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Supplementary materials are organized as follows. Appendix A reviews related work. Appendix B1

validates the correctness of our definition of PSG. Appendix C discusses the physical meaning of our2

proposed multi-objective static regret. Appendix D provides more details of DR-OMMD, including3

a discussion on the lazy version of mirror descent and how to efficiently compute the composition4

weights for the min-regularized-norm solver. Appendix E proves the tightness of DR-OMMD’s5

bounds and gives a more general dynamic regret bound for arbitrary temporal variability. Appendix6

F supplements more experimental results, including more results of adaptive regularization and7

an addition experiment in the online non-convex setting. In Appendix F.4, we discuss how to set8

hyperparameters when VT is unknown in the dynamic setting. Appendix G, H, and I provide detailed9

proofs of all theoretical claims in this work. Note that in Appendix D we fix a typo in the solution of10

min-regularized-norm (line 277), and in Appendix E we fix a typo in the remark below Theorem 4.411

(line 304); both typos do not affect the following parts.12

A Related Work13

In this section, we review previous work in three related fields, i.e., online learning, multi-objective14

optimization, and multi-objective multi-armed bandits.15

A.1 Online Learning16

Online learning arms to make sequential predictions for streaming data. Please refer to the introduction17

books [13, 23] for more background knowledges.18

Most of the previous works on online learning are conducted in the single-objective setting. As far as19

we are concerned, there are only two lines of work concerning multi-objective learning. The first line20

of works provides a multi-objective perspective of the prediction-with-expert-advice (PEA) problem21

[16, 17]. Specifically, they view each individual expert as a multi-objective criterion, and characterize22

the Pareto optimal trade-offs among different experts. These works have two main distinctions from23

our proposed MO-OCO. First, they are still built upon the original PEA problem where the payoff of24

each expert (or decision) is a scalar, while we focus on vectoral payoffs. Second, their framework25

is restricted to an absolute loss game, whereas our framework is general and can be applied to any26

coordinate-wise convex loss functions.27

The second line of work studies online learning with vectoral payoffs via Blackwell approachability28

[4, 21, 1]. In their framework, the learner is given a target set T ⊂ Rm and its goal is to generate29

decisions {xt}Tt=1 to minimize the distance between the average loss 1
T

∑T
t=1 lt(xt) and the target30

set T . There are two major differences between Blackwell approachability and our proposed MO-31

OCO: previous works on Blackwell approachability are zero-order methods and the target set T is32

often known beforehand (also see the discussion in [5]), while in MO-OCO we intend to develop a33

first-order method to reach the unknown Pareto front.34
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A.2 Multi-Objective Optimization35

Multi-objective optimization aims to optimize multiple objectives concurrently. Most of the previous36

works on multi-objective optimization are conducted in the offline setting, including the batch37

optimization setting [10, 19] and the stochastic optimization setting [27, 18, 32, 8, 15]. These38

methods are based on gradient composition, and have shown very promising results in multi-task39

learning applications.40

Despite the existence of previous works on multi-objective optimization, as the first work of multi-41

objective optimization in the OCO setting, our work is largely different from them in three aspects.42

First, we contribute the first formal framework of multi-objective online convex optimization. In43

particular, our framework is based on a novel equivalent transformation of the PSG metric, which is44

intrinsically different from previous offline optimization frameworks. Second, we provide a showcase45

in which a commonly used method in the offline setting, namely min-norm [10, 27], fail to attain46

sublinear regret in online setting. Our proposed min-regularized-norm is a novel design when tailoring47

offline methods to the online setting. Third, the regret analysis of multi-objective online learning is48

intrinsically different from the convergence analysis in the offline setting [32].49

A.3 Multi-Objective Multi-Armed Bandits50

Another branch of related works study multi-objective optimization in the multi-armed bandits setting51

[5, 29, 30, 20, 9]. Among these works, the most relevant one to ours is [30], which introduces the52

Pareto suboptimality gap (PSG) metric to characterize the multi-objective regret in the bandits setting,53

and proposes a zero-order zooming algorithm to minimize the regret.54

In this work, our regret definition also utilizes the PSG metric [30]. However, as the first study55

of multi-objective optimization in the OCO setting, our work is intrinsically different from these56

previous works in the following aspects. First, as PSG is a zero-order metric, we perform a novel57

equivalent transformation, making it amenable to the OCO setting. Second, our proposed algorithm58

is a first-order multiple gradient algorithm, whose design principles are completely distinct from59

zero-order algorithms. For example, the concept of the stability of composite weights does not even60

exist in the design of previous zero-order methods for multi-objective bandits [30, 20]. Third, the61

regret analysis of MO-OCO is intrinsically different from that in the bandits setting.62

B More Details of the Definition of PSG63

Recall that in Definition 2.3, we formulate the PSG metric as a constrained optimization problem.64

We note that, since the PSG metric is based on the notion of “non-dominance” [30], its most direct65

form is actually66

∆′(x;K∗, H) = inf
ϵ≥0

ϵ,

s.t. ∀x′′ ∈ K∗,∃i ∈ {1, . . . ,m}, hi(x)− ϵ < hi(x′′)

or ∀i ∈ {1, . . . ,m}, hi(x)− ϵ = hi(x′′).

At the first glance, the above definition seems to be quite different from Definition 2.3, since it has67

an extra condition “∀i ∈ {1, . . . ,m}, hi(x) − ϵ = hi(x′′)”. In the following, we prove that both68

definitions actually yield the same value due to the infimum operation on ϵ.69

Specifically, for any possible (x,K∗, H), we denote ∆′(x;K∗, H) = ϵ′0 and ∆(x;K∗, H) = ϵ0.70

By comparing the constraints of both definitions, it is obvious that ϵ0 must satisfy the constraint71

of ∆′(x;K∗, H), hence the infimum operation guarantees that ϵ′0 ≤ ϵ0. It remains to prove that72

ϵ′0 ≥ ϵ0. To this end, we only need to show that ϵ′0 + ξ satisfies the constraint of ∆(x;K∗, H) for73

any ξ > 0. Consider an arbitrary x′′ ∈ K∗. From the definition of ∆′(x;K∗, H), we know that74

either ∃i ∈ {1, . . . ,m}, hi(x)− ϵ′0 < hi(x′′) or ∀i ∈ {1, . . . ,m}, hi(x)− ϵ′0 = hi(x′′). Whichever75

condition holds, we must have ∃i ∈ {1, . . . ,m}, hi(x)−ϵ′0−ξ < hi(x′′) for any ξ > 0. Since it holds76

for any x′′ ∈ K∗, ϵ′0+ξ lies in the feasible region of ∆(x;K∗, H), hence we have ϵ0 ≤ ϵ′0+ξ,∀ξ > 077

and thus ϵ0 ≤ ϵ′0. In summary, we have ∆′(x;K∗, H) = ∆(x;K∗, H) for any (x,K∗, H).78

2



C More Details of The Multi-Objective Static Regret79

Recall that we formally formulate the multi-objective static regret RMOS(T ) by making an extension80

of the equivalent form of the dynamic variant in Proposition 3.1. In the following, we show that81

such an alternative form also has a clear physical meaning, i.e., it measures the distance from the82

cumulative loss
∑T

t=1 Ft(xt) to the global Pareto front P∗ = PX(
∑T

t=1 Ft), which is in the same83

spirit of PSG.84

Proposition C.1. Denote the Pareto optimal set of the cumulative loss function
∑T

t=1 Ft as X ∗, and85

define a metric86

∆′′({xt}Tt=1; {Ft}Tt=1) = inf
ϵ≥0

ϵ,

s.t. ∀x′′ ∈ X ∗,∃i ∈ {1, . . . ,m},
T∑

t=1

F i(xt)− ϵ <

T∑
t=1

F i(x′′).

Then the aforementioned multi-objective static regret RMOS(T ) equals to ∆′′({xt}Tt=1; {Ft}Tt=1) if87

RMOS(T ) ≥ 0.88

The proof is very similar to our derivation of the equivalent form of the dynamic variant, which is89

omitted here. The above defined metric ∆′′({xt}Tt=1; {Ft}Tt=1) can be viewed as PSG of the decision90

sequence {xt}Tt=1 w.r.t. the loss sequence {Ft}Tt=1, as it measures the distance between
∑T

t=1 Ft(xt)91

to P∗. From the above proposition, we know that when RMOS(T ) ≥ 0, it is exactly equivalent92

to ∆′′({xt}Tt=1; {Ft}Tt=1). Note that in the regret analysis, we are more interested in the case of93

RMOS(T ) ≥ 0, since when RMOS(T ) < 0, it is naturally bounded by any sublinear regret bound.94

Hence, bounding RMOS(T ) is essentially bounding ∆′′({xt}Tt=1; {Ft}Tt=1), which naturally drives95

the cumulative loss
∑T

t=1 Ft(xt) to the Pareto front.96

Remark. At its first glance, our defined regret RMOS(T ) can be optimized by using the linearization97

method with fixed weights λ0 ∈ Sm, or alternatively, optimizing a single objective i ∈ {1, ...,m}.98

But we remark that this is not a problem of our regret definition, but an intrinsic requirement of99

