
Deep Unlearn: Benchmarking Machine Unlearning

Abstract

Machine unlearning (MU) aims to remove the influence of particular data points1

from the learnable parameters of a trained machine learning model. This is a2

key capability in light of data privacy requirements, trustworthiness, and safety3

in deployed models. MU is particularly challenging for deep neural networks4

(DNNs), such as convolutional nets or vision transformers, as such DNNs tend to5

memorize a notable portion of their training dataset. Nevertheless, the community6

lacks a rigorous and multifaceted study that looks into the success of MU methods7

for DNNs. In this paper, we investigate 18 state-of-the-art MU methods across8

various benchmark datasets and models, with each evaluation conducted over9

10 different initializations, a comprehensive evaluation involving MU over 100K10

models. We show that, with the proper hyperparameters, Masked Small Gradients11

(MSG) and Convolution Transpose (CT), consistently perform better in terms of12

model accuracy and run-time efficiency across different models, datasets, and13

initializations, assessed by population-based membership inference attacks (MIA)14

and per-sample unlearning likelihood ratio attacks (U-LiRA). Furthermore, our15

benchmark highlights the fact that comparing a MU method only with commonly16

used baselines, such as Gradient Ascent (GA) or Successive Random Relabeling17

(SRL), is inadequate, and we need better baselines like Negative Gradient Plus18

(NG+) with proper hyperparameter selection.19

1 Introduction20

Machine unlearning aims to remove the influence of a specified subset of training data points from21

trained models [10]. This process is crucial for enhancing privacy preservation, model safety, and22

overall model quality. MU helps ensure compliance with the right to be forgotten [23], removes23

erroneous data points that negatively impact model performance [43], and eliminates biases introduced24

by parts of the training data [14]. Deep neural networks present significant challenges for MU due25

to their computationally intensive training requirements, highly non-convex loss landscapes, and26

tendency to memorize substantial portions of their training data [22, 12, 21]. The key open challenges27

in MU include: (1) A degradation in model accuracy often accompanies unlearning; (2) Some MU28

methods require the model to be trained in specific ways, such as saving checkpoints, tracking29

accumulated gradients, or training with differential privacy, limiting their applicability to already30

deployed models; (3) Assurance of information removal is difficult as there are no reliable metrics to31

measure it accurately; (4) There is no consensus on which methods are the most effective.32

A branch of MU known as exact unlearning aims to guarantee that the specified forget data have been33

completely removed from the model. The most reliable exact MU method is to retrain the model34

from scratch while excluding the forget data. Another exact MU that offers data removal guarantees is35

SISA (Sharded, Isolated, Sliced, Aggregated) [9]. However, exact MU is computationally prohibitive,36

emphasizing the need for more efficient methods. The alternative branch is approximate unlearning37
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that aims to approximate data deletion and is often less precise, but more computationally efficient.38

Approximate MU lacks theoretical guarantees, necessitating empirical evaluations to determine their39

effectiveness, reliability, and computational efficiency across various datasets. Thus, the community40

needs a proper benchmarking and evaluation of state-of-the-art approximate MU methods.41

In this paper, we benchmark 18 state-of-the-art approximate MU methods across 5 datasets and42

2 DNN architectures commonly used in computer vision: ResNet18 [32] and TinyViT [48].43

The 18 methods consist of 3 classical baseline methods Fine-tuning (FT), Gradient Ascent (GA),44

Successive Random Labels (SRL); 7 high-ranking methods in the NeurIPS’2023 Machine Un-45

learning competition [45], we name them Forget-Contrast-Strengthen (FCS), Masked-Small-46

Gradients (MSG), Confuse-Finetune-Weaken (CFW), Prune-Reinitialize-Match-Quantize (PRMQ),47

Convolution-Transpose (CT), Knowledge-Distillation-Entropy (KDE) and Repeated-Noise-Injection48

(RNI); and 8 recently published papers: Saliency Unlearning (SalUN) [20], Catastrophic Forgetting-K49

(CF-k) [24], Exact Unlearning-K (EU-k) [24], SCalable Remembering and Unlearning unBound50

