
Appendix495

The appendix is structured as follows:496

• Related Works (Section A) provides an overview of the previous works related to bench-497

marking MU.498

• Datasets (Section B) contains information about the datasets, data augmentations, and499

hyper-parameters used to train the Original and Retrained models.500

• Neural Network Architectures (Section C) provides information about ResNet18 and501

TinyViT used throughout our benchmark.502

• Privacy Evaluation (Section D) gives the descriptions of the U-MIA and U-LiRA evaluation503

metrics.504

• Per Dataset Results (Section E) shows some experimental results in terms of accuracy,505

retention, privacy metrics, and runtime efficiency per dataset for the 9 combinations of506

datasets and DNN architectures considered in our work.507

• Per Architectures Ranking (Section F) provides Performance Retention Deviation and508

Indiscernibility Rankings separated for ResNet18 and TinyViT.509

• L2 Distances between Model Weights (Section G) shows L2 distances computed between510

the Unlearned, Original, and Retrained models.511

• Requirements (Section H) which describes the compute resources.512
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A Related Works513

A.1 Machine Unlearning514

Machine Unlearning is often first associated with the work from Cao et al. [11], followed by Bourtoule515

et al. [9], which proposes SISA (Sharded, Isolated, Sliced, Aggregated) as an exact unlearning method.516

For a recent overview of MU, we refer to the survey from Xu et al. [50], which provides a taxonomy of517

common unlearning methods. Furthermore, Zhang et al. [52] review MU through privacy-preserving518

and security lenses. The authors cover the Confidentiality, Integrity, and Availability security triad519

and the need for Data Lineage, which relates to following the movement of data in a machine learning520

pipeline and understand from where it originates, where it is stored, and how it percolates in the521

system through transformation. Some might have information on common MU verification methods,522

privacy evaluation metrics, and datasets, we defer to the work of Nguyen et al. [39], and Shaik et523

al. [43].524

In the following, we focus on the MU taxonomy from Xu et al. [50], which considers Data Reorgani-525

zation and Model Manipulation:526

(1) Data Reorganization methods focus on directly modifying the data to perform unlearning. It is527

divided into Data Obfuscation, Data Pruning, and Data Replacement.528

Data Obfuscation refers to modifying the dataset to obscure the influence of the data to be unlearned:529

random relabeling and retraining [28], SRL (Successive Random Labels), and Saliency Unlearning530

(SalUN).531

Data Pruning usually relies on dividing the dataset into multiple sub-datasets and training sub-models532

on these subsets. This is the category to which SISA [9] relates. Our work does not consider methods533

associated with this setting as they assume the training process.534

Data Replacement attempts to unlearn by replacing the original dataset with transformed data that535

simplifies unlearning specific samples. For instance, Cao et al. [11], replace the training data with536

summations of efficiently computable transformations. Like data pruning, these methods tend to537

make strong assumptions about the training process.538

(2) Model Manipulation methods directly adjust the model parameters to remove the influence of539

specific data points. Model manipulation is divided into Model Shifting, Model Replacement, and540

Model Pruning.541

Model Shifting directly updates the model parameters to offset the influence of the unlearned samples,542

such as using a single step of Newton’s method on model parameters [30] or decremental updates543

[40], in our benchmark Fisher Forgetting (FF), Influence Unlearning (IU), and SalUN would represent544

these approaches.545

Model Replacement uses pre-calculated parameters that do not reflect the data to forget to replace546

parts of the trained model. For instance, when using decision trees, one can replace nodes affected by547

the forget set by pre-calculated node [41]. These methods often make strong assumptions about the548

training process and the overall model.549

Model Pruning prunes specific parameters from the trained models to remove the influence of certain550

samples [34] or Prune-Reinitialize-Match-Quantize (PRMQ) [4] which prunes the model via L1551

pruning, reinitializes parts of the model then train the model on DR.552

A.2 Machine Unlearning for Deep Neural Networks553

Initially, MU research primarily focused on linear models such as linear regression and logistic554

models. Such models allow for the design of methods that assume the convexity of the loss function,555

rendering them less practical for DNN-based approaches. Since DNNs are able to memorize parts of556

their training data, they are particularly relevant targets for MU, even more so when they have been557

trained on large amounts of potentially personal data. For Deep Learning models, unlearning raises558
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additional challenges: 1) the non-convexity of the loss function of Deep Neural Networks [15], 2) the559

size of the models inducing large computational costs, 3) the randomness coming from the model’s560

training process, such as the initialization seed, randomness in the mini-batch generation process, and561

4) the fact that any model update impacts subsequent versions of the models, namely the weights at562

epoch n+ 1 directly depend on the weights at update n.563

When considering MU for DNN, Xu et al. [50] notes that a standard scheme DNN is to focus only on564

the final layer, as it is expected for this layer to be the most relevant for the downstream task, and565

stems from the early works MU. Nonetheless, Goel et al. [24] showed that simply modifying the final566

layer is often insufficient to remove information related to Df . However, other approaches, such as567

those from Golatkar et al. [25, 26, 27], attempt to unlearn the full model via methods derived from568

