value, prod_value

Figure 13: Value misuse bug example. The buggy code (right) incorrectly initializes the product to
0.

38

OCTOPACK: Instruction Tuning Code Large Language Models

from typing import List

def below_zero(operations: List[int]) ->

bool:
""" You’re given a list of deposit and

withdrawal operations on a bank
account that starts with

zero balance. Your task is to detect
if at any point the balance of
account fallls below zero, and

at that point function should return
True. Otherwise it should return
False.

>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
"""
balance = 0

for op in operations:

balance += op

if balance < 0:

return True

return False

from typing import List

def below_zero(operations: List[int]) ->

bool:
""" You’re given a list of deposit and

withdrawal operations on a bank
account that starts with

zero balance. Your task is to detect
if at any point the balance of
account fallls below zero, and

at that point function should return
True. Otherwise it should return
False.

>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
"""
balance = 0

for op in operations:

balance += op

if balance == 0:

return True

return False

Figure 14: Operator misuse bug example. The buggy code (right) incorrectly checks for equality
with 0.

from typing import List

def mean_absolute_deviation(numbers: List[

float]) -> float:
""" For a given list of input numbers,

calculate Mean Absolute
Deviation

around the mean of this dataset.
Mean Absolute Deviation is the average

absolute difference between each
element and a centerpoint (mean in

this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation([1.0, 2.0,

3.0, 4.0])
1.0
"""
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in

numbers) / len(numbers)

from typing import List

def mean_absolute_deviation(numbers: List[

float]) -> float:
""" For a given list of input numbers,

calculate Mean Absolute
Deviation

around the mean of this dataset.
Mean Absolute Deviation is the average

absolute difference between each
element and a centerpoint (mean in

this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation([1.0, 2.0,

3.0, 4.0])
1.0
"""
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in

numbers) / mean

Figure 15: Variable misuse bug example. The buggy code (right) incorrectly divides by the mean.

def flip_case(string: str) -> str:
""" For a given string, flip lowercase

characters to uppercase and
uppercase to lowercase.

>>> flip_case(’Hello’)
’hELLO’
"""
return string.swapcase()

def flip_case(string: str) -> str:
""" For a given string, flip lowercase

characters to uppercase and
uppercase to lowercase.

>>> flip_case(’Hello’)
’hELLO’
"""
return string.lower()

Figure 16: Function misuse bug example. The buggy code (right) incorrectly uses the ’lower()’
function.

39

OCTOPACK: Instruction Tuning Code Large Language Models

M PERFORMANCE BREAKDOWN BY HUMANEVALFIX BUG TYPE

All bugs in HUMANEVALFIX are categorized into bug types as described in Appendix L. In Table 16,
we break down the HUMANEVALFIX performance of select models from Table 2 by bug type.
We find that models struggle most with bugs that require removing excess logic (e.g. Figure 12).
WizardCoder is only able to solve 11% of excess logic bugs while solving about four times more
bugs that relate to value misuse. The performance of OCTOGEEX and OCTOCODER is more stable
than WizardCoder across the different bug types, possibly due to the diversity of COMMITPACKFT
as displayed in Figure 2. GPT-4 performs best across all bug types.

Bug type Subtype OCTOGEEX OCTOCODER WizardCoder GPT-4

Missing logic 24.2 24.4 31.2 45.5
Excess logic 16.3 16.9 11.0 38.7

Wrong logic

Value misuse 33.2 34.7 45.1 50.0
Operator misuse 32.8 42.0 34.4 56.0
Variable misuse 35.7 33.7 30.4 43.5
Function misuse 25.0 37.5 37.5 50.0

Overall 28.1 30.4 31.8 47.0

Table 16: Breakdown of HUMANEVALFIX Python pass@1 (%) performance by bug type for
select models. Statistics for each bug type are in Table 15.

N HUMANEVALEXPLAIN WITH FILL-IN-THE-MIDDLE

In Table 2, all models are prompted with the same instruction to provide an explanation (but using
slightly different formats, see Appendix Q). For StarCoder, we can alternatively prompt it with the Fill-
in-the-Middle (FIM) technique (Bavarian et al., 2022), which it already knows from pretraining (Li
et al., 2023b). To do so, we provide it with a prompt as shown in Figure 17 to generate the docstring.
While a docstring is not necessarily an explanation, it can be similar. The results in Table 17 show
that it performs significantly better with this prompting strategy than in Table 2. However, it still falls
short of OCTOCODER and other models likely due to the imperfect approximation of an explanation.

<fim_prefix>from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" <fim_suffix>
"""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)

if distance < threshold:

return True

return False<fim_middle>

Figure 17: FIM prompt example for StarCoder.

Model Python JavaScript Java Go C++ Rust Avg.
StarCoder FIM 19.4 17.6 16.3 11.8 17.9 16.7 16.6

Table 17: Performance of StarCoder on HUMANEVALEXPLAIN with FIM.