(SCRUB) [37], Bad Teacher (BT) [16], Fisher Forgetting (FF) [25], Influence Unlearning (IU) [35, 33]51

and Negative Gradient Plus (NG+) [37]. We evaluate the different unlearning methods in terms of four52

major aspects: privacy evaluation, performance retention, computational efficiency, and unlearning53

reliability.54

The contributions of our study is to address the following research questions:55

Q1. Are the commonly used MU baselines reliable? Most of the recently introduced MU methods are56

compared only with three baselines: Fine-tuning, Gradient Ascent, and Successive Random Labels,57

and not across recently introduced approaches. We show that with proper hyperparameter selection58

FT is a reliable baseline. In contrast, GA consistently performs poorly and should be replaced by the59

more recent Negative Gradient Plus (NG+) [37] that simultaneously reduces the performance in the60

forget set while maintaining the performance on the rest of the data points.61

Q2. How reliable are MU methods across datasets, and, models, and initializtions? Our findings show62

that, unlike the majority of recent MU methods, Masked-Small-Gradients is consistently among the63

best performing methods across various metrics. In contrast, methods such as SRL do not consistently64

outperform others across different datasets.65

Q3. Among existing methods, which are the most reliable and accurate?. Among 18 methods,66

our evaluation shows that certain methods, such as Masked-Small-Gradients (MSG), Convolution-67

Transpose (CT), and Fine-tuning (FT), exhibit desirable properties. Specifically, MSG and CT show68

resilience against U-LiRA, a strong per-sample membership inference attack. Furthermore, all three69

methods show consistency across datasets, and these methods could serve as reliable baselines for70

future studies.71

We publish the source code used for reproducing the experiments conducted in this paper at [released72

upon publishing this paper].73

2 Background of Machine Unlearning74

Setting. Starting with a training set D = {(xi, yi)}Ni=1 and a trained model fO, referred to as the75

original model, the objective of a MU method U is to remove the influence of a particular subset76

of training set DF = {(xi, yi)}Ki=1 ⇢ D referred to as the forget set where K ⌧ N . The rest of77

training set DR = D\DF is called the retain set. The forget set and the retain set are distinct and78

complementary subsets of the training set. The outcome of MU is an unlearned model fU , the aim79

for which is to perform on par with a model retrained from scratch on DR; this latter model fR is80

referred to as the retrained model. We denote the weights of the original model and the retrained81

model as ✓O and ✓R, respectively. For evaluations, we consider two held-out sets: the validation set82

DV and test set DT , both drawn from the same distribution as D. We consider the accuracy of the83

retrain model as the optimal accuracy. One critical assumption we make is that the MU method has84

access to ✓O, DR, DF , and DV .85
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(1) Unlearning Evaluation. To evaluate the success of unlearning, one approach is to check whether86

data points in DF still influence the predictions made by the unlearned model [13, 37, 31]. This is87

commonly done via influence functions [35, 8, 29], membership inference attacks (MIA) [44] MIA88

has become one of the most common approaches for evaluating unlearning algorithms. It aims to89

determine whether specific data points were part of the original training dataset based on the unlearned90

model. We compute the population-based U-MIA, denoted with MIA(D, fU ) evaluated on data D1.91

Using this we define the discernibility metric as Disc(DV , fU ) = |2⇥ MIA(D, fU ) � 1| 2 [0, 1],92

and similarly, indiscernibility is given by Indisc(D, fU ) = 1� Disc(D, fU ) 2 [0, 1]. We set D to93

either the test set DT or validation set DV . The indiscernibility equals 1 when the accuracy of the94

MIA is not better than random guessing. A more recent MIA variation is the unlearning likelihood95

ratio attack (U-LiRA) [37]. As highlighted by [31], U-LiRA is a more robust evaluation approach for96

approximate MU. Nonetheless, U-LiRA is much more computationally demanding than U-MIA. We97

evaluate the methods that defeat the weaker, less expensive U-MIA attack, additionally against the98