Information Theory. For instance, weight scrubbing on trained models can be done by approximating569

the Fisher information matrix.570

A.3 Post-Hoc Machine Unlearning571

While proactively designing deep-learning pipelines with built-in unlearning methods such as SISA572

can greatly simplify the unlearning process, many contemporary services relying on DNNs were573

not deployed with unlearning in mind. This motivates searching for methods that can unlearn from574

already trained models without making assumptions about the training process.575

Thus, we focus on post-hoc MU, a scenario where we assume that the unlearning method is agnostic576

to the original training process of the model. Under such a scenario, differences exist in terms of577

data availability at unlearning time. For instance, whether one has access to the original training578

data D, the retain set DR, the forget set DF , or even some external set such as the validation set DV .579

Therefore, careful consideration should be given to the data requirement associated with an unlearning580

method. Indeed, some might require having access to both DR and DF at the unlearning time, while581

others assume that DR is no longer available [17] making them more practical in real-world scenarios.582

Throughout our benchmark, we make the same assumption as the NeurIPS2023 Unlearning Challenge583

[45], where the unlearning methods had access to fO,DR,DF ,DV584

A.4 Machine Unlearning and Differential Privacy585

We based our Unlearning definition on Sekhari et al. [42] and refer to their work on the distinction586

between Differential Privacy and the objective of Machine Unlearning. Differential privacy, in a587

high-level picture, is a method for publicly sharing aggregated information about a population by588

describing the patterns discovered among the groups within the dataset while withholding specific589

information about individual data points. A randomized algorithm A is (", �)-differentially private if590

for all datasets D1 and D2 that differ on a single data point, and all S ✓ Range(A),591

Pr[A(D1) 2 S]  e" · Pr[A(D2) 2 S] + �. (7)

In this definition, " (epsilon) is a non-negative parameter that measures the privacy loss, with smaller592

values indicating stronger privacy. The parameter � represents the probability of breaking differential593

privacy, ideally close to or equal to 0.594

Despite enabling provable error guarantees for Unlearning methods, Differential Privacy requires595

strong model and algorithmic assumptions, making MU, derived from it, potentially less effective596

against practical adversaries [34].597

B Datasets598

CIFAR-10 CIFAR-10 is a widely used dataset in computer vision and machine learning. It599

comprises 60,000 32x32 color images in 10 different classes, with 6,000 images per class. The dataset600

is divided into 50,000 training images and 10,000 testing images. CIFAR-10 represents a diverse601

range of everyday objects, such as airplanes, automobiles, birds, and cats, making it a challenging602
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task for image classification. The simplicity of the images combined with the variety of categories603

makes CIFAR-10 a suitable dataset to test the efficacy of machine unlearning algorithms in effectively604

unlearning information without compromising the model’s performance on the remaining data.605

Data Augmentations: random cropping to 32x32 with 4-pixel padding, 50% random horizontal flip-606

ping, and per-channel normalization with a mean of [0.4919, 0.4822, 0.4465] and standard deviation607

of [0.2023, 0.1994, 0.2010]. At test time, we resize to 32x32 and normalize.608

CIFAR-100 CIFAR-100 is a more complex extension of CIFAR-10, containing 100 classes with609

600 images per class, split into 500 training images and 100 testing images per class. Each class is610

labeled with a "fine" label and grouped into 20 "coarse" labels, adding another layer of classification611

difficulty. The increased number of classes and finer granularity make CIFAR-100 an intriguing612

dataset for machine unlearning benchmarks. It poses a more significant challenge for models to forget613

specific classes or groups while retaining knowledge of others, thus testing the unlearning algorithms’614

precision and effectiveness in handling more granular and complex datasets.615

Data Augmentations: random cropping to 32x32 with 4-pixel padding, 50% random horizontal flip-616

ping, and per-channel normalization with a mean of [0.5071, 0.4865, 0.4409] and standard deviation617

of [0.2673, 0.2564, 0.2762]. At test time, we resize to 32x32 and normalize.618

MNIST The MNIST dataset is a well-known benchmark in handwritten digit recognition. It619

comprises 70,000 grayscale images of handwritten digits (0-9), 60,000 used for training, and 10,000620

for testing. Each image is 28x28 pixels in size. We consider MNIST due to its simplicity and621

extensive research and development history. The simplicity of MNIST allows researchers to focus on622

the fundamental aspects of unlearning techniques without the additional complexity introduced by623

color or high resolution, providing a clear assessment of the effectiveness of unlearning algorithms in624

a controlled setting.625

Data Augmentations: conversion to 3 channels, resizing to 32x32 such that both ResNet18 and626

TinyViT use the same input resolution, 50% random horizontal flipping, and per-channel normaliza-627

tion with a mean of [0.1307, 0.1307, 0.1307] and standard deviation of [0.3081, 0.3081, 0.3081]. We628

convert to 3 channels at test time, resize to 32x32, and normalize.629

Fashion MNIST Fashion MNIST is a more challenging replacement for MNIST. It contains 70,000630

grayscale images of fashion items in 10 categories: shirts, trousers, and sneakers. Like MNIST, each631

image is 28x28 pixels, but the increased complexity and variability of clothing items make it a more632

challenging classification task. Fashion MNIST provides a more realistic and intricate dataset than633