Pareto optimality. Specifically, Pareto optimality is the objective of multi-objective optimization,100

which characterizes the status where no objective can be improved without hurting the others. Hence101

merely optimizing a single objective naturally achieves Pareto optimality. Please refer to Proposition102

8 in [12] for the rigorous proof. As a general performance metric, our regret should indeed incorporate103

this special case. Moreover, simple linearization may not solve MOO optimally, and more advanced104

algorithms need to be motivated by extra insights from other aspects, such as the concept of “common105

descent” in MGDA [10]. Indeed, in both theory (see the remark below Theorem 4.4) and experiment106

(see empirical results in Figure 1), DR-OMMD achieves a smaller regret than linearization.107

D More Details of The Algorithm108

In this section, we provide more details to help better understand the design of DR-OMMD.109

First, we remark that our proposed DR-OMMD is actually based on the agile version of online mirror110

descent [13], where the updated model directly moves to its projecting point onto the decision set111

at each round. However, we can easily make an analogy and devise a lazy version of DR-OMMD.112

Specifically, we only need to use a lazy projection operation in the mirror descent step with the113

composite gradient instead of the agile projection operation (line 8 in Algorithm 1). Note that, the114

analysis of the lazy version is very similar to that of the agile version [13].115

In the following, we give more details of the calculation of min-regularized-norm, and discuss an116

adaptive version of DR-OMMD with adaptive learning rates ηt and regularization strengths αt. Note117

that there is a typo in the closed-form solution to min-regularized-norm when m = 2 in our main118

paper (line 277): "ηt = max{min{γ′′
t , 0}, 1}" should be "ηt = max{min{γ′′

t , 1}, 0}" (see the strict119

proof of Proposition D.1).120

D.1 More Details of the Calculation of Min-Regularized-Norm121

Similar to [27], we first consider the setting of two objectives, namely m = 2. In this case, for any122

λ = (γ, 1− γ), λ0 = (γ0, 1− γ0) ∈ S2, the L1-regularization ∥λ− λ0∥1 equals to 2|γ− γ0|. Hence123
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min-regularized-norm at round t reduces to λt = (γt, 1− γt) where124

γt ∈ argmin
0≤γ≤1

∥γg1 + (1− γ)g2∥2 + 2α|γ − γ0|.

Interestingly, we find that the above problem has a closed-form solution.125

Proposition D.1. Set γL = (g⊤2 (g2−g1)−α)/∥g2−g1∥2, and γR = (g⊤2 (g2−g1)+α)/∥g2−g1∥2.126

Then min-regularized-norm produces weights λt = (γt, 1− γt) where127

γt = max{min{γ′′
t , 1}, 0}, where γ′′

t = max{min{γ0, γR}, γL}.

Proof. We solve the following two quadratic sub-problems, i.e.,128

min
0≤γ≤γ0

h1(γ) = ∥γg1 + (1− γ)g2∥2 + 2α(γ0 − γ),

as well as129

min
γ0≤γ≤1

h2(γ) = ∥γg1 + (1− γ)g2∥2 + 2α(γ − γ0).

It can be checked that in the former sub-problem, h1 monotonously decreases on (−∞, γR] and130

increases on [γR,+∞); in the latter sub-problem, h2 monotonously decreases on (−∞, γL] and131

increases on [γL,+∞). Since each sub-problem has its constraint ([0, γ0] or [γ0, 1]), the solution to132

the original optimization problem can then be derived by comparing the optimal values of the two133

sub-problems with their constraints. Specifically, notice that γL ≤ γR and 0 ≤ γ0 ≤ 1, and we can134

consider the following three cases.135

(i) When 0 ≤ γ0 ≤ γL ≤ γR, then h1 monotonously decreases on [0, γ0] and its minimum on136

[0, γ0] is h1(γ0). Notice that h1(γ0) = h2(γ0). For the sub-problem of h2, we further consider two137

situations:138

(i-a) If γL ≤ 1, then γL ∈ [γ0, 1], hence the minimum of h2 on [γ0, 1] is h2(γL). Since h2(γL) ≤139

h2(γ0) = h1(γ0), the minimal point of the original problem is γL, and hence γt = γL.140

(i-b) If γL > 1, then h2 monotonously decreases on [γ0, 1], and we surely have h2(1) ≤ h2(γ0) =141

h1(γ0). Hence γt = 1 in this situation.142

Combining the above two situations, we have γt = min{γL, 1} in this case.143

(ii) When γL ≤ γR ≤ γ0 ≤ 1, then h2 monotonously increases on [γ0, 1] and its minimum on [γ0, 1]144

is h2(γ0). Notice that h1(γ0) = h2(γ0). For the sub-problem of h1, similar to the first case, we also145

consider two situations:146

(ii-a) If γR ≥ 0, then γR ∈ [0, γ0], hence the minimum of h1 on [0, γ0] is h1(γR). Since h1(γR) ≤147

h1(γ0) = h2(γ0), the minimal point of the original problem is γR, and hence γt = γR.148

(ii-b) If γR < 0, then h1 monotonously increases on [0, γ0]. Hence we have h1(0) ≤ h1(γ0) =149

h2(γ0). Hence the solution to the original problem γt = 0.150

Combining the above two situations, we have γt = max{γR, 0} in this case.151

(iii) When γL < γ0 < γR, then h1 monotonously decreases on [0, γ0] and h2 monotonously increases152

on [γ0, 1]. Hence each sub-problem attains its minimum at γ0, and thus γt = γ0.153

Summarizing the above three cases gives154

γt =


min{γL, 1}, γ0 ≤ γL;

max{γR, 0}, γ0 ≥ γR;

γ0, otherwise.

We can further rewrite the above formula into a compact form as follows, which can be checked155

case-by-case.156

γt = max{min{γ′′
t , 1}, 0}, where γ′′

t = max{min{γ0, γR}, γL},

This gives the closed-form solution of min-regularized-norm when m = 2. ■157

Now that we have derived the closed-form solution to the min-regularized-norm solver with any two158

gradients, in principle, we can apply [27]’s technique to efficiently compute the solution to the solver159

with more than two gradients. We provide the full procedure in Algorithm 1, which is an extension of160

[27]. By following the exact line search technique [14] in MGDA, we get our line search oracle as161

line 5 in Algorithm 1. The first term is the same as that in MGDA, and the second term is an extra162
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Algorithm 1 Frank-Wolfe Solver for Line 6 in Algorithm 1
1: Initialize: λt = (γ1

t , . . . , γ
m
t ) = ( 1

m , . . . , 1
m ).

2: Compute the matrix U = ∇Ft(xt)
⊤∇Ft(xt), i.e., Uij = ∇f i

t (xt)
⊤∇f j

t (xt),∀i, j ∈
{1, . . . ,m}.

3: repeat
4: Select an index k ∈ argmaxi∈{1,...,m}{

∑m
j=1 γ

j
tUij + α sgn(γi

t − γi
0)}.

5: Compute δ ∈ argmin0≤δ≤1

∥∥δ∇fk
t (xt) + (1− δ)∇Ft(xt)λt

∥∥2
2
+α∥δ(ek−λt)+λt−λ0∥1.

6: Update λt = (1− δ)λt + δek.
7: until δ ∼ 0 or Number of Iteration Limits
8: return λt.

l1-regularization term related to the design in Algorithm 1. Unlike the oracle of MGDA that has a163

closed-form solution by a reduction to the case of two gradients, the extra l1-norm term makes our164

oracle difficult to get a closed-form solution. The reason is that, such an extra term is the l1-norm of165

a m-dimension vector, hence it can not simply reduce to the case of two gradients. To proceed, we166

can directly apply numerical methods to get the solution (e.g. similar to the implementation in [19]).167

D.2 An Adaptive Version of DR-OMMD168

We discuss an alternative version of DR-OMMD with adaptive ηt and αt, termed A-DR-OMMD. The169

algorithm is presented in Algorithm 2. The analysis of A-DR-OMMD is very similar to the original170

DR-OMMD algorithm. We provide a static regret bound of A-DR-OMMD as below.171

Theorem D.2. Assume the assumptions of Theorem 4.4 hold. Then for any λ0 ∈ Sm and non-172

increasing {ηt}Tt=1, A-DR-OMMD attains the following static regret173

RMOS(T ) ≤
γD

ηT
+
∑T

t=1

ηt
2
(∥∇Ft(xt)λt∥22 +

4F

ηt
∥λt − λ0∥1).

Corollary D.3. When ηt =
√
2γD

G
√
t
, αt =

4F
ηt

, the above bound is in the order of O(
√
T ).174

Then we give a dynamic regret bound of A-DR-OMMD as follows.175

Theorem D.4. Assume the assumptions of Theorem 4.6 hold. Then for any λ0 ∈ Sm and non-176

increasing {ηt}Tt=1, A-DR-OMMD attains the following dynamic regret177

RMOD(T ) ≤
γDVT

G2η2T
+

T∑
t=1

ηt
2
(∥∇Ft(xt)λt∥2∗ +

8G2FT

VT
(
ηT
ηt

)

T∑
t=1

∥λt − λ0∥1) + 2ηTG
2T.