U-LiRA attack.99

(2) Accuracy. The classification accuracy of unlearned model on the retain set should be as close100

as possible to that of the original model. First, we consider three metrics derived directly from the101

model’s classification accuracy on different sets: retain accuracy (RA), forget accuracy (FA), and102

test accuracy (TA). RA is defined as103

RA(DR, fU ) =
1

|DR|
X

(xi,yi)2DR

1yi=fU (xi) 2 [0, 1]. (1)

The metrics for FA and TA can be derived by replacing DR with DF and DT , respectively. Second,104

while RA, FA, and TA give us insight into the overall accuracy of the unlearned model, they do not105

capture how well it performs compared to a retrained model fR. Considering the fR model as a106

gold standard, we derive three more metrics: retain retention (RR), forget retention (FR), test107

retention (TR), where RR is given by,108

RR(fU , fR) =
RA(DR, fU )

RA(DR, fR)
2 [0,+1), (2)

and formulas for FR and TR can be derived using FA and TA, respectively. An unlearned model with109

a score of 1 indicates that its accuracy perfectly matches the accuracy of the reference retrain model.110

A score below 1 indicates that the model under-performs and a score above 1 indicates that the model111

over-performs. We further define the retention deviation (RetDev) as:112

RetDev = |RR(fU , fR)� 1|+ |FR(fU , fR)� 1|+ |TR(fU , fR)� 1| 2 [0,+1), (3)

which provides information on the cumulative divergence of the unlearned model in terms of retention113

score. The closer to 0, the better as 0 indicates that the model perfectly matches the performance of114

the retrained model.115

(3) Efficiency. run-tiee efficiency (RTE) of a MU method should ideally be lower than the naive116

approach of just retraining the model from scratch on the retain set. As the high computational cost117

of the retraining algorithm motivated the development of approximate MU methods, we evaluate how118

much faster each MU method is compared to the retraining algorithm. We define RTE of U as the119

number of seconds it takes to complete, denoted as RT(U) (we use the same machine and resources120

for all the experiments). To indicate the relative speedup compared to the retrained model, we define121

RTE of an unlearn method U as:122
RT(UR)

RT(U)
2 [0,+1), (4)

where UR denotes the retrain method. The RTE of retraining from scratch would thus be 1; any123

method with an RTE less than 1 is slower than retraining from scratch, and vice versa.124

1The methodology for this follows the classic MIA: we compute the losses on DF and DV , we shuffle and
trim them so that they are of equal size. We then train logistic regression models in a 10-fold cross validation,
and compute the average accuracy across the folds.
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3 Machine Unlearning Methods125

We briefly discuss the main unlearning methods considered.126

3.1 Classical Baselines127

FineTune (FT) finetunes the original model fO on only the retain set DR for several epochs.128

Successive Random Labels (SRL) the model is trained on both the forget set DF and DR where the129

labels of DF are randomly assigned at each epoch.130

Gradient Ascent (GA) trains the model using gradient ascent steps on the DF .131

3.2 State-of-the-art MU methods132

Expanding upon the classical baselines, we additionally evaluate 15 recent MU methods. We first133

discuss the seven top-performing methods from the Machine Unlearning Competition 2023 on134

Kaggle.135

Forget-Contrast-Strengthen (FCS) [1] minimizes the Kullback-Leibler Divergence (KLD) between136

the model’s output on DF and a uniform distribution over the output classes, then alternatively137

optimizes a contrastive loss between the model’s outputs on DR and DF , and minimizes the cross-138

entropy loss on DR.139

Masked-Small-Gradients (MSG)[2] accumulates gradients via gradient descent on the DR and140

gradient ascent on the DF , then reinitialize weights with the smallest absolute gradients while141

dampening subsequent weights updates on the DR for the other weights.142

Confuse-Finetune-Weaken (CFW)[3] injects noise into the convolutional layers and then trains the143

model using a class-weighted cross-entropy on DR, then injects noise again toward the final epochs.144