MNIST, testing the unlearning algorithms’ ability to handle real-world-like variability and ensuring634

that they can effectively remove learned information while maintaining performance on a moderately635

complex dataset.636

Data Augmentations: conversion to 3 channels, resizing to 32x32, 50% random horizontal flipping,637

and per-channel normalization with a mean of [0.2860, 0.2860, 0.2860] and standard deviation of638

[0.3560, 0.3560, 0.3560]. We convert to 3 channels at test time, resize to 32x32, and normalize.639

UTKFace UTKFace is a large-scale face dataset containing over 20,000 images of faces with640

annotations of age, gender, and ethnicity. The images vary in size and cover a wide range of ages,641

from 0 to 116. UTKFace is particularly interesting due to the sensitive nature of the data and the need642

for privacy-preserving techniques.643

Data Augmentations: resizing to 224x224, and per-channel normalization with a mean of644

[0.485, 0.456, 0.406] and standard deviation of [0.229, 0.224, 0.225]. We apply the same trans-645

formation at test time.646

For each dataset, the Original and Retrained models are trained using the same hyper-parameters647

(provided in Table 3)648
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Table 3: Summary of the number epochs, learning rate, and batch size for each dataset and model
used to train the Original and Retrained models.

Dataset Model Epochs Learning Rate Batch Size
FashionMNIST ResNet18 50 0.1 256

TinyViT 50 0.1 256

MNIST ResNet18 50 0.1 256
TinyViT 50 0.1 256

CIFAR-10
ResNet18 182 0.1 256

(LiRA) ResNet18 91 0.1 256
TinyViT 182 0.1 256

CIFAR-100 ResNet18 182 0.1 256
TinyViT 182 0.1 256

UTKFace ResNet18 50 0.1 128
TinyViT 50 0.1 128

C Neural Network Architectures649

We consider two families, ResNet (Residual Network) [32] and ViT (Vision Transformer) [19], which650

are prominent architectures in computer vision. We consider ResNet18 and a TinyViT[48] with651

approximately 11M learnable parameters for a fair comparison between two fundamentally different652

architectures. This provides insights into how architectural differences impact the unlearning process653

and helps understand the trade-offs between convolutional and transformer-based models regarding654

reliability and computational efficiency.655

ResNet: ResNet18 Introduced by He et al. [32], it facilitates the training of deep networks through656

shortcut connections, which mitigates the problem of vanishing gradients. The ResNet18 is known657

for its balance between performance and computational efficiency.658

ViT: TinyViT Vision Transformer (ViT), introduced by Dosovitskiy et al. [19], adapts the trans-659

former architecture to image classification by treating images as sequences of patches. We consider660

TinyViT from Wu et al. [48], as it is a compact version of ViT designed to be parameter-efficient661

while maintaining high performance.662

D Privacy Evaluation663

D.1 Unlearning-Membership Inference Attack (U-MIA)664

A common approach to evaluate the quality of unlearning methods is to attack the unlearned models665

with a form of Membership inference Attack (MIA). Membership Inference Attacks attempt to666

determine whether a specific data point was part of the model train data. The efficacy of the667

Membership Inference Attack has been used as a metric to evaluate the success of unlearning668

algorithms. A general approach to such an attack is as follows. Assume f✓ is a trained model with669

parameters ✓, and let L be a loss function, such as the cross-entropy loss. Then, compute the losses670

for each sample from two sets of data A and B (of equal size) and train a binary classification model671

such as logistic regression with labels yA
i

= 1 for points i in A and yB
i

= 0 for points i in B. An672

accuracy score from the classifier close to 1.0 indicates that the classifier can perfectly distinguish673

between samples from A and B based on the loss values. A score of 0.5 indicates that the ability to674

distinguish is close to random.675

D.2 Unlearning -Likelihood Ratio Attack (U-LiRA)676

The performance of a general MIA can be improved by considering, e.g., a per-sample attack such as677

LiRA [13, 31]. For any given point, we wish to determine whether the outputs from the unlearned678

models differ from those of models that have never seen the data point. To assess the attack robustly,679
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Table 4: MNIST - ResNet18