Corollary D.5. When ηt = 1
G (γDVT

Gt )1/3, αt = 8G2FT
VT

(ηT

ηt
), the above bound is in the order of178

O(T 2/3V
1/3
T ).179

E More Details of The Theoretical Analysis180

In this section, we provide more details and highlight technical lemmas in theoretical analysis, which181

are omitted in our main paper due to space limitation. Note that there is a typo in the main paper: in182

the remark below Theorem 4.4 (line 304), "ηt =
√
2γD

G
√
t
, αt =

4F
ηt

" should be "η =
√
2γD

G
√
T
, α = 4F

η "183

(see the strict proof of Corollary E.1), which does not affect the following remarks.184

E.1 The Tightness of DR-OMMD’s Bounds185

Recall that in the remarks below Theorem 4.4 and 4.6 in our main paper, we give the order of the186

static regret bound O(
√
T ) and the dynamic regret bound O(V

1/3
T T 2/3) for DR-OMMD with proper187

choices of η and α. They are actually directly derived from the main theorems. We present these188

results in formal corollaries as follows.189
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Algorithm 2 An Adaptive Version of DR-OMMD (A-DR-OMMD)
1: Input: Convex set X , time horizon T , regularization parameters αt, learning rates ηt, regular-

ization function R, user preference λ0.
2: Initialize: x1 ∈ X .
3: for t = 1, . . . , T do
4: Predict xt and receive a loss function Ft : X → Rm.
5: Compute the multiple gradients ∇Ft(xt) = [∇f1

t (xt), . . . ,∇fm
t (xt)] ∈ Rn×m.

6: Determine the weights for the gradient composition via min-regularized-norm
λt = argmin

λ∈Sm

∥∇Ft(xt)λ∥22 + αt∥λ− λ0∥1.

7: Compute the composite gradient gt = ∇Ft(xt)λt.
8: Perform online mirror descent using gt

xt+1 = argmin
x∈X

ηt⟨gt, x⟩+BR(x, xt).

9: end for

Corollary E.1. With η =
√
2γD

G
√
T

and α = 4F
η , for any λ0 ∈ Sm, DR-OMMD achieves the following190

static regret191

RMOS(T ) ≤ O(
√
T ).

Corollary E.2. With η = 2
G (γDVT

GT )1/3 and α = 8FG2T
VT

, for any λ0 ∈ Sm, DR-OMMD achieves the192

following dynamic regret193

RMOD(T ) ≤ O(V
1/3
T T 2/3).

Next we show that both of the derived bounds are tight w.r.t. m regarding any gradient-based194

algorithm. Specifically, we follow the standard worst-case analysis of deriving lower bounds and195

construct a special case in which any gradient-based algorithm will incur a static or dynamic regret in196

the order of Ω(
√
T ) or Ω(V 1/3

T T 2/3).197

Consider the case in which f1
t = f2

t = · · · = fm
t at each round t. In this case, the instantaneous198

gradients of all the objectives are identical, i.e., git = ∇f i
t (xt) ≡ ∇f1

t (xt) = g1t ,∀i ∈ {1, ...,m}.199

For any gradient-based algorithm, since it can only utilize the gradient information of the objectives,200

it cannot distinguish the objective to which a certain gradient belongs. Alternatively speaking, in this201

case, any multiple gradient algorithm will treat all gradients in the same way and thus behave like202

a single-objective algorithm using the single gradient g1t . Hence, in intuition, for any gradient-based203

algorithm, the worst-case bounds are at least independent of m. In particular, the worst-case bounds204

of gradient-based algorithms cannot decrease as m increases; otherwise, the above case will be205

violated.206

In the following, we take the static regret as an example and give a detailed proof of the tightness of207

the O(
√
T ) bound. In the above case, since f1

t = f2
t = · · · = fm

t ,∀t, the cumulative losses of all the208

objectives are also identical, i.e.,
∑T

t=1 f
1
t =

∑T
t=1 f

2
t = · · · =

∑T
t=1 f

m
t . Therefore, the Pareto set209

X ∗ of the cumulative vector loss
∑T

t=1 Ft coincides with the optimal decision set of the cumulative210

loss
∑T

t=1 f
1
t of the first objective, i.e., X ∗ = argminx∈X

∑T
t=1 f

1
t (x). From our definition of the211

multi-objective static regret, since λ⊤Ft(x) = f1
t (x) for any λ ∈ Sm, we have212

RMOS(T ) = sup
x∗∈X∗

(

T∑
t=1

f1
t (xt)−

T∑
t=1

f1
t (x

∗)) =

T∑
t=1

f1
t (xt)− min

x∗∈X

T∑
t=1

f1
t (x

∗),

which exactly reduces to the static regret RS(T ) defined by the losses {f1
t }Tt=1 of the first objective.213

Hence we have RMOS(T ) = RS(T ) in this case. Since the losses {f1
t }Tt=1 of the first objective can214

be chosen adversarially, we can follow Section 3.2 in [13] to construct a certain sequence {f1
t }Tt=1215

that admits a lower bound of Ω(
√
T ). Hence in this certain case, any multiple gradient algorithm will216

admit RMOS(T ) = Ω(
√
T ) w.r.t. T and m, matching our derived static regret bound for DR-OMMD217

in terms of both T and m.218

As for the multi-objective dynamic regret, the analysis is similar. Specifically, since the losses of219

all the objectives are identical, the Pareto set X ∗
t of the instantaneous loss Ft coincides with the220
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optimal decision set of the scalar loss f1
t of the first objective, i.e., X ∗

t = argminx∈X f1
t (x). Since221

λ⊤Ft(x) = f1
t (x) for any λ ∈ Sm, from Proposition 3.1, we have that the multi-objective dynamic222

regret223

RMOD(T ) = sup
x∗
t∈X∗

t ,1≤t≤T

T∑
t=1

(f1
t (xt)− f1

t (x
∗
t )) =

T∑
t=1

(f1
t (xt)− min

x∗
t∈X

f1
t (x

∗
t )),

which exactly reduces to the single-objective dynamic regret RD(T ) defined by the losses {f1
t }Tt=1224

of the first objective. Hence we have RMOD(T ) = RD(T ) in this case. Recall that in single-objective225

dynamic online learning [3, 33], the best attainable bound is RD(T ) = O(V
1/3
T T 2/3). Therefore,226

the best attainable bound w.r.t. T and m we may expect in this case is RMOD(T ) = O(V
1/3
T T 2/3),227

and our derived dynamic regret bound for DR-OMMD matches the order in terms of T and m.228

Some readers may suspect it unreasonable that in the multi-objective setting, the derived regret229

bounds do not increase as m increases. Now we explicate the rationality of such independence in the230

following.231

For the dynamic version RMOD(T ), the independence of m lies in the adoption of PSG in the232

formulation of the regret. Recall that, in the definition of PSG, “∃i ∈ {1, . . . ,m}” means that it233

just needs to pick one coordinate i to satisfy f i
t (xt) − ϵ < f i

t (x
′′), which omits the dependency234

of m. We can see this point from another perspective. Recall that in Proposition 1, PSG at each235

round t has an equivalent form, namely supx∗
t
infλ∗

t∈Sm
(λ∗

t )
⊤(Ft(xt) − Ft(x

∗
t )), or equivalently236

supx∗
t
mini∈{1,...,m}(f

i
t (xt) − f i

t (x
∗
t )). In particular, PSG takes a minimum operation over all237

objectives, and thus it does not necessarily increase as m increases. For the static version RMOS(T ),238

it similarly takes an infimum over λ∗ ∈ Sm, or equivalently a minimum operation over all objectives239

i ∈ {1, . . . ,m}, and thus it does not necessarily grow with m either.240

There is another intuitive way that can help understand the rationality of the independence of m.241

As is well recognized in existing research in multi-objective optimization [12], the proportion of242

the Pareto optimal solutions (or more precisely, non-dominated solutions) in the decision domain243

tends to increase rapidly as the number of objectives increases. As a consequence, it might not be244

harder to reach the Pareto optimal set when m turns larger, hence intuitively, the regret bound does245

not necessarily increase as m increases.246

E.2 More Details in the Comparison with Linearization247

Recall that in the remark below Theorem 4.4, we show that our derived bound for DR-OMMD is248

smaller than that of linearization. We here remark that the two bounds are basically in the same order.249

Note that this theoretical result is also very commonly seen in the offline setting, where multiple250

gradient algorithms often have the same (convergence) rate as linearization [32, 19]. The benefit251

of multiple gradient algorithms is mainly due to the implementation of gradient composition. For252

example, the concept of common descent [27, 32] eliminates the gradient conflicting issue; the253

resulting algorithm achieves substantial performance improvements compared to linearization in254

their experiments. In this paper, we also consider the concept of common descent in the design of255

DR-OMMD, which has the intrinsic superiority over linearization. We further show that DR-OMMD256

attains smaller bounds than linearization in theory, and significantly outperforms linearization in257

experiments, which are the best we can do for now. More-refined regret bound comparisons are left258

as an open question.259

E.3 A More Detailed Dynamic Regret Bound for DR-OMMD260

We first introduce an important lemma for our analysis of dynamic regret.261

Lemma E.3. Suppose the diameter of the decision set X is bounded by D. Assume Ft is bounded,262

i.e., |f i
t (x)| ≤ F for any x ∈ X , t ∈ {1, . . . , T}, i ∈ {1, . . . ,m}. Then for any λ0 ∈ Sm,∆ ∈263
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{1, . . . , T}, DR-OMMD attains the following dynamic regret264

RMOD(T ) ≤ 2∆

T−1∑
t=1

sup
x∈X

|f i
t (x)− f i

t+1(x)|+
γD

η
⌈T
∆
⌉

+
η

2

T∑
t=1

∥∇Ft(xt)λt∥2∗ + 4∆FT

T∑
t=1

∥λt − λ0∥1.