40

OCTOPACK: Instruction Tuning Code Large Language Models

O HUMANEVALEXPLAIN BLEU AND METEOR COMPARISON

By default, we use pass@k to evaluate HUMANEVALEXPLAIN (§3). In Table 18 we compare it
with BLEU (Papineni et al., 2002) and METEOR (Banerjee & Lavie, 2005). While our pass@k
formulation does not require a ground truth explanation, BLEU and METEOR do. This can be a
limiting factor. For this evaluation, we use the function docstrings as the ground-truth explanation to
compute the BLEU and METEOR scores. We compute BLEU and METEOR for each of the n = 20
generations (3) and select the highest score. The scores are then averaged across the 164 samples
for each language. Rust scores are the highest which is likely due to Rust docstrings containing no
example function calls (Appendix H).

Metric (#) Python JavaScript Java Go C++ Rust Avg.
pass@1 35.1 24.5 27.3 21.1 24.1 14.8 24.5
BLEU-1 7.1 7.0 6.3 6.1 6.4 8.1 6.8
BLEU-2/3/4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
METEOR 7.8 7.6 7.2 7.4 7.0 9.4 7.7

Table 18: Comparison of different metrics for HUMANEVALEXPLAIN on explanations by
OCTOCODER. Pass@1 is computed with respect to a generated solution given the explanation (§3)
while BLEU and METEOR are computed by comparing the explanation with the docstring.

P HYPERPARAMETERS

StarCoder finetuning (OCTOCODER) For all experiments finetuning StarCoder, we use a learning
rate of 5e-4 with a cosine schedule and linear warmup. We use a batch size of 32 and train for up to
one epoch, as we did not observe benefits from more steps. OCTOCODER was trained for 35 steps
with a sequence length of 2048 and packing corresponding to 2.2 million total finetuning tokens.
We use LoRA (Hu et al., 2021) as we did not observe a significant difference from full finetuning.
Follow-up work has further investigated this choice (Zhuo et al., 2024).

CodeGeeX finetuning (OCTOGEEX) To create OCTOGEEX, we finetune CodeGeeX2 for 35
steps with a batch size of 48 and a learning rate of 5e-5 largely following the OCTOCODER setup.

SantaCoder finetuning For all experiments finetuning SantaCoder, we use a learning rate of 5e-5
with a cosine schedule and linear warmup. We finetune SantaCoder using a batch size of 64 for up to
200,000 steps.

SantaCoder pretraining (SANTACODERPACK) We follow the setup from Allal et al. (2023) to
pretrain on COMMITPACK except for using a sequence length of 8192 and the StarCoder tokenizer,
which has special tokens for the commit format delimiters (see Appendix G). SANTACODERPACK
utilizes Multi Query Attention (MQA) (Shazeer, 2019) but removes Fill-in-the-Middle (FIM) (Bavar-
ian et al., 2022). We conducted pretraining on 32 A100 GPUs, totaling 250k training steps, with a
global batch size of 64. Other hyperparameter settings follow SantaCoder, including using Adam
with �1 = 0.9,�2 = 0.95, ✏ = 10�8, and a weight decay of 0.1. The learning rate is set to 2⇥ 10�4

and follows a cosine decay after warming up for 2% of the training steps.

Q PROMPTS

The prompting format can significantly impact performance. In the spirit of true few-shot learn-
ing (Perez et al., 2021) we do not optimize prompts and go with the format provided by the respective
model authors or the most intuitive format if none is provided. For each task, we define an instruction,
an optional context and an optional function start (Table 19). The function start is provided to make
sure the model directly completes the function without having to search for the function in the model
output. These three parts are then combined in slightly different ways for each model (Figures 18-24).
We implement our evaluation using open-source frameworks (Ben Allal et al., 2022; Gao et al., 2021).

41

OCTOPACK: Instruction Tuning Code Large Language Models

HUMANEVALFIX

Instruction Fix bugs in has_close_elements.

Context from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = elem - elem2

if distance < threshold:

return True

return False

Function start from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

HUMANEVALEXPLAIN

Instruction
(Describe)

Provide a concise natural language description of the code using at most
213 characters.

Context
(Describe)

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)

if distance < threshold:

return True

return False

Instruction
(Synthesize)

Write functional code in Python according to the description.

Context
(Synthesize)

{Description generated by the model}

Function start
(Synthesize)

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

HUMANEVALSYNTHESIZE

Instruction Write a Python function ‘has_close_elements(numbers: List[float], thresh-
old: float) -> bool‘ to solve the following problem:
Check if in given list of numbers, are any two numbers closer to each other
than given threshold.
»> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
»> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

Function start from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer

to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

Table 19: Instructions and function examples used. If no function start or no context is present,
that part is not added to the prompt (and the preceding newline is also removed).