RA FA TA RR FR TR RetDev Indisc T-MIA RTE
unlearner

BT 1.00 1.00 0.99 1.00 1.01 1.00 0.01 0.99 0.50 9.76
CF-k 1.00 1.00 0.99 1.00 1.01 1.00 0.01 0.98 0.51 5.86
CFW 1.00 1.00 0.99 1.00 1.00 1.00 0.00 1.00 0.50 4.29
CT 1.00 0.99 0.99 1.00 1.00 1.00 0.00 1.00 0.50 5.83
EU-k - - - - - - - - - -
FCS 1.00 0.99 0.99 1.00 1.00 1.00 0.00 1.00 0.50 2.11
FF - - - - - - - - - 27.64
FT 1.00 0.99 0.99 1.00 1.00 1.00 0.00 0.99 0.51 5.07
GA 0.98 0.98 0.97 0.98 0.99 0.98 0.04 0.99 0.51 33.97
IU - - - - - - - - - -
KDE 1.00 0.99 0.99 1.00 1.00 1.00 0.00 1.00 0.50 3.27
MSG 1.00 0.99 0.99 1.00 1.00 1.00 0.00 1.00 0.50 4.29
NG+ 1.00 0.99 0.99 1.00 1.00 1.00 0.01 1.00 0.50 3.12
O 1.00 1.00 0.99 1.00 1.01 1.00 0.01 0.98 0.51 1.10
PRMQ 1.00 0.99 0.99 1.00 1.00 1.00 0.00 1.00 0.50 3.77
R 1.00 0.99 0.99 1.00 1.00 1.00 0.00 1.00 0.50 1.00
RNI 1.00 1.00 1.00 1.00 1.00 1.00 0.01 1.00 0.50 4.70
SCRUB - - - - - - - - - -
SRL 1.00 1.00 0.99 1.00 1.01 0.99 0.01 0.99 0.51 8.55
SalUN 1.00 1.00 0.99 1.00 1.00 0.99 0.01 0.99 0.50 3.19

we evaluate it across multiple models, using shadow models trained on various retain/forget sets.680

Specifically, we first train n models based on n splits of the training data. This train data is then681

split into 10 random retain and forget splits, and hence, we unlearn a total of 10n models. We then682

perform hyper-parameter sweeps, similar to what we do in the original results and unlearn using the683

optimal hyper-parameters, except that we consider n

2 sweeps and conduct 200 trials per sweep to684

determine the best hyper-parameters. In our setting, we set n = 64.685

E Per dataset results686

Here, we present the results for both ResNet18 and the TinyViT across datasets.687

ResNet18 We provide the tables with Retain Accuracy (RA), Forget Accuracy (FA), Test Accuracy688

(TA), Retain Retention (RR), Forget Retention (FR), Test Retention (TR), Performance Retention689

Deviation (RetDev), Indiscinerbility concerning the Test Set (Indisc), U-MIA on the Test set (T-MIA)690

and RunTime Efficiency (RTE) for every dataset using the ResNet18 model on MNIST (Table 4),691

FashionMNIST (Table 5), CIFAR-10 (Table 6), CIFAR-100 (Table 7) and UTKFace (Table 8). In692

general, CIFAR-100 provides the most visible differences, as the performance on the retain set is693

much higher than on the test. Datasets such as MNIST and FashionMNIST tend to show smaller694

differences between the methods as the performance on both the Retain and Test sets are similar, to695

begin with.696

TinyViT We provide the tables with RA, FA, TA, RR, FR, TR, RetDev, Indisc, T-MIA and RTE for697

MNIST (Table 9), FashionMNIST (Table 10), CIFAR-10 (Table 11) and CIFAR-100 (Table 12) using698

the TinyViT model.699

F Per architectures rankings700

Here, we present the rankings across datasets for ResNet18 (Table 13) and TinyVit (Table 14). We701

note that some methods, such as RNI or NG+, are less efficient on the ViT architectures regarding702

Indiscernibility. However, methods such as SCRUB are less efficient regarding Retention Deviation703

on the ViT architecture.704
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Table 5: FashionMNIST - ResNet18

RA FA TA RR FR TR RetDev Indisc T-MIA RTE
Unlearner

BT 1.00 0.96 0.92 1.00 1.03 0.99 0.04 0.98 0.51 13.57
CF-k 0.98 0.97 0.91 0.98 1.05 0.98 0.09 0.92 0.54 16.31
CFW 1.00 0.95 0.92 1.00 1.02 0.99 0.03 0.97 0.51 4.90
CT 1.00 0.92 0.92 1.00 0.99 0.99 0.02 0.99 0.50 4.47
EU-k - - - - - - - - - -
FCS 0.98 0.93 0.91 0.98 1.00 0.98 0.04 0.98 0.51 2.79
FF - - - - - - - - - -
FT 1.00 0.95 0.92 1.00 1.02 1.00 0.02 0.98 0.51 4.29
GA - - - - - - - - - -
IU 1.00 1.00 0.93 1.00 1.08 1.00 0.08 0.87 0.56 14.97
KDE 1.00 0.93 0.92 1.00 1.00 1.00 0.01 0.99 0.50 3.22
MSG 1.00 0.93 0.91 1.00 1.00 0.99 0.01 0.98 0.51 3.32
NG+ 0.99 0.94 0.91 0.99 1.01 0.99 0.03 0.99 0.49 3.21
O 1.00 1.00 0.93 1.00 1.08 1.00 0.08 0.87 0.56 1.11
PRMQ 0.98 0.93 0.91 0.98 1.00 0.99 0.04 0.98 0.51 3.77
R 1.00 0.93 0.92 1.00 1.00 1.00 0.00 1.00 0.50 1.00
RNI 0.98 0.93 0.91 0.98 1.00 0.98 0.04 0.98 0.51 3.25
SCRUB 0.95 0.93 0.90 0.95 1.00 0.98 0.08 0.97 0.51 5.62
SRL 1.00 0.97 0.92 1.00 1.04 1.00 0.05 0.98 0.51 24.85
SalUN 0.99 0.97 0.92 0.99 1.04 0.99 0.06 0.98 0.51 25.02