In Corollary E.2, we only give the order of DR-OMMD’s regret bound w.r.t. the core factors m,T265

and VT . In the following theorem, we supplement a more detailed regret bound for DR-OMMD266

which explicates the dependency of other factors on the regret. The proof is presented in Appendix I.267

Theorem E.4. Set η = 2
G (γDVT

GT )1/3 and α = 8FG2T
VT

. Then for any λ0 ∈ Sm,∆ ∈ {1, . . . , T},268

DR-OMMD attains the following dynamic regret269

RMOD(T ) ≤ (
γD

G4
)1/3

(VT )
1/3

T 1/3

T∑
t=1

inf
λ∈Sm

(∥∇Ft(xt)λ∥2∗ +
8FG2T

VT
∥λ− λ0∥1)

+ 2(γDG2)1/3(VT )
1/3T 2/3.

Note that, as we have discussed in our main paper, just like its simplified version Corollary E.2, the270

above theorem is derived under the assumption of “regular” temporal variability, namely Ω(1) ≤271

VT ≤ o(T ), which is implicitly assumed in other works for dynamic online learning [3, 31, 6]. To272

give a more general analysis, in the following subsection, we also provide strict regret bounds that273

are valid for arbitrary VT ∈ [0,∞).274

E.4 Dynamic Regret Bounds for DR-OMMD Under Arbitrary Temporal Variability275

We here provide a detailed dynamic regret bound for DR-OMMD under arbitrary temporal variability276

VT ∈ [0,∞). Specifically, we first give a detailed regret bound in analogy to Theorem E.4. The proof277

of this theorem is given in Appendix I.278

Theorem E.5. In DR-OMMD, set η = min{max{ 2
G (γDVT

GT )1/3, 4VT

G2T },
4VT

G2 } and α = 8FG2T
VT

.279

Then it attains the following dynamic regret280

RMOD(T ) ≤ max{(γD
G4

)1/3
(VT )

1/3

T 1/3

T∑
t=1

inf
λ∈Sm

(
8FG2T

VT
∥λ− λ0∥1 + ∥∇Ft(xt)λ∥2∗

)
+ 2(γDG2)1/3(VT )

1/3T 2/3, 6VT ,
3G

2
(2γD)1/2T 1/2}.

The above bound can be rewritten into a simpler form, if we are only interested in its order w.r.t.281

m,T and VT , just as in Corollary E.2.282

Corollary E.6. In DR-OMMD, set η = min{max{ 2
G (γDVT

GT )1/3, 4VT

G2T },
4VT

G2 } and α = 8FG2T
VT

.283

Then it attains the following dynamic regret284

RMOD(T ) ≤ max{O(VT
1/3T 2/3), O(VT ), O(T 1/2)}.

F More Experimental Results285

F.1 More Details of the Experimental Setup286

The protein and covtype datasets used in our experiments are publicly available in [11]. The287

MultiMNIST dataset is acquired by the code provided by [27].288

All runs are deployed on Xeon(R) E5-2699 @ 2.2GHz.289

F.2 More Results for Adaptive Regularization290

We supplement the empirical results on covtype in Figure 1, which have been omitted from our main291

paper due to the lack of space. These results are consistent with the results on protein as presented in292

our main paper.293
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Figure 1: Results to verify the effectiveness of adaptive regularization on covtype. (a) Performance of
DR-OMMD and linearization under varying λ0 = (λ1

0, 1− λ1
0). (b) Performance using the optimal

weights λ0 = (0.1, 0.9).
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Figure 2: Results to verify the effectiveness of DR-OMMD for online deep learning. The plots
show the average cumulative loss, training loss and test loss for both tasks (task L and task R) on
MultiMNIST.

F.3 Non-Convex Experiments: Deep Multi-Task Learning via Multi-Objective Optimization294

We evaluate DR-OMMD in the online non-convex setting. We adopt MultiMNIST [26], which is295

a multi-task version of the MNIST dataset for image classification and commonly used in deep296

multi-task learning [27, 18]. In MultiMNIST, each sample is constructed by putting a random image297

of some digit at the top-left and another image at the bottom-right. The goal to classify the digit at298

the top-left (task L) and that at the bottom-right (task R) at the same time.299

We follow [27]’s setup and adopt the LeNet architecture. For linearization, we examine two choices300

of weights (0.5, 0.5) and (0.75, 0.25) [18]. For all the examined algorithms, learning rates η are301

selected via a grid search over {0.0001, 0.001, 0.01, 0.1}. For DR-OMMD, the parameter α is set302

according to Theorem 4.4, and the initial weights are simply set as λ0 = (0.5, 0.5). Note that in303

online experiments, samples arrive at the learner one after another in a sequential manner, which is304

largely different from offline experiments where batches of samples are randomly sampled from the305

training set.306

Figure 2 compares the average cumulative loss, training loss and test loss of all the examined307

algorithms. Note that the first metric is often used in online experiments and the last two are308

commonly used in offline experiments [25]. The results show that DR-OMMD outperform counterpart309

algorithms using min-norm or linearization in all metrics on both tasks, which verifies the effectiveness310

of DR-OMMD in the online non-convex setting.311

312

F.4 More Results for Simulation Experiment: Handling Unknown VT313

Recall that our analysis of the multi-objective dynamic regret RMOD(T ) follows the dynamic setting314

of [3], where the temporal variability VT is assumed to be known in advance. However, in many315

real-world application scenarios, the value of VT is often unknown to the learner. Since the step size316
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Figure 3: The plot compares the performance of DR-OMMD using grid search, DR-OMMD using
estimated VT , DR-OMMD using true VT , and the two baselines.

η and the regularization strength α in DR-OMMD depend on VT , we need to handle unknown VT317

when applying DR-OMMD to these scenarios.318

In fact, in online learning, it is ubiquitous that the choice of hyperparameters depends on the value of319

some parameters that are hard to know in advance [24, 3]. Typically, there are many approaches to320

handle unknown parameters. Here we discuss three of them in the existing literature.321

The first way is to conduct a grid search on the unknown parameter and choose the best setting from322

the grid [22]. Since the only unknown parameter in our dynamic setting is VT , similar to the grid323

search conducted in [22], we can directly perform a grid search on VT and then derive η and α from324

VT . Specifically, we set the grid of VT as {2i | 1 ≤ i ≤ N1}. Then the hyperparameters can be set as325

η = 2
G (γDv

GT )1/3 and α = 8FG2T
v for v ∈ {2i | 1 ≤ i ≤ N1}. In the simulation experiment, since326

the time horizon T = 10000 and the maxima of the loss function F ≤ 9, we set N1 = 17 so that any327

possible VT lies in the range of our grid [2, 2N1 ]. We conduct DR-OMMD using the above grid, and328

find that the best value of v is 13.329

The second way is to fit the unknown parameter into some growth pattern w.r.t. T . For example, [3]330

assume VT = T β and estimate the value of β. Following [3], we can estimate β according to the first331

T ′ rounds. In the simulation experiment, we set T ′ = 1000, which is considerably small compared to332

the total time horizon T = 10000. We first simulate for T ′ rounds and derive the estimate β̂ = 0.95,333

then use VT = T 0.95 to decide the hyperparameters η and α.334

The third way is to combine the above grid search with a meta-algorithm [34]. For example, [34]335

runs multiple dynamic algorithms with varying hyperparameters and uses a meta-algorithm called336

VariationHedge to integrate the decision of each algorithm. Following [34], in practice, we can run337

multiple DR-OMMDs where η and α are decided by the above grid VT ∈ {2i | 1 ≤ i ≤ N1}.338

We realize the first two approaches in the simulation experiment, and compare their performance339

with DR-OMMD using the true VT and min-norm and lin-opt in Figure 3. The results show that340

DR-OMMD equipped with the above approaches perform comparably to DR-OMMD using the true341

VT and substantially outperforms the two examined baselines. Specifically, the average regret of342

DR-OMMD using grid search is 0.0211, and the average regret of DR-OMMD using estimated VT is343

0.0216. They are slightly worse than DR-OMMD using the true VT (0.0209) but still substantially344

better than the min-norm (0.0772) and lin-opt (0.0302) baselines.345

G Omitted Proofs of Proposition 3.1 (The Equivalent Form of346

Multi-Objective Dynamic Regret)347

Proof. We first analyze the PSG measurement ∆t(xt) at each round t ∈ {1, . . . , T}. Specifically,348

for any comparator x ∈ X , we first define the pair-wise suboptimality gap between decisions xt349

and x, i.e.,350

δt(xt;x) = inf
ϵ≥0

{ϵ | Ft(xt)− ϵ1 ⊁ Ft(x)}.
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Then PSG can be expressed via ∆t(xt) = supx∈PX(Ft) δt(xt, x).351

We then focus on the pair-wise gap δt(xt;x) w.r.t. any Pareto optimal decision x ∈ X ∗
t ≡ PX(Ft).352

Since x is a Pareto optimal decision of Ft, from the definition of Pareto optimality, there must exist353

some i ∈ {1, . . . ,m} such that f i
t (xt)− f i

t (x) ≥ 0.354

The pair-wise suboptimality gap has an equivalent expression, namely,355

δt(xt;x) = min
k∈{1,...,m}

{(fk
t (xt)− fk

t (x))+},

where (l)+ = max{l, 0}, l ∈ R is the truncation operator. Denote Um = {ek | 1 ≤ k ≤ m} as the356

set of all unit vector in Rm, then we equivalently have357

δt(xt;x) = min
λ∈Um

λ⊤(Ft(xt)− Ft(x))+.