42

OCTOPACK: Instruction Tuning Code Large Language Models

Question: {instruction}
{context}

Answer:
{function_start}

Figure 18: OCTOCODER and OCTOGEEX prompting format

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
{instruction}
{context}

Response:
{function_start}

Figure 19: WizardCoder prompting format from their codebase.9

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
{instruction}
{context}

Response:{function_start}

Figure 20: InstructCodeT5+ decoder prompting format from their codebase.10 The encoder
receives the same prompt without the function start.

9
https://github.com/nlpxucan/WizardLM/blob/9c6fb34d012d60dc4f31348ee0a8

e35335c04564/WizardCoder/src/humaneval_gen.py#L38

10
https://github.com/salesforce/CodeT5/blob/main/CodeT5%2B/humaneval/gen

erate_codet5p.py#L89

11
https://huggingface.co/HuggingFaceH4/starchat-beta

43

https://github.com/nlpxucan/WizardLM/blob/9c6fb34d012d60dc4f31348ee0a8e35335c04564/WizardCoder/src/humaneval_gen.py#L38
https://github.com/nlpxucan/WizardLM/blob/9c6fb34d012d60dc4f31348ee0a8e35335c04564/WizardCoder/src/humaneval_gen.py#L38
https://github.com/salesforce/CodeT5/blob/main/CodeT5%2B/humaneval/generate_codet5p.py#L89
https://github.com/salesforce/CodeT5/blob/main/CodeT5%2B/humaneval/generate_codet5p.py#L89
https://huggingface.co/HuggingFaceH4/starchat-beta

OCTOPACK: Instruction Tuning Code Large Language Models

<|system|>
<|end|>
<|user|>
{instruction}
{context}<|end|>
<|assistant|>
{function_start}

Figure 21: StarChat-� prompting format from their documentation.11

{context}
{instruction}
{function_start}

Figure 22: Default prompting format (StarCoder, BLOOMZ). Used for Figure 3.

{context}
{instruction}

Figure 23: GPT-4 prompting format. Same as Figure 22 but excluding the function start, as we
found the model would not continue from the provided function start, likely due to the chat mode.

{context}
{instruction}
Start your code with:
{func_start}

Figure 24: GPT-4 prompting format for HUMANEVALEXPLAIN (Synthesize). We include the
function start for the synthesize part of HUMANEVALEXPLAIN in case the function name is not
included in the code description generated by GPT-4.

<NME> {filename}
<BEF> {context}
<MSG> {instruction}
<DFF>

Figure 25: Prompting format for Diff Codegen 2B evaluated in Appendix K.

44

OCTOPACK: Instruction Tuning Code Large Language Models

R EXAMPLES

R.1 OCTOCODER

Input:

Question: Fix bugs in sum_product.
#include<stdio.h>
#include<vector>
using namespace std;

#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<int> sum_product(vector<int> numbers){

int sum=0,product=0;

for (int i=0;i<numbers.size();i++)

{

sum+=numbers[i];

product*=numbers[i];

}

return {sum,product};

}

Answer:
#include<stdio.h>
#include<vector>
using namespace std;

#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<int> sum_product(vector<int> numbers){

OCTOCODER:

int sum=0,product=1;

for (int i=0;i<numbers.size();i++)

{

sum+=numbers[i];

product*=numbers[i];

}

return {sum,product};

}

Figure 26: Correct solution from OCTOCODER to a HUMANEVALFIX C++ problem. The
corresponding Python problem is depicted in Figure 13.

45

OCTOPACK: Instruction Tuning Code Large Language Models

Input:

Question: Write a Java function ‘public String decodeShift(String s)‘ to solve the following problem:
takes as input string encoded with encodeShift function. Returns decoded string.
Answer:
import java.util.*;

import java.lang.*;

class Solution {

/**
returns encoded string by shifting every character by 5 in the alphabet.
*/

public String encodeShift(String s) {

StringBuilder sb = new StringBuilder();

for (char ch : s.toCharArray()) {

sb.append((char) (’a’ + ((ch + 5 - ’a’) % 26)));

}

return sb.toString();

}

/**
takes as input string encoded with encodeShift function. Returns decoded string.
*/

public String decodeShift(String s) {

OCTOCODER:

StringBuilder sb = new StringBuilder();

for (char ch : s.toCharArray()) {

sb.append((char) (’a’ + ((ch - ’a’ - 5) % 26)));

}

return sb.toString();

}

}

Figure 27: Incorrect solution from OCTOCODER to a HUMANEVALSYNTHESIZE Java problem.
The correct solution would be to add 21 to ch instead of subtracting 5 from it.