Table 6: CIFAR-10 - ResNet18

RA FA TA RR FR TR RetDev Indisc T-MIA RTE
Unlearner

BT 0.94 0.87 0.84 0.94 1.00 0.96 0.10 0.97 0.48 51.96
CF-k - - - - - - - - - -
CFW 1.00 0.81 0.80 1.00 0.92 0.92 0.16 1.00 0.50 4.67
CT 1.00 0.82 0.81 1.00 0.93 0.93 0.14 0.99 0.50 17.49
EU-k - - - - - - - - - -
FCS 0.99 0.86 0.84 0.99 0.98 0.96 0.07 0.98 0.49 22.53
FF - - - - - - - - - -
FT 1.00 0.84 0.82 1.00 0.96 0.95 0.09 1.00 0.50 8.15
GA 0.91 0.89 0.81 0.91 1.02 0.93 0.18 0.92 0.54 91.48
IU 0.95 0.94 0.84 0.95 1.08 0.97 0.16 0.91 0.55 64.61
KDE 0.98 0.84 0.80 0.98 0.96 0.92 0.15 0.97 0.52 6.33
MSG 1.00 0.85 0.83 1.00 0.97 0.95 0.08 0.99 0.51 6.80
NG+ 0.97 0.89 0.85 0.98 1.02 0.97 0.07 0.98 0.51 12.89
O 0.96 0.96 0.85 0.96 1.10 0.98 0.16 0.89 0.55 1.08
PRMQ 1.00 0.86 0.83 1.00 0.98 0.95 0.07 0.98 0.51 4.93
R 1.00 0.87 0.87 1.00 1.00 1.00 0.00 1.00 0.50 1.00
RNI 1.00 0.83 0.81 1.00 0.95 0.93 0.12 0.99 0.50 3.60
SCRUB 0.99 0.85 0.85 0.99 0.97 0.98 0.07 0.99 0.50 2.57
SRL 0.99 0.93 0.84 0.99 1.06 0.97 0.10 0.98 0.49 5.52
SalUN 0.98 0.90 0.84 0.98 1.04 0.97 0.08 0.96 0.48 18.04
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Table 7: CIFAR-100 - ResNet18. CIFAR-100 provides the most visible comparison as there is a large
gap in performance between the Retain Set and Test set, this leads to much larger RetDev scores.

RA FA TA RR FR TR RetDev Indisc T-MIA RTE
Unlearner

BT 0.98 0.68 0.54 0.98 1.25 0.99 0.27 0.95 0.48 9.39
CF-k 1.00 0.83 0.56 1.00 1.53 1.02 0.55 0.73 0.63 5.91
CFW 0.98 0.43 0.43 0.98 0.79 0.78 0.44 1.00 0.50 6.17
CT 0.99 0.53 0.53 0.99 0.97 0.97 0.07 0.99 0.49 11.82
EU-k - - - - - - - - - -
FCS 0.98 0.54 0.55 0.98 0.99 1.01 0.04 0.92 0.54 3.02
FF - - - - - - - - - -
FT 0.98 0.55 0.54 0.98 1.02 0.98 0.05 0.99 0.50 5.16
GA 0.34 0.33 0.24 0.34 0.60 0.44 1.61 0.90 0.55 39.97
IU - - - - - - - - - -
KDE 0.99 0.52 0.51 0.99 0.95 0.94 0.11 0.99 0.50 3.98
MSG 0.91 0.38 0.38 0.91 0.69 0.69 0.71 1.00 0.50 4.49
NG+ 0.89 0.59 0.49 0.89 1.08 0.89 0.29 0.98 0.49 12.14
O 0.98 0.98 0.56 0.98 1.81 1.02 0.85 0.53 0.73 1.10
PRMQ 0.97 0.47 0.46 0.97 0.86 0.85 0.32 1.00 0.50 4.34
R 1.00 0.55 0.55 1.00 1.00 1.00 0.00 0.99 0.49 1.00
RNI 0.99 0.45 0.45 0.99 0.83 0.82 0.36 0.98 0.49 3.65
SCRUB 0.97 0.50 0.53 0.97 0.91 0.96 0.15 0.98 0.51 3.81
SRL 1.00 0.55 0.52 1.00 1.00 0.95 0.06 0.98 0.49 3.67
SalUN 0.98 0.49 0.51 0.98 0.91 0.93 0.18 0.99 0.49 10.66