Note that, we here slightly abuse the truncation operator (l)+ to allow l to be a vector in Rm, which358

represents the vector whose i-th coordinate equals to max{li, 0} for any i ∈ {1, . . . ,m}.359

Now the calculation of δt(xt;x) becomes a minimization problem over λ ∈ Um. Since Um is a360

discrete set, we can apply a linear relaxation trick. Specifically, we now turn to minimize the quantity361

p(λ) = λ⊤(Ft(xt) − Ft(x))+ over the convex curvature of Um, which is exactly the probability362

simplex Sm = {λ ∈ Rm | λ ≻ 0, ∥λ∥1 = 1}. Note that, Um contains all vertexes of Sm. Since363

infλ∈Sm p(λ) is a linear optimization problem, the minimal point λ∗
t
⊤ must be a vertex of the simplex,364

i.e., λ∗
t
⊤ ∈ Um. Thus the relaxed problem is equivalent to the original problem, namely,365

min
λ∈Um

λ⊤(Ft(xt)− Ft(x))+ = inf
λ∈Sm

λ⊤(Ft(xt)− Ft(x))+.

For now, we have transformed the calculation of pair-wise suboptimality gap δt(xt;x) into a opti-366

mization problem of finding the minimal linear scalarization of (Ft(xt)− Ft(x))+. Hence, the PSG367

at each round t can be expressed as368

∆t(xt) = sup
x∈X∗

t

inf
λ∈Sm

λ⊤(Ft(xt)− Ft(x))+.

In the above expression, the existence of truncation operator (·)+ will incur irregularity (i.e., non-369

linearity) when we try to optimize the loss Ft. Suprisingly, we find that such operator can be dropped370

when we compute ∆t(xt) w.r.t. the Pareto set X ∗
t , as shown in the following.371

Lemma G.1. Let X ∗
t be the Pareto set of Ft : X → Rm. Then for any xt ∈ X , it holds that372

sup
x∈X∗

inf
λ∈Sm

λ⊤(Ft(xt)− Ft(x))+ = sup
x∈X∗

t

inf
λ∈Sm

λ⊤(Ft(xt)− Ft(x)).

Proof. Define the alternative “gap” metric without the truncation operator as δ′t(xt;x) =373

infλ∈Sm λ⊤(Ft(xt) − Ft(x)). Moreover, define the supremum of δ′t(xt;x) over x ∈ X ∗
t as374

∆′
t(xt) = supx∈X∗

t
δ′t(xt;x). Then from the definition of truncation operator (·)+, we have375

δ(xt;x) ≥ δ′(xt;x) and ∆t(xt) ≥ ∆′
t(xt).376

It then suffices to prove that, for any given xt ∈ X , there exists some certain x∗
t ∈ X ∗

t such that the377

value of δ′(xt;x
∗
t ) can be as large as ∆t(xt). Indeed, if this is the case, then ∆t(xt) ≤ ∆′

t(xt), and378

hence the two quantities ∆t(xt) and ∆′
t(xt) are equal. We consider the following two cases:379

(i) xt is already a Pareto optimal point of Ft, i.e., xt ∈ X ∗
t . Then from the definition of PSG, we380

directly have ∆t(xt) = 0. Notice that δ′(xt;xt) = 0, and hence ∆t(xt) = supx∈X∗
t
δ′(xt;x) ≥381

δ′(xt;xt) = 0. Consequently, the relation ∆t(xt) ≤ ∆′
t(xt) holds in this case.382

(ii) xt is not a Pareto optimal point of Ft, i.e., xt /∈ X ∗
t . Then we have ∆t(xt) > 0. Set ϵ = ∆t(xt),383

and denote x∗
t ∈ argmaxx∈X∗

t
δt(xt;x), then δt(xt;x

∗
t ) = ϵ > 0. Therefore, from the definition of384

δt(xt;x
∗
t ) we know that, for any i ∈ {1, . . . ,m}, we have f i

t (xt)− f i
t (x

∗
t ) ≥ ϵ. Thus all entries of385

Ft(xt)− Ft(x
∗) are positive, and we have (Ft(xt)− Ft(x

∗))+ = Ft(xt)− Ft(x
∗). Consequently,386

we have ∆′
t(xt) = supx∈X∗

t
δ′t(xt;x) ≥ δ′(xt;x

∗
t ) = δ(xt;x

∗
t ) = ∆t(xt). ■387
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From the above lemma, the PSG measurement at round t has an equivalent form as388

∆t(xt) = sup
x∈X∗

t

inf
λ∈Sm

λ⊤(Ft(xt)− Ft(x)),

and correspondingly, the multi-objective dynamic regret becomes389

RMOD(T ) =

T∑
t=1

∆t(xt) =

T∑
t=1

sup
x∈X∗

t

inf
λ∈Sm

λ⊤(Ft(xt)− Ft(x)).

Since the time horizon T is finite, we can first swap the summation over t and the supremum over x,390

then swap the summation over t and the infimum over λ. Then the multi-objective dynamic regret391

further equals to392

RMOD(T ) = sup
x∗
t∈X∗

t ,1≤t≤T
inf

λ∗
1 ...,λ

∗
t∈Sm

T∑
t=1

(λ∗
t
⊤Ft(xt)− λ∗

t
⊤Ft(x

∗
t )),

which proves the proposition. ■393

H Omitted Proofs of Proposition 4.1 (Min-Norm May Incur Linear Regrets)394

Proof. As we have described in our main paper, we consider the following two-objective optimization395

problem. Decision domain is set as X = {(u, v) | u+ v ≤ 1
2 , v − u ≤ 1

2 , v ≥ 0}. At each round t,396

the loss function Ft : X → R2 takes397

Ft(x) =

{
(∥x− a∥2, ∥x− b∥2), t = 2k − 1, k = 1, 2, ...;

(∥x− b∥2, ∥x− c∥2), t = 2k, k = 1, 2, ...,

where a = (−2,−1), b = (0, 1), c = (2,−1). For simplicity of analysis, we first consider the case398

when the total time horizon T is an even number. Then it can be checked that the cumulative loss399

function takes400

T∑
t=1

Ft(x) =
T

2
· (∥x− a∥2 + ∥x− b∥2, ∥x− b∥2 + ∥x− c∥2)

= T · ((u+ 1)2 + v2 + 2, (u− 1)2 + v2 + 2),

for any x = (u, v) ∈ X . Obviously the Pareto optimal set X ∗ of the cumulative loss coincides with401

the line segment between (−1, 0) and (1, 0), i.e., X ∗ = {(u, v) | −1
2 ≤ u ≤ 1

2 , v = 0} (note that402

X ∗ is the intersection of the line segment and X ).403

Now consider equipping OMD with vanilla min-norm, where the composite gradients are produced404

by the min-norm method. Suppose the learning process starts at any x1 = (u1, v1) ∈ X such that405

v1 > 0. Note that this is true if and only if x1 /∈ X ∗. Then for the iterate xt = (ut, vt) at each round406

t, we can directly calculate the gradients as407

g1t =

{
2(xt − a) = (2ut + 4, 2vt + 2), t = 2k − 1;

2(xt − b) = (2ut, 2vt − 2), t = 2k.

g2t =

{
2(xt − b) = (2ut, 2vt − 2), t = 2k − 1;

2(xt − c) = (2ut − 4, 2vt + 2), t = 2k.

The min-norm weights can be computed as λt = (γt, 1− γt) where408

γt =


(xt − b)⊤(a− b)

∥a− b∥2
=

1− ut − vt
4

, t = 2k − 1;

(xt − c)⊤(b− c)

∥b− c∥2
=

3− ut + vt
4

, t = 2k.