Prune-Reinitialize-Match-Quantize (PRMQ) [4] first prunes the model via L1 pruning, reinitializes145

parts of the model, optimises it using a combination of cross-entropy and a mean-squared-error on the146

entropy between the outputs of fO and fU on DR and finally converts fU ’s weights to half-precision147

floats.148

Convolution-Transpose [5] simply transposes the weights in the convolutional layers and trains on149

DR.150

Knowledge-Distillation-Entropy (KDE) [6] uses a teacher-student setup. Both student and teacher151

start as copies of the original model, then the student’s first and last layers are re-initialised. The152

student fU minimizes its Kullback-Leibler Divergence (KLD) with the fO over DV , then minimizes153

a combination of losses: a soft cross-entropy loss between fU and fO, a cross-entropy loss on outputs154

of DR from fU , and the KLD between fU and fO on DR.155

Repeated-Noise-Injection (RNI) [7] first reinitialises the final layer of the model, then repeatedly156

injects noise in different layer of the model while training on the DR.157

We further consider eight state-of-the-art methods introduced in the literature.158

Fisher Forgetting (FF) [25, 20] adds noise to fO with zero mean and covariance determined by the159

4th root of Fisher Information matrix with respect to ✓O on DR.160

Influence Unlearning (IU) [33, 47, 34] uses Influence Functions[18] to determine the change in ✓O161

if a training point is removed from the training loss. IU estimates the change in model parameters162

from ✓O to the model trained without a given data point. We use the first-order WoodFisher-based163

approximation from [34].164

Catastrophic Forgetting - K (CF-K) [24] freezes the first layers then trains the last k layers of the165

model on DR.166
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Exact Unlearning - K (EU-K) [24] freezes the first layers then restores the weights of the last k167

layers to their initialization state. We randomly reinitialize the weights instead, so that the method no168

longer requires knowledge about the training process of fO.169

SCRUB [37] leverages a student-teacher setup where the model is optimised for three objectives:170

matching the teacher’s output distribution on DR, correctly predicting the DR set and ensuring the171

output distributions of the teacher and student diverge on the DF172

Saliency Unlearning (SaLUN) [20] determines via gradient ascent which weights of ✓O are the173

most relevant to DF , then trains the model simultaneously on DR and DF with random labels on174

DF , while dampening the gradient propagation based on the selected weights.175

Negative Gradient Plus (NG+) [37] is an extension of the Gradient Ascent approach where176

additionally a gradient descent step is taken over the DR.177

Bad Teacher (BT) [16] uses a teacher-student approach with two teachers: the original model, and a178

randomly initialized model - the bad teacher-, the student starts as copy of fU then learns to mimic179

the fO on DR and the bad teacher on the DF .180

4 Experimental Evaluation181

Experiments. We evaluate the 18 recent MU methods as described in Section 3 across 5 benchmark182

datasets: MNIST [38], FashionMNIST [49], CIFAR-10 [36], CIFAR-100 [36], and UTK-Face [53].183

These datasets vary in difficulty, number of classes, instances per class, and image sizes. We consider184

two model architectures: a TinyViT and a ResNet18 model. Hence, in total we evaluated nine185

different combinations of models and architectures: ResNet18 and TinyViT on MNIST, Fashion-186

MNIST, CIFAR-10, CIFAR-100, and ResNet18 on UTKFace. More information on the data sets,187

hyperparameters, and data augmentations used to train the original and retrained models is provided188

in the appendix B. We construct the forget set by sampling 10% of D.189

The performance of the MU methods can change across datasets, model configurations, and model190

initializations; a reliable MU method remains consistent across these changes. For each method,191

dataset and model combination, we unlearn from Original models initialized using 10 different seeds192

and consider the average performance across seeds.193

A further observation is that prior research tends to compare MU methods with default hyperparame-194

ters, potentially leading to a less competitive performance of the method. To ensure that we get the195

best performance out of each method, we perform three hyperparameter sweeps to find the best set of196

hyperparameters for each method. To ensure a fair comparison, we use same number of searches for197

each method. Each hyper-parameter sweep uses 100 trials to minimize four loss functions: Retain198