Table 8: UTKFace - ResNet18

RA FA TA RR FR TR RetDev Indisc T-MIA RTE
Unlearner

BT 1.00 0.74 0.73 1.00 1.00 0.96 0.04 0.99 0.50 12.48
CF-k 1.00 1.00 0.75 1.00 1.34 0.99 0.35 0.70 0.65 5.35
CFW 1.00 0.76 0.76 1.00 1.02 1.00 0.02 1.00 0.50 5.54
CT 1.00 0.75 0.76 1.00 1.01 1.00 0.01 0.99 0.50 13.34
EU-k 0.72 0.61 0.59 0.72 0.82 0.77 0.68 0.99 0.51 11.42
FCS 0.90 0.70 0.70 0.91 0.94 0.93 0.23 0.99 0.50 4.33
FF - - - - - - - - - -
FT 1.00 0.76 0.77 1.00 1.02 1.01 0.04 1.00 0.50 5.78
GA 0.49 0.47 0.40 0.49 0.63 0.53 1.34 0.92 0.54 235.10
IU 1.00 1.00 0.76 1.00 1.34 1.01 0.35 0.62 0.69 33.77
KDE 0.99 0.79 0.76 0.99 1.06 1.00 0.07 0.97 0.52 8.19
MSG 1.00 0.80 0.76 1.00 1.08 1.00 0.08 0.96 0.52 7.57
NG+ 0.94 0.80 0.72 0.95 1.07 0.95 0.18 0.99 0.51 6.73
O 1.00 1.00 0.76 1.00 1.34 1.01 0.35 0.61 0.69 1.09
PRMQ 0.91 0.72 0.72 0.91 0.97 0.95 0.17 1.00 0.50 5.88
R 1.00 0.75 0.76 1.00 1.00 1.00 0.00 1.00 0.50 1.00
RNI 0.96 0.75 0.73 0.96 1.01 0.96 0.08 0.98 0.51 5.11
SCRUB 0.80 0.76 0.69 0.80 1.01 0.92 0.29 0.94 0.53 4.64
SRL 1.00 0.80 0.73 1.00 1.08 0.97 0.11 0.99 0.51 12.05
SalUN 0.97 0.79 0.73 0.98 1.06 0.96 0.12 0.97 0.52 36.80

21



Table 9: MNIST - TinyViT

RA FA TA RR FR TR RetDev Indisc T-MIA RTE
Unlearner

BT 1.00 1.00 0.99 1.00 1.01 1.00 0.01 1.00 0.50 4.39
CF-k 1.00 1.00 0.99 1.00 1.01 1.00 0.01 0.99 0.51 123.88
CFW 1.00 0.99 0.99 1.00 1.00 1.00 0.00 0.99 0.50 5.15
CT 1.00 0.99 0.99 1.00 1.00 1.00 0.00 1.00 0.50 5.92
EU-k 1.00 1.00 0.99 1.00 1.01 1.00 0.01 0.99 0.50 11.93
FCS 1.00 1.00 0.99 1.00 1.01 1.00 0.01 0.99 0.49 7.42
FF - - - - - - - - - -
FT 1.00 0.99 0.99 1.00 1.00 1.00 0.01 1.00 0.50 7.69
GA 0.97 0.97 0.96 0.97 0.98 0.97 0.08 0.99 0.51 390.99
IU - - - - - - - - - -
KDE 1.00 0.99 0.99 1.00 1.00 1.00 0.01 1.00 0.50 5.35
MSG 1.00 0.99 0.99 1.00 1.00 1.00 0.00 1.00 0.50 5.21
NG+ 1.00 0.99 0.99 1.00 1.00 1.00 0.00 0.99 0.50 2.74
O 1.00 1.00 0.99 1.00 1.01 1.00 0.01 0.99 0.51 0.97
PRMQ 1.00 0.99 0.99 1.00 1.00 1.00 0.00 1.00 0.50 6.88
R 1.00 0.99 0.99 1.00 1.00 1.00 0.00 1.00 0.50 1.00
RNI 1.00 0.99 0.99 1.00 1.00 1.00 0.01 1.00 0.50 8.03
SCRUB 0.99 0.99 0.99 0.99 1.00 1.00 0.01 1.00 0.50 3.54
SRL 1.00 0.99 0.99 1.00 1.00 1.00 0.01 0.98 0.51 16.37
SalUN 1.00 1.00 0.99 1.00 1.01 0.99 0.01 0.99 0.50 43.67