The composite gradient409

gcomp
t =

{
γt · 2(x− a) + (1− γt) · 2(x− b) = (ut − vt + 1, −ut + vt − 1), t = 2k − 1;

γt · 2(x− b) + (1− γt) · 2(x− c) = (−ut − vt − 1, −ut − vt − 1), t = 2k.
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Recall that the update form of OMD takes410

xt+1 = ΠX (xt − ηtg
comp
t ),

where ηt > 0 is the learning rate and ΠX is the projection operation onto X . Denote the iterate411

xt = (ut, vt) at each round. Now we can investigate the relation between xt and xt+1 by considering412

the following two cases:413

(i) If xt − ηtg
comp
t ∈ X , then we do not need projection, and directly have xt+1 = xt − ηtg

comp
t .414

(ii) If xt − ηtg
comp
t /∈ X , then we need to project xt − ηtg

comp
t back to X . Denote x′

t+1 =415

xt − ηtg
comp
t . For simplicity we consider the projection based on the Euclidean distance, namely416

ΠX (x) = argminx′∈X ∥x− x′∥22. Since the composite gradient is orthogonal to the boundary on417

which the iterate after projection xt+1 = ΠX (x′
t+1) is located, it can be checked that xt+1 lies on418

the line segment linking xt and x′
t+1. Alternatively speaking, xt+1 can be expressed as xt − η′tg

comp
t419

for some 0 ≤ η′t < ηt.420

Combining the above two cases, we know that at each round t, there exists some η′t ∈ [0, ηt]421

such that xt+1 = xt − η′tg
comp
t . Now we can analyze the relation between each entry of xt and422

xt+1. Specifically, since the second entry of the composite gradient is always non-positive, namely423

−ut+ vt− 1 ≤ 0 and −ut− vt− 1 ≤ 0, we have vt+1 ≥ vt for any t. Moreover, since the first entry424

of gcomp
t is non-negative when t = 2k − 1, namely u2k−1 − v2k−1 + 1 ≥ 0, we have u2k ≤ u2k−1425

for any k; since the first entry of gcomp
t is non-positive when t = 2k, namely −u2k − v2k − 1 ≤ 0,426

we have u2k+1 ≥ u2k for any k.427

Now we can go back to analyze the gap between the composite weights at any two consecutive428

rounds. It is easy to verify that γ2k−1 < γ2k and γ2k > γ2k+1, hence we have429

∥λ2k − λ2k−1∥1 = 2(γ2k − γ2k−1) =
2− (u2k − u2k−1) + (v2k + v2k−1)

2
≥ 1 + v1,

∥λ2k+1 − λ2k∥1 = 2(γ2k − γ2k+1) =
2− (u2k − u2k+1) + (v2k + v2k+1)

2
≥ 1 + v1.

Therefore, the composite weights λt indeed change radically at any two consecutive rounds.430

The above analysis on vt also implies the failure of min-norm in this problem. Recall that any Pareto431

optimal solution x∗ = (u∗, v∗) ∈ X ∗ must satisfy v∗ = 0. Suppose the initial iterate x1 = (u1, v1)432

does not lie in X ∗, i.e., v1 > 0, which is almost sure for random initialization x1 ∈ X . Then we433

iteratively have 0 < v1 ≤ v2 ≤ ... ≤ vT , which means that xt moves away from the Pareto set X ∗.434

In the following, we strictly prove that min-norm indeed incurs a linear multi-objective static regret.435

To calculate RMOS(T ), we first investigate the quantity R(x∗, λ) = λ⊤ ∑T
t=1(Ft(xt)− Ft(x

∗)) for436

any fixed weights λ = (γ, 1 − γ) ∈ S2 and best fixed decision x∗ = (u∗, 0) ∈ X ∗. Specifically,437

recall the form of
∑T

t=1 Ft derived above, then we have438

λ⊤
T∑

t=1

Ft(x
∗) = (γ(u∗ + 1)2 + (1− γ)(u∗ − 1)2 + 2)T.

Denote the cumulative loss
∑T

t=1 Ft(xt) = (L1, L2), we now consider the loss of each objective L1439

and L2 separately. Specifically, for the first objective, we have440

L1 =

T/2∑
k=1

((u2k−1 + 2)2 + u2
2k + (v2k−1 + 1)2 + (v2k − 1)2).

Since 0 < v1 ≤ v2 ≤ ... ≤ vT ≤ 1, for the term regarding vt we have441

T/2∑
k=1

((v2k−1 + 1)2 + (v2k − 1)2) = (v1 + 1)2 + (vT − 1)2 +

T/2−1∑
k=1

((v2k − 1)2 + (v2k+1 + 1)2)

≥
T/2−1∑
k=1

((v2k − 1)2 + (v2k + 1)2) =

T/2−1∑
k=1

(2v22k + 2)

≥
T/2−1∑
k=1

(2v21 + 2) = (2v21 + 2)(
T

2
− 1) ≥ v21T + T − 2.
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For the k-th term regarding ut, we have442

(u2k−1 + 2)2 + u2
2k = (u2k−1 + 1)2 + (u2k + 1)2 + 2(u2k−1 − u2k) + 2.

Recall that we have derived u2k ≤ u2k−1, thus we have443

T/2∑
k=1

(u2k−1+2)2+u2
2k ≥

T/2∑
k=1

((u2k−1+1)2+(u2k+1)2+2) ≥
T∑

t=1

(ut+1)2+T ≥ (ū+1)2T +T,

where ū = 1
T

∑T
t=1 ut and the last inequality is derived from Jensen’s inequality. In summary, for444

the cumulative loss L1 of the first objective, we have445

L1 ≥ (ū+ 1)2T + v21T + 2T − 2.

Similarly, we can analyze the cumulative loss L2 of the second objective446

L2 =

T/2∑
k=1

(u2
2k−1 + (u2k − 2)2 + (v2k−1 − 1)2 + (v2k + 1)2).

Since 0 < v1 ≤ v2 ≤ ... ≤ vT ≤ 1, for the term regarding vt we have447

T/2∑
k=1

((v2k−1 − 1)2 + (v2k + 1)2) ≥
T/2∑
k=1

((v2k−1 − 1)2 + (v2k−1 + 1)2) ≥ v21T + T.

For the term regarding ut, we also have448

T/2∑
k=1

(u2
2k−1 + (u2k − 2)2) =

T/2∑
k=1

((u2k−1 − 1)2 + (u2k − 1)2 + 2(u2k−1 − u2k) + 2)

≥
T∑

t=1

(ut − 1)2 + T ≥ (ū− 1)2T + T,

where the last inequality is derived from Jensen’s inequality. Therefore, we have449

L2 ≥ (ū− 1)2T + v21T + 2T.

Combining the above inequalities, we have450

R(x∗, λ) = γL1 + (1− γ)L2 − λ⊤
T∑

t=1

Ft(x
∗)

≥ γ((ū+ 1)2 − (u∗ + 1)2) + (1− γ)((ū− 1)2 − (u∗ − 1)2) + v21T − 2γ.

For any λ ∈ S2 (i.e., γ ∈ [0, 1]), set x′ = (ū, 0) ∈ X ∗, then it holds that451

R(x′, λ) ≥ v21T − 2.

Equivalently, the multi-objective static regret satisfies452

RMOS(T ) = sup
x∗∈X∗

inf
λ∈S2

R(x∗, λ) ≥ inf
λ∈S2

R(x′, λ) ≥ v21T − 2,

which is linear w.r.t. T for any x1 = (u1, v1) ∈ X such that v1 > 0.453

We now investigate the case when T is an odd number. Since the calculation of the composite weights454

λt and the composite gradient gcomp
t at each round is independent of the total time horizon T , we455

still have ∥λt+1 − λt∥1 ≥ v1 + 1 for any t. Hence the first desired property also holds for any odd T .456

It remains to prove that OMD with min-norm still incurs a linear regret when T is odd. In this case,457

the Pareto optimal set X ∗ does not lie in the x-axis anymore, hence it is difficult to directly compute458

RMOS(T ). However, we can still use our derived R(x∗, λ) for any even T to estimate the regret.459

Specifically, set x′ = ( 1
T−1

∑T−1
t=1 ut, 0); from the above derivation with even T , for any λ ∈ S2, we460

still have (note that now T − 1 is an even number)461

λ⊤
T−1∑
t=1

Ft(xt)− λ⊤
T−1∑
t=1

Ft(x
′) ≥ v21T − 2.
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Since for any x ∈ X , we have 0 ≤ ∥x− a∥2, ∥x− b∥2, ∥x− c∥2 ≤ 10, we have462

R(x′, λ) = λ⊤
T∑

t=1

Ft(xt)− λ⊤
T∑

t=1

Ft(x
′) ≥ v21T − 12.