46

OCTOPACK: Instruction Tuning Code Large Language Models

Input:

Question: Provide a concise natural language description of the code using at most 671 characters.
func FruitDistribution(s string,n int) int {

split := strings.Split(s, " ")

for _, i := range split {

atoi, err := strconv.Atoi(i)

if err != nil {

continue
}

n = n - atoi

}

return n

}

Answer:

OCTOCODER:

The function FruitDistribution takes two arguments, a string s and an integer n. The function splits
the string s into a slice of strings using the space character as the delimiter. The function iterates over
the slice and converts each string to an integer using the strconv.Atoi function. If the conversion is
successful, the integer is subtracted from n. The function returns the value of n after all conversions
have been performed.

Input (without previous input):

Question: Write functional code in Go according to the description.
The function FruitDistribution takes two arguments, a string s and an integer n. The function splits
the string s into a slice of strings using the space character as the delimiter. The function iterates over
the slice and converts each string to an integer using the strconv.Atoi function. If the conversion is
successful, the integer is subtracted from n. The function returns the value of n after all conversions
have been performed.
Answer:
func FruitDistribution(s string,n int) int {

OCTOCODER:

fruits := strings.Split(s, " ")

for _, fruit := range fruits {

if num, err := strconv.Atoi(fruit); err == nil {

n -= num

}

}

return n

}

Figure 28: Correct solution from OCTOCODER to a HUMANEVALEXPLAIN Go problem. Given
its own description OCTOCODER writes a correct solution to the problem. Its solution is more
compact and efficient than the original solution.

47

OCTOPACK: Instruction Tuning Code Large Language Models

R.2 GPT-4

User:

Write a Go function ‘func RescaleToUnit(numbers []float64) []float64‘ to solve the following problem:
Given a list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 1
>>> RescaleToUnit([1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 0.25, 0.5, 0.75, 1.0]

GPT-4:

Here is a Go function that solves the problem:

package main

import (

"fmt"

"math"

)

func RescaleToUnit(numbers []float64) []float64 {

min := numbers[0]

max := numbers[0]

// Find the min and max values in the list
for _, number := range numbers {

if number < min {

min = number

}

if number > max {

max = number

}

}

// Apply the linear transform to each number in the list
for i, number := range numbers {

numbers[i] = (number - min) / (max - min)

}

return numbers

}

func main() {

fmt.Println(RescaleToUnit([]float64{1.0, 2.0, 3.0, 4.0, 5.0}))

}

This function first finds the minimum and maximum values in the list of numbers. Then it applies
the linear transformation to each number in the list. The transformation is ‘(number - min) / (max -
min)‘, which scales the number such that ‘min‘ becomes 0 and ‘max‘ becomes 1. The transformed
numbers are returned in a new list.

Figure 29: Incorrect solution from GPT-4 to a HUMANEVALSYNTHESIZE Go problem. GPT-4
includes an import that it does not use (math) which leads to a compilation error in Golang and thus
the function does not pass the test cases.

48

OCTOPACK: Instruction Tuning Code Large Language Models

User:

Provide a concise natural language description of the code using at most 246 characters.
def truncate_number(number: float) -> float:

return number % 1.0

GPT-4:

The code defines a function that takes a float as input and returns its fractional part by using the
modulus operator with 1.0.

User (without previous conversation history):

The code defines a function that takes a float as input and returns its fractional part by using the
modulus operator with 1.0.
Write functional code in Python according to the description.
Start your code with:
def truncate_number(number: float) -> float:

GPT-4:

def truncate_number(number: float) -> float:
return number % 1.0

Figure 30: Correct solution from GPT-4 to a HUMANEVALEXPLAIN Python problem. GPT-4
writes a description that is significantly shorter than the docstring and thus within the character limit.
It then generates the perfect solution from its own description. The docstring for this problem can be
seen in Figure 12.

49

OCTOPACK: Instruction Tuning Code Large Language Models

User:

fn has_close_elements(numbers:Vec<f32>, threshold: f32) -> bool{
for i in 0..numbers.len(){

for j in 1..numbers.len(){

if i != j {

let distance:f32 = numbers[i] - numbers[j];

if distance < threshold{

return true;
}

}

}

}

return false;

}

def check(has_close_elements):

assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True

assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False

assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True

assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False

assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True

assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True

assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False

check(has_close_elements)

Fix bugs in has_close_elements.

GPT-4:

The function has_close_elements is supposed to check if there are any two elements in the vector that
are closer than a given threshold. However, there are a few issues with the current implementation:
1. The distance calculation is not correct. It should be the absolute difference between the two
numbers, not just the difference.
2. The second loop should start from i+1, not 1. This is because we only need to compare each
number with the numbers after it, not the numbers before it.
Here is the corrected function:
fn has_close_elements(numbers:Vec<f32>, threshold: f32) -> bool{

for i in 0..numbers.len(){

for j in i+1..numbers.len(){

let distance:f32 = (numbers[i] - numbers[j]).abs();

if distance < threshold{

return true;
}

}

}

return false;
}

This function will now correctly check if there are any two elements in the vector that are closer than
the given threshold.