Table 10: FashionMNIST - TinyViT

RA FA TA RR FR TR RetDev Indisc T-MIA RTE
Unlearner

BT 0.97 0.94 0.91 0.97 1.01 0.99 0.04 0.98 0.51 3.48
CF-k - - - - - - - - - -
CFW 0.99 0.94 0.92 0.99 1.01 1.00 0.02 0.99 0.51 5.40
CT 0.98 0.92 0.91 0.98 0.99 0.99 0.04 0.99 0.50 6.00
EU-k 0.95 0.94 0.91 0.95 1.01 0.99 0.07 0.97 0.51 5.34
FCS 0.98 0.93 0.91 0.98 1.01 0.99 0.04 0.98 0.51 4.58
FF - - - - - - - - - -
FT 0.99 0.94 0.92 1.00 1.01 1.00 0.02 0.98 0.51 5.12
GA 0.92 0.91 0.85 0.92 0.99 0.93 0.17 0.93 0.53 50.72
IU - - - - - - - - - -
KDE 1.00 0.94 0.92 1.00 1.02 1.00 0.02 0.98 0.51 3.38
MSG 0.96 0.92 0.91 0.96 1.00 0.99 0.05 0.99 0.51 8.21
NG+ 0.97 0.92 0.91 0.97 1.00 0.99 0.05 0.98 0.51 13.65
O 1.00 1.00 0.92 1.00 1.08 1.00 0.08 0.89 0.56 0.97
PRMQ 0.98 0.94 0.91 0.98 1.01 0.99 0.04 0.98 0.51 4.67
R 1.00 0.93 0.92 1.00 1.00 1.00 0.00 1.00 0.50 1.00
RNI 0.97 0.94 0.91 0.97 1.01 0.99 0.05 0.97 0.51 5.00
SCRUB 0.96 0.95 0.91 0.96 1.03 0.99 0.08 0.96 0.52 9.56
SRL 0.98 0.94 0.91 0.98 1.01 0.99 0.04 1.00 0.50 9.41
SalUN 0.97 0.94 0.91 0.97 1.01 0.99 0.05 0.99 0.51 6.53
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Table 11: CIFAR-10 - TinyViT

RA FA TA RR FR TR RetDev Indisc T-MIA RTE
Unlearner

BT 0.91 0.91 0.85 0.91 1.02 0.97 0.14 0.99 0.50 4.13
CF-k 0.99 0.89 0.84 0.99 1.00 0.95 0.06 0.96 0.52 5.18
CFW 0.98 0.87 0.84 0.99 0.98 0.96 0.07 0.98 0.51 28.85
CT 0.98 0.82 0.81 0.98 0.93 0.92 0.17 1.00 0.50 23.48
EU-k 0.90 0.90 0.84 0.90 1.02 0.95 0.16 0.97 0.52 43.25
FCS 0.98 0.84 0.83 0.98 0.95 0.94 0.13 0.99 0.49 5.15
FF - - - - - - - - - -
FT 1.00 0.87 0.84 1.00 0.98 0.95 0.07 0.98 0.51 5.85
GA 0.85 0.85 0.80 0.85 0.96 0.91 0.29 0.97 0.52 514.77
IU - - - - - - - - - -
KDE 0.97 0.86 0.84 0.97 0.97 0.96 0.11 0.99 0.50 5.27
MSG 1.00 0.85 0.83 1.00 0.96 0.94 0.10 0.99 0.51 7.38
NG+ 0.93 0.86 0.85 0.93 0.97 0.96 0.14 0.99 0.50 4.10
O 0.92 0.92 0.86 0.92 1.04 0.97 0.15 0.95 0.53 0.97
PRMQ 1.00 0.87 0.84 1.00 0.98 0.95 0.07 0.99 0.51 4.00
R 1.00 0.89 0.88 1.00 1.00 1.00 0.00 1.00 0.50 1.00
RNI 0.97 0.84 0.81 0.98 0.95 0.92 0.15 0.98 0.51 6.50
SCRUB 1.00 0.84 0.84 1.00 0.95 0.95 0.10 0.99 0.50 -
SRL 0.97 0.88 0.84 0.97 0.99 0.96 0.08 0.99 0.49 8.52
SalUN 0.96 0.89 0.85 0.96 1.00 0.96 0.08 0.99 0.50 8.30

Table 12: CIFAR-100 - TinyViT

RA FA TA RR FR TR RetDev Indisc T-MIA RTE
Unlearner

BT 0.82 0.66 0.57 0.82 1.11 0.96 0.33 0.94 0.53 31.63
CF-k 0.24 0.18 0.18 0.24 0.31 0.30 2.15 0.98 0.51 5.97
CFW 0.98 0.58 0.56 0.98 0.97 0.95 0.10 0.99 0.51 9.18
CT 0.97 0.55 0.55 0.98 0.93 0.93 0.17 0.99 0.49 9.80
EU-k 0.61 0.60 0.49 0.61 1.01 0.81 0.59 0.90 0.55 19.29
FCS 0.89 0.60 0.58 0.89 1.01 0.98 0.13 0.97 0.48 7.05
FF - - - - - - - - - -
FT 1.00 0.56 0.55 1.00 0.94 0.91 0.15 1.00 0.50 5.90
GA 0.60 0.58 0.46 0.60 0.97 0.77 0.66 0.87 0.56 91.91
IU - - - - - - - - - -
KDE 0.93 0.58 0.57 0.94 0.98 0.96 0.13 0.99 0.50 4.03
MSG 0.97 0.57 0.56 0.97 0.95 0.93 0.15 1.00 0.50 5.89
NG+ 0.84 0.57 0.55 0.84 0.95 0.92 0.29 0.96 0.52 3.01
O 0.87 0.87 0.61 0.87 1.46 1.02 0.61 0.74 0.63 0.98
PRMQ 0.95 0.62 0.57 0.95 1.03 0.96 0.13 0.95 0.52 5.58
R 1.00 0.60 0.60 1.00 1.00 1.00 0.00 1.00 0.50 1.00
RNI 0.85 0.52 0.51 0.85 0.87 0.85 0.42 0.99 0.50 5.38
SCRUB 0.77 0.64 0.57 0.77 1.08 0.96 0.35 0.93 0.53 6.17
SRL 0.98 0.57 0.57 0.98 0.96 0.96 0.11 0.97 0.49 5.92
SalUN 0.97 0.58 0.57 0.97 0.97 0.96 0.10 0.98 0.49 7.03
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Table 13: Ranking on ResNet