Furthermore, from the definition of Pareto optimality, there exists some x′′ ∈ X ∗ that Pareto463

dominates x′ regarding the cumulative loss
∑T

t=1 Ft, namely
∑T

t=1 Ft(x
′′) ⪯

∑T
t=1 Ft(x

′). Hence464

R(x′′, λ) = λ⊤
T∑

t=1

Ft(xt)− λ⊤
T∑

t=1

Ft(x
′′) ≥ R(x′, λ),

for any λ ∈ S2. Therefore, the multi-objective static regret465

RMOS(T ) = sup
x∗∈X∗

inf
λ∈S2

R(x∗, λ) ≥ inf
λ∈S2

R(x′′, λ) ≥ inf
λ∈S2

R(x′, λ) ≥ v21T − 12,

which is also linear w.r.t. T for any x1 = (u1, v1) ∈ X such that v1 > 0. ■466

I Omitted Proofs of the Regret Bounds for DR-OMMD467

I.1 Proof of Theorem 4.4468

Proof. We start from the definition of RMOS(T ). Specifically, for any λ ∈ Sm and λ1 . . . , λT ∈ Sm,469

it holds that470

RMOS(T ) = sup
x∗∈X∗

inf
λ∗∈Sm

T∑
t=1

λ∗⊤(Ft(xt)− Ft(x
∗)) ≤ sup

x∗∈X∗

T∑
t=1

λ⊤(Ft(xt)− Ft(x
∗))

=

T∑
t=1

(
(λ⊤Ft(xt)− λt

⊤Ft(xt)) + λt
⊤(Ft(xt)− Ft(x

∗)) + (λt
⊤Ft(x

∗)− λ⊤Ft(x
∗))

)
≤

T∑
t=1

F∥λ− λt∥1 +
T∑

t=1

λt
⊤(Ft(xt)− Ft(x

∗)) +

T∑
t=1

F∥λ− λt∥1

= 2F

T∑
t=1

∥λ− λt∥1 +
T∑

t=1

λt
⊤(Ft(xt)− Ft(x

∗)).

To tackle the second term in the above inequality, we set u1 = u2 = . . . = uT = x∗ in Lemma I.2,471

which results in472

T∑
t=1

λt
⊤(Ft(xt)− Ft(x

∗)) ≤ 1

η
BR(x

∗, x1) +
η

2

T∑
t=1

∥∇Ft(xt)λt∥2∗.

Consequently, the static regret can be bounded as473

RMOS(T ) ≤ 2F

T∑
t=1

∥λt − λ0∥1 +
1

η
BR(x

∗, x1) +
η

2

T∑
t=1

∥∇Ft(xt)λt∥2∗

= 2F

T∑
t=1

∥λt − λ0∥1 +
1

η
BR(x

∗, x1) +
η

2

T∑
t=1

∥∇Ft(xt)λt∥2∗

=
1

η
BR(x

∗, x1) +
η

2

T∑
t=1

(∥∇Ft(xt)λt∥2∗ +
4F

η
∥λt − λ0∥1),

which proves the theorem. ■474
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I.2 Proof of Corollary E.1475

Proof. We now set α = 4F
η in DR-OMMD, and specify λt to be the composition weights476

generated by the algorithm at round t. The min-regularized-norm solver guarantees that477

λt ∈ argminλ∈∆t
∥∇Ft(xt)λ∥2∗ + 4F

η ∥λ− λ0∥1. In particular, we have ∥∇Ft(xt)λt∥2∗ +478

4F
η ∥λt − λ0∥1 ≤ ∥∇Ft(xt)λ0∥2∗. Therefore, from Theorem 4.4 we know that479

RMOS(T ) ≤
1

η
BR(x

∗, x1) +
η

2

T∑
t=1

∥∇Ft(xt)λ0∥2∗.

Recall that the domain of X is bounded by D. From Assumption 4.2 we further have BR(x
∗, x1) ≤480

γ∥x∗, x1∥ ≤ γD. Utilize Assumption 4.3, and set η =
√
2γD

G
√
T

, then we have481

RMOS(T ) ≤
γD

η
+

η

2
G2T = G

√
2γDT ,

which proves the reduced bound. ■482

I.3 Proof of Lemma E.3483

Proof. Before analyzing the dynamic regret bound of DR-OMMD, we first introduce two useful484

lemmas.485

Lemma I.1. For the standard OMD algorithm with learning rate η and loss λt
⊤Ft(x), we have the486

following recursion487

λt
⊤Ft(xt)− λt

⊤Ft(x
∗
t ) ≤

1

η
(BR(x

∗
t ;xt)−BR(x

∗
t ;xt+1)) +

η

2
∥∇Ft(xt)λt∥2∗, (1)

for any t ∈ {1, . . . , T}.488

Proof. Our proof is similar to the analysis of OMD in the single-objective setting [28, 7]. Specifically,489

fix ft = λt
⊤Ft and gt = λt

⊤Ft(xt). From the convexity of ft, we have490

ft(xt)− ft(x
∗
t ) ≤ g⊤t (xt − x∗

t ) = g⊤t (xt+1 − x∗
t ) + g⊤t (xt − xt+1).

From the first-order optimal condition of xt+1, for any x′ ∈ X , we have491

(η∇Ft(xt)λt +∇R(xt+1)−∇R(xt))
⊤(x′ − xt+1) ≥ 0.

We set x′ = x∗
t in the above inequality, and consequently derive492

ft(xt)− ft(x
∗
t ) ≤

1

η
(∇R(xt+1)−∇R(xt))

⊤(x∗
t − xt+1) + g⊤t (xt − xt+1).

Recall the definition of Bregman divergence BR. We can check that (also see [2])493

BR(x
∗
t , xt)−BR(x

∗
t , xt+1)−BR(xt+1, xt) = (∇R(xt+1)−∇R(xt))

⊤(x∗
t − xt+1).

Since R is 1-strongly convex, we have BR(xt+1, xt) ≥ ∥xt+1 − xt∥2/2. Hence494

ft(xt)− ft(x
∗
t ) ≤

1

η
(BR(x

∗
t , xt)−BR(x

∗
t , xt+1)−

1

2
∥xt+1 − xt∥2) + g⊤t (xt − xt+1).

Moreover, from the Cauchy-Schwartz inequality we have495

g⊤t (xt − xt+1) ≤
η

2
∥gt∥2∗ +

1

2η
∥xt − xt+1∥2.

Combining the above two inequalities, we can prove the lemma. ■496

Lemma I.2. For an arbitrary comparator sequence u1, . . . , uT ∈ X , we have497

T∑
t=1

λt
⊤(Ft(xt)− Ft(ut)) ≤

γ

η

T−1∑
t=1

∥ut − ut+1∥+
1

η
BR(u1, x1) +

η

2

T∑
t=1

∥∇Ft(xt)λt∥2∗
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Proof. Summing the inequality in Lemma I.1 over t ∈ {1, . . . , T}, we have498

T∑
t=1

λt
⊤(Ft(xt)− Ft(ut)) ≤

T∑
t=1

1

η
(BR(ut, xt)−BR(ut, xt+1)) +

η

2
∥∇Ft(xt)λt∥2∗

≤ 1

η

T−1∑
t=1

(BR(ut+1, xt+1)−BR(ut, xt+1)) +
1

η
BR(u1, x1) +

η

2
∥∇Ft(xt)λt∥2∗.

Recall the assumption that BR(x, z)−BR(y, z) ≤ γ∥x− y∥,∀x, y, z ∈ X . We then obtain499

T∑
t=1

λt
⊤(Ft(xt)− Ft(ut)) ≤

1

η

T−1∑
t=1

γ∥ut − ut+1∥+
1

η
BR(u1, x1) +

η

2
∥∇Ft(xt)λt∥2∗,

which proves the lemma. ■500

We can now return to prove Lemma E.3. Notice that, for an arbitrary comparator sequence501

u1, . . . , uT ∈ X , the multi-objective dynamic regret can be decomposed as502

T∑
t=1

λt
⊤Ft(xt)−

T∑
t=1

λt
⊤Ft(x

∗
t )

=

T∑
t=1

λt
⊤Ft(xt)−

T∑
t=1

λt
⊤Ft(ut)︸ ︷︷ ︸

term A

+

T∑
t=1

λt
⊤Ft(ut)−

T∑
t=1

λt
⊤Ft(x

∗
t )︸ ︷︷ ︸

term B

.

We now instantiate the comparator sequence to be a piece-wise stationary sequence, i.e.,503

{u1, . . . , uT } =

w⋆
I1
, . . . , w⋆

I1︸ ︷︷ ︸
∆ times

, . . . , w⋆
I⌈ T

∆
⌉−1

, . . . , w⋆
I⌈ T

∆
⌉−1︸ ︷︷ ︸

∆ times

, w⋆
I⌈ T

∆
⌉
, . . . , w⋆

I⌈ T
∆

⌉︸ ︷︷ ︸
(1+ T

∆−⌈ T
∆ ⌉)∆ times

 ,

which starts with w∗
1 and only changes for every ∆ steps (∆ is an integer such that ∆ ≤ T ). More504

specifically, for any i ∈ {1, . . . , ⌈T/∆⌉}, denote pi = (i − 1)∆ + 1 and qi = i∆, and then505

Ii = [pi, qi] is exactly the i-th stationary piece of the comparator sequence.506

For any piece i ∈ {1, . . . , ⌈T/∆⌉}, we set all ut, t ∈ Ii to be the best fixed decision x⋆
Ii

regarding507

the cumulative linearized losses during interval Ii, i.e., ut ≡ x⋆
Ii

= argminx∈X
∑

t∈Ii
λt

⊤Ft(x),508

for any t ∈ Ii, i ∈ {1, . . . , ⌈T/∆⌉}. Then we can apply Lemma I.2 to such comparator sequence509

and bound the term A as510

A ≤ γ

η

⌈T/∆⌉−1∑
i=1

∥uIi
− uIi+1

∥+ 1

η
BR(uI1

, x1) +
η

2

T∑
t=1

∥∇Ft(xt)λt∥2∗

≤ γ

η
(⌈T
∆
⌉ − 1)D +

γD

η
+

η

2

T∑
t=1

∥∇Ft(xt)λt∥2∗ =
γD

η
⌈T
∆
⌉+ η

2

T∑
t=1

∥∇Ft(xt)λt∥2∗.