Loss (LRetain), Forget Loss (LForget), Val Loss (LV al), and Val MIA (LVal-MIA) given by199

LRetain = ↵⇥ |RA(fU )� RA(fR)|, LForget = � ⇥ |FA(fU )� FA(fR)|, (5)
LV al = � ⇥ |VA(fU )� VA(fR)|, LVal-MIA = ⌘ ⇥ Disc(DV , fU ), (6)

where the LRetain captures the divergence in accuracy between the retrained and unlearned model200

over the DR, LForget and LV al capture the divergence over DF ,DV respectively and LVal-MIA cap-201

tures whether the loss distributions over DF and DV are distinguishable from one another via the202

discernibility score defined in Section 2. We set ↵ = � = � = 1
3 and ⌘ = 1 as we found these203

values to balance the importance of importance retention and the resilience to Membership Inference204

Attacks. Per unlearn method, we use the hyperparameter configuration that minimises the four loss205

terms when evaluating the method. Thus, for each unlearning method, we first unlearn 300 models to206

do the hyper-parameter sweep, then unlearn 10 models with the best set of hyper-parameters, leading207

to 5, 580 per dataset for a given architecture, leading to a total of 50, 220 for the 9 dataset / model208

combinations.209

Ranking. A challenge in the comparison of MU method performance comes from the potential210

proximity of the evaluation metrics. As a simple example, suppose we have four methods U1, ..., U4211
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Table 1: Ranking by performance on Retention Deviation and Indiscernibility across datasets and
architectures. We count the number of times each method appears in the Best Performers group
(G1), Average performance group (G2) and Worst performers group (G3) (see §4). The final rank
is computed based on the number of times the method appears in G1—with occurrences in G2 and
G3 used to break ties if needed. If a method does not produce any usable models, it is assigned to a
Failed group (F). Three methods appear in the top 3 for both performance measures: MSG (1st and
1st), CT (3rd and 1st) and KDE (3rd and 2nd).

Retention Deviation Indiscernibility
Rank Method G1 G2 G3 F Rank Method G1 G2 G3 F

1 FT 8 1 0 0 1 CT 9 0 0 0
1 MSG 8 1 0 0 1 MSG 9 0 0 0
2 PRMQ 7 2 0 0 2 CFW 7 2 0 0
3 CT 7 1 1 0 2 RNI 7 2 0 0
3 KDE 7 1 1 0 2 KDE 7 2 0 0
3 CFW 7 1 1 0 3 FT 6 3 0 0
4 FCS 6 3 0 0 3 PRMQ 6 3 0 0
4 SalUN 6 3 0 0 3 SalUN 6 3 0 0
5 NG+ 5 4 0 0 4 SRL 6 2 1 0
5 SRL 5 4 0 0 5 NG+ 5 4 0 0
6 SCRUB 4 3 1 1 5 FCS 5 4 0 0
7 BT 2 7 0 0 6 SCRUB 5 3 0 1
7 RNI 2 7 0 0 7 BT 4 5 0 0
8 CF-k 2 3 2 2 8 CF-k 1 2 4 2
9 IU 1 0 2 6 9 EU-k 1 2 2 4
10 EU-k 0 5 0 4 10 GA 0 4 4 1
11 GA 0 1 7 1 11 IU 0 0 3 6
12 FF 0 0 0 9 12 FF 0 0 0 9

with accuracies: 98%, 99%, 50%, 1%, respectively; if we simply rank the methods, the rank itself212

would not be representative of the fact that e.g. U1 and U2 are much above U3 and U4. In order to213

enable distinctions based on proximities, we use Agglomerative Clustering and define cut-off points214

such that we obtain three clusters: (1) Best performers (G1), (2) Average performers (G2), and (3)215

Worst performers (G3). If a method does not produce 10 usable models, one per original model, it is216

assigned to a Failed group (F). For each method, we count the number of times it appears in each217

of the three groups (with nine being the maximum). To obtain a final ranking of the methods, we218

first rank the methods using the number of times it appears in the Best Performers group (G1); if ties219

occur, we use the Average Performers (G2) group to break them. If ties persist, the Worst Performers220