Retention Deviation Indiscernibility
Rank Method G1 G2 G3 F Rank Method G1 G2 G3 F

1 FT 5 0 0 0 1 CFW 5 0 0 0
2 FCS 4 1 0 0 1 CT 5 0 0 0
2 MSG 4 1 0 0 1 MSG 5 0 0 0
3 CT 4 0 1 0 1 RNI 5 0 0 0
3 KDE 4 0 1 0 2 FT 4 1 0 0
4 NG+ 3 2 0 0 2 KDE 4 1 0 0
4 PRMQ 3 2 0 0 2 NG+ 4 1 0 0
4 SalUN 3 2 0 0 2 PRMQ 4 1 0 0
5 CFW 3 1 1 0 3 FCS 3 2 0 0
6 SCRUB 3 0 1 1 3 SRL 3 2 0 0
7 SRL 2 3 0 0 3 SalUN 3 2 0 0
8 BT 1 4 0 0 4 SCRUB 3 1 0 1
8 RNI 1 4 0 0 5 BT 2 3 0 0
9 CF-k 1 2 1 1 6 EU-k 1 0 0 4
10 IU 1 0 2 2 7 GA 0 3 1 1
11 EU-k 0 1 0 4 8 CF-k 0 1 3 1
12 GA 0 0 4 1 9 IU 0 0 3 2
13 FF 0 0 0 5 10 FF 0 0 0 5

Table 14: Ranking of ViT

Retention Deviation Indiscernibility
Rank Method G1 G2 G3 F Rank Method G1 G2 G3 F

1 CFW 4 0 0 0 1 CT 4 0 0 0
1 MSG 4 0 0 0 1 MSG 4 0 0 0
1 PRMQ 4 0 0 0 2 KDE 3 1 0 0
2 CT 3 1 0 0 2 SalUN 3 1 0 0
2 FT 3 1 0 0 3 SRL 3 0 1 0
2 KDE 3 1 0 0 4 BT 2 2 0 0
2 SRL 3 1 0 0 4 CFW 2 2 0 0
2 SalUN 3 1 0 0 4 FCS 2 2 0 0
3 FCS 2 2 0 0 4 FT 2 2 0 0
3 NG+ 2 2 0 0 4 PRMQ 2 2 0 0
4 BT 1 3 0 0 4 RNI 2 2 0 0
4 RNI 1 3 0 0 4 SCRUB 2 2 0 0
4 SCRUB 1 3 0 0 5 NG+ 1 3 0 0
5 CF-k 1 1 1 1 6 CF-k 1 1 1 1
6 EU-k 0 4 0 0 7 EU-k 0 2 2 0
7 GA 0 1 3 0 8 GA 0 1 3 0
8 FF 0 0 0 4 9 FF 0 0 0 4
8 IU 0 0 0 4 9 IU 0 0 0 4

G L2 Distances between model weights.705

The distance between the Unlearned and Retrained models has also been considered in the literature706

to evaluate MU. Nevertheless, we observe that models end up at a similar distance to the Retrained707

model, with significant differences in performance. We further note that one challenging aspect of708

the L2 distance comparison is the different factors of Weight Decay used by the MU method. The709

hyper-parameter searches determine these Weight Decay factors, which can significantly vary from710

one unlearning method to another, making it challenging to compare methods. Furthermore, the711

best-performing method, MSG, is usually at the same distance as both the Original and Retrained712
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model. For each method, for each initialization seed, we computed the L2 distance between the713

unlearned model fU and the retrained model fR, as well as between the fU and fO (Figure 2).714

Although having the same weight as the Retrained model would indicate that the unlearned model has715

unlearned DF , our evaluations show that distance to the Retrained model might not be an adequate716

evaluation metric for MU.717

Figure 2: L2 Distance between the Unlearned ResNet18 models, the Original and Retrained models.
None of the unlearned models gets close to the Retrained model’s weights; most unlearned Models
are closer to the Original model than the Retrained model.

H Requirements718

We ran the experiments on compute clusters with different capacities. Nonetheless, each method was719

tested on devices with the same specifications when recording run times: 1 NVIDIA L4 24GB GPU720

and 4 Intel(R) Xeon(R) CPU @ 2.20GHz.721
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