Figure 31: Correct solution from GPT-4 to a HUMANEVALFIX Rust problem. GPT-4 correctly
fixes the bug by adding the necessary ’abs’ statement to compute the absolute value. It additionally
improves the efficiency of the function by starting the inner loop from ’i+1’ instead of 1 like in the
original solution. As some problems in HUMANEVALPACK are not perfectly efficient, evaluating
the ability of models to improve the efficiency of the solutions is another interesting benchmarking
direction (Yetistiren et al., 2022).

50

OCTOPACK: Instruction Tuning Code Large Language Models

User:

def car_race_collision(n: int):
return n**3

def check(car_race_collision):

assert car_race_collision(2) == 4

assert car_race_collision(3) == 9

assert car_race_collision(4) == 16

assert car_race_collision(8) == 64

assert car_race_collision(10) == 100

check(car_race_collision)

Fix bugs in car_race_collision.

GPT-4:

The function car_race_collision seems to be working fine as it is. It takes an integer ’n’ as input and
returns the cube of ’n’. There don’t seem to be any bugs in this function.

However, if the function is supposed to calculate something specific related to a car race
collision and it’s not doing that correctly, we would need more information about the expected
behavior to fix it.

Figure 32: Incorrect solution from GPT-4 to a HUMANEVALFIX Python problem. GPT-4 does
not catch that the test cases expect the function to square, not cube n. OCTOCODER correctly modifies
the 3 to 2 in 6 out of n = 20 generations.

51

OCTOPACK: Instruction Tuning Code Large Language Models

User:

def rounded_avg(n, m):

if m < n:

return -1

summation = 0

for i in range(n, m+1):

summation += i

return bin(round(summation/(m - n)))

def check(rounded_avg):

Check some simple cases
assert rounded_avg(1, 5) == "0b11"

assert rounded_avg(7, 13) == "0b1010"

assert rounded_avg(964,977) == "0b1111001010"

assert rounded_avg(996,997) == "0b1111100100"

assert rounded_avg(560,851) == "0b1011000010"

assert rounded_avg(185,546) == "0b101101110"

assert rounded_avg(362,496) == "0b110101101"

assert rounded_avg(350,902) == "0b1001110010"

assert rounded_avg(197,233) == "0b11010111"

Check some edge cases that are easy to work out by hand.
assert rounded_avg(7, 5) == -1

assert rounded_avg(5, 1) == -1

assert rounded_avg(5, 5) == "0b101"

check(rounded_avg)

Fix bugs in rounded_avg.

GPT-4:

The function rounded_avg is supposed to calculate the average of all numbers between n and m
(inclusive), round it, and then return the binary representation of the result.
There are several bugs in the function:
1. The function should return -1 if m < n, but it should also return -1 if m == n because in this case,
the denominator of the average calculation would be 0, which would cause a division by zero error.
2. The function calculates the average by summing all numbers between n and m and then dividing
by (m - n). However, this is incorrect because the number of integers between n and m (inclusive) is
(m - n + 1), not (m - n).
3. The function uses the bin function to convert the result to binary. However, the bin function returns
a string that starts with ’0b’ to indicate that it is a binary number. If the function is supposed to return
the binary representation as an integer, it should remove this prefix.
Here is the corrected function:
def rounded_avg(n, m):

if m <= n:

return -1

summation = 0

for i in range(n, m+1):

summation += i

average = round(summation / (m - n + 1))

return int(bin(average)[2:])

This function now correctly calculates the average, rounds it, and returns the binary representation as
an integer. If n is greater than or equal to m, it returns -1.

Figure 33: Incorrect solution from GPT-4 to a HUMANEVALFIX Python problem. The bug
consists of a "+1" missing after "m-n". GPT-4 correctly fixes that, however, it introduces two new
bugs: Retuning "-1" when m=n and removing the "0b", both of which evidently lead to the provided
unit tests failing.

52

OCTOPACK: Instruction Tuning Code Large Language Models

R.3 WIZARDCODER

Input:

Below is an instruction that describes a task. Write a response that appropriately completes the
request.
Instruction: Fix bugs in bf.
def bf(planet1, planet2):

planet_names = ("Mercury", "Venus", "Earth", "Mars", "Jupyter", "Saturn", "Uranus", "

Neptune")

if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:

return ()

planet1_index = planet_names.index(planet1)

planet2_index = planet_names.index(planet2)

if planet1_index < planet2_index:

return (planet_names[planet1_index + 1: planet2_index])

else:
return (planet_names[planet2_index + 1 : planet1_index])

def check(bf):

Check some simple cases
assert bf("Jupiter", "Neptune") == ("Saturn", "Uranus"), "First test error: " + str(len(bf