(G3) group serves as the final tie-breaker. This method ensures a clear and fair ranking by considering221

each performance group in order of importance.222

5 Main Results223

Table 1 presents the main results of our evaluations on MU methods based on Retention Deviation224

and Indiscernibility. The results for the run-time efficiency are shown in Table 2.225

On the reliability of baselines. The commonly used baseline FT trains the original model only226

on the retain set for several epochs to enable the model to forget information about the forget set.227

In our evaluation, FT performs best based on the Retention Deviation, and is ranked third based on228

Indiscernibility. The latter observation may come from the fact that FT does not explicitly unlearn229

the forget set or perturb the model parameters. Based on these results we conclude it is a reasonable230

baseline to evaluate against. We however remark that since the mechanism underlying FT (training231

on the Retain set to maintain performance) is common to many other methods, these methods may232

inherit its susceptibility to MIA. Another common baseline, GA which performs gradient ascent on233
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Table 2: Run Time Efficiency on ResNet for the top performing methods. CT is the fastest on average,
MSG runs up to 5x faster than naive retraining.

CIFAR-10 CIFAR-100 MNIST FashionMNIST UTKFace Average
Unlearner

MSG 6.80 4.49 4.29 3.32 7.57 5.29
CFW 4.67 6.17 4.29 4.90 5.54 5.11
PRMQ 4.93 4.34 3.77 3.77 5.88 4.54
CT 17.49 11.82 5.83 4.47 13.34 10.59
KDE 6.33 3.98 3.27 3.22 8.19 5.00
FT 8.15 5.16 5.07 4.29 5.78 5.69

the forget set, performs poorly across both metrics. Its more recent variation NG+, which uses an234

additional retain set correction, ranks fifth for both metrics, making it a more suitable baseline.235

On the reliability of newly proposed unlearning methods. MSG obtains a first rank in both236

Performance Retention Deviation and Indiscernibility. Its unique approach identifies the parameters237

in the Convolutional layers that most contribute to the information to be forgotten. This strategy,238

differing from FT, allows MSG to retain performance from the Retain set while modifying the weights239

that are more relevant to the Forget set. PRMQ ranks second in performance retention, making it one240

of the top performers. However, it suffers from the same lower performance in Indiscernibility as FT.241

PRMQ however does not leverage the Forget set; instead, it performs a form of knowledge distillation242

by attempting to reproduce the results of the original models on the Retain set. Additionally, during243

the pruning phase, it reinitializes the weights for the MLP and Convolutional layers. CT ranks third244

in Performance Retention and first in Indiscernibility. It is interesting to note that CT and MSG are245

both consistently among the top performers in Indiscernibility, where FT performs poorly.246

On the robustness across architectures. Critical for a good MU method is its ability to generalise247

across various DNN architectures. We conducted experiments with both ResNet18 and TinyViT.248

Methods such as CT, despite being tailored to Convolutional Neural Networks (CNN) models, still249

perform competitively when applied to Vision Transformers. Methods such as CT and MSG, while250

proposed for CNN layers, work well on Vision Transformer as one can leverage the 2D Convolutions251

used in Positional Encoders. We provide additional details on the ranking based on architectures in252

Appendix F.253

On the speed of the unlearn methods. MSG, the best MU candidate runs 7.6x faster than254

retraining from scratch on UTKFace and 3.3x on FashionMNIST. On average MSG runs 5.3x faster255

than retraining. The fastest method is CT which achieves a speedup of 17.5x compared to Retraining.256

This speedup stems from its simple approach: transpose the weights of the convolutional layers.257

On the performance when evaluated against a stronger MIA. From the results above, we258

note that there exist MU methods that perform fast and reliably across datasets, architectures, and259

initializations. Specifically, CT, FT, MSG seem strong candidates for reliable MU methods. However,260

as has also been highlighted in prior work [46], MIA has been debated as a strong metric, as its261

ability to assess MU is hampered by its own ability to infer data membership. In line with this,262

recent works have introduced more powerful variations on MIA [51] with [37] proposing the stronger263