("Jupiter", "Neptune")))

assert bf("Earth", "Mercury") == ("Venus",), "Second test error: " + str(bf("Earth", "

Mercury"))

assert bf("Mercury", "Uranus") == ("Venus", "Earth", "Mars", "Jupiter", "Saturn"), "Third

test error: " + str(bf("Mercury", "Uranus"))

assert bf("Neptune", "Venus") == ("Earth", "Mars", "Jupiter", "Saturn", "Uranus"), "Fourth

test error: " + str(bf("Neptune", "Venus"))

Check some edge cases that are easy to work out by hand.
assert bf("Earth", "Earth") == ()

assert bf("Mars", "Earth") == ()

assert bf("Jupiter", "Makemake") == ()

check(bf)

Response:
def bf(planet1, planet2):

WizardCoder:

planet_names = ("Mercury", "Venus", "Earth", "Mars", "Jupyter", "Saturn", "Uranus", "

Neptune")

if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:

return ()

planet1_index = planet_names.index(planet1)

planet2_index = planet_names.index(planet2)

if planet1_index < planet2_index:

return (planet_names[planet1_index + 1: planet2_index])

else:
return (planet_names[planet2_index + 1 : planet1_index])

Figure 34: Incorrect solution from WizardCoder to a HUMANEVALFIX Python problem. The
bug consists of "Jupiter" being misspelled as "Jupyter" in the function. WizardCoder returns the same
function without making a single change leaving the bug. This is a particularly difficult bug that only
GPT-4 and OCTOCODER (only for 1 out of the n=20 generations) are able to solve.

53

OCTOPACK: Instruction Tuning Code Large Language Models

R.4 BLOOMZ

Input:

const generateIntegers = (a, b) => {

if (a > b) {

let tmp = a;

a = b;

b = tmp;

}

let y = []

for (let i = a; i <= b; i++) {

if (i == 2 || i == 4 || i == 6 || i == 8) { y.push(i) }

}

return y

}

Provide a concise natural language description of the code using at most 218 characters.

BLOOMZ:

Generate a list of integers from a to b.

Input (without previous input):

Generate a list of integers from a to b.
Write functional code in JavaScript according to the description.
const generateIntegers = (a, b) => {

BLOOMZ:

let integers = [];

for (let i = a; i <= b; i++) {

integers.push(i);

}

return integers;

}

Figure 35: Incorrect solution from BLOOMZ to a HUMANEVALEXPLAIN JavaScript problem.
BLOOMZ misses in its description that the function generates only the even digits between a and
b, in ascending order. Thus, its synthesized function based on its own description simply collects
all integers between a and b. BLOOMZ likely left out this part due to its bias for short and concise
answers. However, this bias backfires for this task.

R.5 STARCODER

54

OCTOPACK: Instruction Tuning Code Large Language Models

Input:

import java.util.*;

import java.lang.*;

class Solution {

public Map<String, Integer> histogram(String test) {

Map<String, Integer> dict1 = new HashMap<>();

List<String> list1 = Arrays.asList(test.split(" "));

int t = 0;

for (String i : list1) {

if (Collections.frequency(list1, i) > t && !i.isEmpty()) {

t = Collections.frequency(list1, i);

}

}

if (t > 0) {

for (String i : list1) {

if (Collections.frequency(list1, i) == t) {

dict1.put(i, t);

}

}

}

return dict1;

}

}

Provide a concise natural language description of the code using at most 423 characters.

StarCoder:

public class Solution {

public Map<String, Integer> histogram(String test) {

int t = 0;

}

}

if (t > 0) {

Write functional code in Java according to the description.

import java.util.*;

import java.lang.*;

class Solution {

public Map<String, Integer> histogram(String test) {

StarCoder:

Map<String, Integer> map = new HashMap<String, Integer>();

int t = 0;

for (int i = 0; i < test.length(); i++) {

if (test.charAt(i) == ’t’) {

t++;

}

}

map.put("t", t);

return map;

}

}

Figure 36: Incorrect solution from StarCoder to a HUMANEVALEXPLAIN Java problem. Star-
Coder is not capable of generating natural language descriptions and instead copies the solution.
However, our post-processing removes substrings from the solution (§3) leading to a useless descrip-
tion. Given this description it generates an irrelevant function. As StarCoder cannot generate natural
language explanations, we disqualify it from HUMANEVALEXPLAIN setting its score to 0 in Table 2.

55

OCTOPACK: Instruction Tuning Code Large Language Models

R.6 INSTRUCTCODET5+

Input:

Below is an instruction that describes a task. Write a response that appropriately completes the
request.
Instruction: Fix bugs in has_close_elements.
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = elem - elem2

if distance < threshold:

return True

return False

def check(has_close_elements):

assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True

assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False

assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True

assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False

assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True

assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True

assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False

check(has_close_elements)

Response:from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

InstructCodeT5+:

for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):

if idx != idx2:

distance = elem - elem2

if distance < threshold:

return True

return False

Figure 37: Incorrect solution from InstructCodeT5+ to a HUMANEVALFIX Python problem.
InstructCodeT5+ simply repeated the function without adding the missing "abs" statement to turn the
distance into an absolute value. This is one of the simplest bugs that most other models are able to fix.
For InstructCodeT5+ the prompt starts directly after "Response:" without a newline (Figure 20).

R.7 STARCHAT-�

56

OCTOPACK: Instruction Tuning Code Large Language Models

Input:

#include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;

#include<stdlib.h>
int specialFilter(vector<int> nums){

int num=0;

for (int i=0;i<nums.size();i++)

if (nums[i]>10)

{

string w=to_string(nums[i]);

if (w[0]%2==1 and w[w.length()-1]%2==1) num+=1;

}

return num;

}

Provide a concise natural language description of the code using at most 296 characters.

StarChat-�:

This code is a solution to the "Special Array" problem on LeetCode. It uses C++ and includes several
standard libraries, including vector, string, and algorithm.
The code starts by declaring some variables and importing the necessary libraries. It then defines a
specialFilter function that takes

Input (without previous input):

This code is a solution to the "Special Array" problem on LeetCode. It uses C++ and includes several
standard libraries, including vector, string, and algorithm.
The code starts by declaring some variables and importing the necessary libraries. It then defines a
specialFilter function that takes
Write functional code in C++ according to the description.
#include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;

#include<stdlib.h>
int specialFilter(vector<int> nums){

StarChat-�:

int n = nums.size();

int sum = 0;

for(int i = 0; i < n; i++){

sum += pow(nums[i], 2);

}

int target = (int)sqrt(sum);
vector<int> res;

for(int i = 0; i < n; i++){

if(nums[i] > target){

res.push_back(nums[i]);

}

}

return res;

}

Figure 38: Incorrect solution from StarChat-� to a HUMANEVALEXPLAIN C++ problem.
StarChat-� has a bias for excessively long answers. StarChat-�’s description includes irrelevant parts
like "..problem on LeetCode..includes several standard libraries.." (despite the problem not existing
on LeetCode). As the description exceeds the 296-character limit for the code, it is cut off at the end.

57

OCTOPACK: Instruction Tuning Code Large Language Models

R.8 DIFF CODEGEN

Input:

<NME> truncate_number.py

<BEF> def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).

Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0 + 1.0

<MSG> Fix bugs in truncate_number.

<DFF>

Diff Codegen 2B

@@ -4,7 +4,7 @@ def truncate_number(number: float) -> float:
and integer part (largest integer smaller than given number) and decimals

(leftover part always smaller than 1).

- Return the decimal part of the number.

+ Return

Figure 39: Incorrect solution from Diff Codegen 2B to a HUMANEVALFIXDOCS Python problem.
Diff Codegen 2B suggests an irrelevant diff modifying parts of the docstring. The model commonly
outputs diffs that modify the docstring or an import statement and rarely addresses the actual bug.

S LIMITATIONS AND FUTURE WORK

Model Execution A promising avenue for improving performance on HUMANEVALFIX is letting
the model execute the given code or its own generated code and inspect its output (Chen et al., 2022;
2023c; Yasunaga & Liang, 2021; Li et al., 2022a; Gao et al., 2023; Dong et al., 2023; Zhang et al.,
2023c; Madaan et al., 2023b; Ni et al., 2023; Gou et al., 2023; Hu et al., 2023; Taylor et al., 2022;
Nye et al., 2021). This could allow the model to discover which unit tests are failing and for what
reason. The model could then simply iterate on the function until all unit tests are passing. We leave
explorations of this strategy to improve performance on HUMANEVALPACK to future work.

Multi-file changes For the creation of COMMITPACK, we have filtered out any commits that affect
multiple files to ensure commits are very specific and account for the fact that most current models
are only capable of operating on a single file. Allowing models to take multiple files as input and
modify multiple files given a single instruction is a promising direction for future work. There is
active research on using repository-level context (Ding et al., 2022; Shrivastava et al., 2023a;b; Zhang
et al., 2023a; Liu et al., 2023d) and the necessary long context windows (Dai et al., 2019; Press et al.,
2021; Sun et al., 2021; Dao et al., 2022; Peng et al., 2023; Liu et al., 2023c; Chen et al., 2023b).

Length-awareness Current Code LLMs including OCTOCODER struggle with awareness about the
length of their generated output. For HUMANEVALEXPLAIN, we instruct the models to limit their
output to a given number of characters. While it is trivial for humans to count characters and adhere
to the limit, all models tested frequently generate far too many characters. Prior work has shown that
human raters are biased towards preferring longer texts (Wu & Aji, 2023) regardless of content. All
models evaluated are instruction tuned on text that was at least indirectly assessed by human raters,
hence they may be biased towards generating longer texts even if it means including literary bloat.