U-LiRA attack for MU. For the best performers in Table 1, we apply the attack setup from [31] where264

we generate a total of 640 models (with varying train, retain and forget sets) and for each unlearn265

method perform a hyperparameter sweep to find the best configuration (for details see Appendix266

D). We determine for each data point its U-LiRA Inference Accuracy and report for each method its267

average and standard deviation (see Figure 1). From this, we conclude that MSG as well as CT resist268

U-LiRA attacks. Both MSG and CT thus not only rank first in terms of Performance Retention and269

Indiscernibility based on U-MIA, but also are robust against a stronger variation of MIA.270
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Figure 1: U-LiRA on CIFAR-10 on ResNet models. Both CT and MSG, which ranked first against
U-MIA, showed great resilience against the U-LiRA attack.

6 Discussion and Conclusion271

The increasing focus on data privacy and trustworthiness of machine learning models underscores the272

need for robust and practical methods to unlearn and remove the influence of specific data from trained273

models. Due to the growing size of models, we require methods that avoid the computationally costly274

retraining from scratch. In this work we performed a comprehensive comparison of approximate275

unlearning methods across various models and datasets aimed to address this critical issue.276

We experimentally compared 18 methods across different datasets and architectures, focusing on277

assessing the method’s ability to maintain privacy and accuracy while being computationally efficient278

and reliable across datasets, architectures and random seeds. Our findings indicate that Masked-Small-279

Gradients, which accumulates gradients via gradient descent on the data to remember and gradient280

ascent on the data to forget to determine which weights to update, consistently outperforms for all281

metrics across the studied datasets, architectures, and initialization seeds. Similarly, Convolution282

Transpose, which leverages the simple transposition in convolutional layers, performed strongly.283

Both CT and MSG were resistant against both a population-based Membership Inference Attack284

(MIA) and a stronger, per-sample attack (U-LiRA). However, a core challenge of approximate285

unlearning is that these methods will only be as strong as the attacks against which they are tested. As286

stronger and more complex attacks emerge, some approximate unlearning methods might no longer287

be as efficient as initially expected. This highlights the need for continuous evaluation and adaptation288

of unlearning methods to maintain their effectiveness. We also conducted experiments based on289

L2 distances, but found that no method consistently got close to the reference models’ weights, we290

provide further information in Appendix G.291

Limitations. Due to computational costs, we limited our analysis to Tiny Vision Transformers and292

ResNet; a further investigation of other architectures could provide useful insights. We did not293

investigate different amounts of unlearning samples, which some methods are known to be sensitive294

to [37]. We did not consider repeated deletion, instead we assume that there is a single forget set and295

that the unlearning process happens once, as is common in the literature, nonetheless, in practical296

applications one might need to unlearn different smaller forget sets over time and some unlearning297

methods might not work as well under such scenario. We finally remark once again on the difficulty298

of evaluation for approximate unlearning [31]: while these methods provide significant gains in299

efficiency, novel attacks might highlight yet unknown weaknesses of the unlearning processes.300
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Future work. First, we put our focus on natural image data, however, machine unlearning is relevant301

to other data types such as medical images or other modalities such as time series, audio and speech,302

or language data. Second, we focus on the classification task, however, other learning tasks would303

greatly benefit from machine unlearning too. For instance removing concepts from generative models304

for images [20] or poisoned data in language models [31]. Third, this work focuses on empirically305

benchmarking approximate machine unlearning methods. We do not provide a theoretical analysis of306

these methods or a rigorous comparison with exact unlearning algorithms.307

Impact statement. This paper aims to highlight the importance of effectively assessing approximate308

machine unlearning methods. Our goal is to stress the need for evaluating new unlearning methods309

against more reliable baselines and experimental setups. Additionally, it is crucial to assess the310

consistency of a new unlearning method across various datasets and model architectures. Without311

such a thorough evaluations, proposed unlearning methods may provide a false sense of privacy and312

safety, ultimately limiting their effectiveness for data regulation.313
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