Better evaluation Evaluating code instruction models is challenging for several reasons:
(1) Prompting: The prompt can significantly impact the performance of large language mod-

58

OCTOPACK: Instruction Tuning Code Large Language Models

els (Brown et al., 2020; Zhou et al., 2022; Muennighoff, 2022; Babe et al., 2023). To ensure fair
evaluation we use the prompting format put forth by the respective authors of the models and a simple
intuitive prompt for models without a canonical prompt (see Appendix Q). However, this may put
models without a canonical prompt recommendation (e.g. BLOOMZ, GPT-4) at a slight disadvantage.
OCTOCODER and OCTOGEEX perform best when prompted using the same format we use during
training (Figure 18) and we recommend always using this format at inference.
(2) Processing: Models may accidentally impair otherwise correct code by e.g. including a natural
language explanation in their output. We largely circumvent this issue through the use of strict
stopping criteria and careful postprocessing (e.g. for GPT-4 we check if it has enclosed the code in
backticks, and if so, extract only the inner part of the backticks discarding its explanations).
(3) Execution: When executing code to compute pass@k, it is important that the generated code
matches the installed programming language version. Models may inadvertently use expressions
from a different version (e.g. they may use the Python 2 syntax of print "hi", which would fail
in a Python 3 environment). In our evaluation, we did not find this to be a problem, however, as
models become more capable, it may make sense to specify the version. Future prompts may include
the version (e.g. “use JDK 1.18.0”) or provide models with an execution environment that has the
exact version installed that will be used for evaluation.
(4) Comprehensiveness: Executing code can only reflect functional correctness lacking a comprehen-
sive understanding of quality. Compared to execution-based evaluation, the human judgment of code
quality can be considered more comprehensive as humans can consider factors beyond correctness.
Directly hiring human annotators can be inefficient and expensive, and therefore researchers have
explored approaches to automate human-aligned evaluation via LLMs (Fu et al., 2023; Liu et al.,
2023e; Zhuo, 2023). However, recent work (Wang et al., 2023b) suggests LLM-based evaluation
can be biased towards certain contexts. Future work on automating the human-aligned evaluation of
instruction tuned Code LLMs while avoiding such bias is needed.

Reward Models Our commit datasets, COMMITPACK and COMMITPACKFT, also lend themselves
well for learning human preferences (Ethayarajh et al., 2024; Rafailov et al., 2024). The changed
code after a commit generally represents a human-preferred version of the code (else the code would
not have been modified). Thus, one could train a reward model that given the code before and after
a commit, learns that the code afterward is better. Similar to prior work (Christiano et al., 2017;
Ouyang et al., 2022), this reward model could then be used to guide a language model to generate
code that is preferred by humans.

T VERSION CONTROL

V1 → V2:

• Added Appendix O on HUMANEVALEXPLAIN metrics
• Added Appendix N on Fill-in-the-Middle
• Expanded the motivation for limiting the number of tokens in COMMITPACKFT in Ap-

pendix E
• Fixed the StarCoder HUMANEVALFIXDOCS in Appendix K thanks to Abhijeet Awasthi
• Specified the programming languages of CommitPackFT (CommitPack has 350 languages

while CommitPackFT has 277 after filtering)
• Made small writing improvements throughout

59

OCTOPACK: Instruction Tuning Code Large Language Models

U OCTOBADPACK

Figure 40: OCTOPACK (left) and her evil brother OCTOBADPACK (right).

60

	Introduction
	CommitPack: Code Instruction Data
	HumanEvalPack: Evaluating Instruction Tuned Code Models
	OctoCoder: Best Commercially Licensed Code LLM
	Ablating instruction data choices
	Comparing with other Models

	Related Work
	Code Models
	Instruction Models
	Code Benchmarks

	Conclusion
	
	Contributions
	Artifacts
	CommitPack and CommitPackFT Languages
	Dataset Creation
	Comparing Data Before and After Filtering
	Comparing CommitPack and The Stack
	Pretraining on CommitPack
	HumanEvalPack Statistics
	Full Instruction Data Ablations
	Line Diff Format for Fixing Code
	Results on HumanEvalFixDocs
	HumanEvalFix Bug Types
	Performance Breakdown by HumanEvalFix Bug Type
	HumanEvalExplain with Fill-In-The-Middle
	HumanEvalExplain BLEU and METEOR comparison
	Hyperparameters
	Prompts
	Examples
	OctoCoder
	GPT-4
	WizardCoder
	BLOOMZ
	StarCoder
	InstructCodeT5+
	StarChat-beta
	Diff Codegen

	Limitations and Future Work
	Version Control
	OctoBadPack