Notice that, the second term B measures the difference between the cumulative linearized loss of the511

best decisions x∗
Ii

regarding each interval Ii and that of the comparators {x∗
t }. To analyze this term,512

we consider such difference Bi restricted to any interval Ii, i ∈ {1, . . . , ⌈T/∆⌉}:513

Bi =
∑
t∈Ii

λt
⊤Ft(ut)−

∑
t∈Ii

λt
⊤Ft(x

∗
t )

=
∑
t∈Ii

λt
⊤Ft(ut)−

∑
t∈Ii

λpi

⊤Fpi
(x∗

pi
) +

∑
t∈Ii

λpi

⊤Fpi
(x∗

pi
)−

∑
t∈Ii

λt
⊤Ft(x

∗
t ).
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Recall our definition of ut and x∗
t , then we have

∑
t∈Ii

λt
⊤Ft(ut) ≤

∑
t∈Ii

λt
⊤Ft(x

∗
pi
) and514

λpi

⊤Fpi(x
∗
pi
) ≤ λpi

⊤Fpi(x
∗
t ). Hence we further have515

Bi ≤
∑
t∈Ii

λt
⊤Ft(x

∗
pi
)−

∑
t∈Ii

λpi

⊤Fpi
(x∗

pi
) +

∑
t∈Ii

λpi

⊤Fpi
(x∗

t )−
∑
t∈Ii

λt
⊤Ft(x

∗
t ).

Moreover, for any t ∈ Ii, x ∈ X , we have516

|λt
⊤Ft(x)−λpi

⊤Fpi(x)| = |
t−1∑
k=pi

(λk+1
⊤Fk+1(x)−λk

⊤Fk(x))| ≤
qi∑

k=pi

sup
x∈X

|λk
⊤Fk(x)−λk+1

⊤Fk+1(x)|.

Recall that Ii has at most ∆ elements, we further have517

Bi ≤ 2∆

qi∑
k=pi

sup
x∈X

|λk
⊤Fk(x)− λk+1

⊤Fk+1(x)|.

Hence the term B can be bounded as518

B =

⌈T/∆⌉∑
i=1

Bi ≤ 2∆

⌈T/∆⌉∑
i=1

qi∑
k=pi

sup
x∈X

|λk
⊤Fk(x)− λk+1

⊤Fk+1(x)|.

From the definition of pi and qi, we further have519

B ≤ 2∆

T−1∑
t=1

sup
x∈X

|λt
⊤Ft(x)− λt+1

⊤Ft+1(x)|.

Combining the above two inequalities on terms A and B, we derive520

RMOD(T ) ≤
γ

η

⌈T/∆⌉−1∑
i=1

∥uIi
− uIi+1

∥+ 1

η
BR(uI1

, x1) +
η

2

T∑
t=1

∥∇Ft(xt)λt∥2∗

+ 2∆

T−1∑
t=1

sup
x∈X

|λt
⊤Ft(x)− λt+1

⊤Ft+1(x)|.

We note that, term
∑T−1

t=1 supx∈X |λt
⊤Ft(x)−λt+1

⊤Ft+1(x)| in the above regret bound is analogous521

to the term
∑T−1

t=1 supx∈X |ft(x)− ft+1(x)| in the dynamic regret analysis for the single-objective522

setting. Note that, in the single-objective setting, from the definition of temporal variability, we523

directly have
∑T−1

t=1 supx∈X |ft(x)− ft+1(x)| ≤ VT . However, things become much more complex524

in the multi-objective setting, since the vector loss Ft(x) is now coupled with the composite525

weights λt. As a result, we cannot directly use the temporal variability of each loss component to526

bound this term. To tackle this term, we introduce the following lemma which is highly non-trivial.527

Lemma I.3. For DR-OMMD with any initial weights λ0 ∈ Sm, it holds that528

T−1∑
t=1

sup
x∈X

|λt
⊤Ft(x)− λt+1

⊤Ft+1(x)| ≤ 2F

T∑
t=1

∥λt − λ0∥1 + VT .

Proof. We decompose the supremum operation as529

T−1∑
t=1

sup
x∈X

|λt
⊤Ft(x)− λt+1

⊤Ft+1(x)|

≤
T−1∑
t=1

sup
x∈X

(|(λt − λt+1)
⊤Ft+1(x)|+ |λt

⊤(Ft(x)− Ft+1(x))|)

≤
T−1∑
t=1

sup
x∈X

|(λt − λt+1)
⊤Ft+1(x)|+

T−1∑
t=1

sup
x∈X

|λt
⊤(Ft(x)− Ft+1(x))|.
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Then for any x ∈ X , |f i
t (x)| ≤ F , and consequently530

T−1∑
t=1

sup
x∈X

|(λt − λt+1)
⊤Ft+1(x)| ≤

T−1∑
t=1

∥λt − λt+1∥1∥Ft+1(x)∥∞ ≤ 2F

T−1∑
t=1

∥λt − λt+1∥1.

It then remains to tackle the term
∑T−1

t=1 supx∈X |λ⊤
t (Ft(x) − Ft+1(x))|. For any λ0 =531

(λ1
0, ..., λ

m
0 ) ∈ Sm, we can decompose this term as532

T−1∑
t=1

sup
x∈X

|λt
⊤(Ft(x)− Ft+1(x))|

=

T−1∑
t=1

sup
x∈X

|(λt − λ0)
⊤(Ft(x)− Ft+1(x)) + λ0

⊤(Ft(x)− Ft+1(x))|

≤
T−1∑
t=1

sup
x∈X

|(λt − λ0)
⊤(Ft(x)− Ft+1(x))|︸ ︷︷ ︸

term A

+

T−1∑
t=1

sup
x∈X

|λ0
⊤(Ft(x)− Ft+1(x))|︸ ︷︷ ︸

term B

.

Since we have assumed that |f i
t (x)| ≤ F for any x ∈ X , t ∈ {1, . . . , T}, i ∈ {1, . . . ,m}, it holds533

that |f i
t (x)− f i

t+1(x)| ≤ 2F . Consequently, we can bound the term A as534

term A =

T−1∑
t=1

sup
x∈X

|
m∑
i=1

(λi
t − λi

0)(f
i
t (x)− f i

t+1(x))|

≤
T−1∑
t=1

sup
x∈X

m∑
i=1

|λi
t − λi

0| · |f i
t (x)− f i

t+1(x)|

≤
T−1∑
t=1

m∑
i=1

|λi
t − λi

0| · sup
x∈X

|f i
t (x)− f i

t+1(x)|

≤
T−1∑
t=1

m∑
i=1

|λi
t − λi

0| · 2F =

T−1∑
t=1

2F∥λt − λ0∥1,

where λi
t and λi

0 represents the i-th entry of λt and λ0, respectively.535

As for term B, we have536

term B =

T−1∑
t=1

sup
x∈X

|λ⊤
0 (Ft(x)− Ft+1(x))| ≤

T−1∑
t=1

sup
x∈X

m∑
i=1

λi
0 · |f i

t (x)− f i
t+1(x)|

≤
m∑
i=1

λi
0 ·

T−1∑
t=1

sup
x∈X

|f i
t (x)− f i

t+1(x)| ≤
m∑
i=1

λi
0 · VT = VT ,

where the last inequality is derived from the assumption of temporal variability. Combining the above537

bounds for term A and term B, we finally prove the lemma. ■538

Assume that the diameter of the decision domain X is upper bounded by some D > 0, then539

∥uIi
− uIi+1

∥ ≤ D and BR(uI1
, x1) ≤ γ∥uI1

− x1∥ ≤ γD. Hence we have540

γ

η

⌈T/∆⌉−1∑
i=1

∥uIi
− uIi+1

∥+ 1

η
BR(uI1

, x1) ≤
γD

η
(⌈T/∆⌉ − 1) +

γD

η
=

γD

η
⌈T
∆
⌉.

Plugging the above result and lemma into the above bound for RMOD(T ), and replace the quantity541

∆ ∈ {1, . . . , T} by δ, we have542

RMOD(T ) ≤2δVT + 4δF

T∑
t=1

∥λt − λ0∥1 +
η

2

T∑
t=1

∥∇Ft(xt)λt∥2∗ +
γD

η
⌈T
δ
⌉,

for any δ ∈ {1, . . . , T}. We thus prove the lemma. ■543
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I.4 Proof of Theorem 4.6544

Proof. This theorem can be directly derived from Lemma E.3.545

Specifically, when 4VT

G2T ≤ η ≤ 4VT

G2 , we can set δ = ηG2T
VT

, which satisfies 1 ≤ δ ≤ T . Plugging it546

into Lemma E.3 and rearranging the inequality, we can directly derive the theorem. ■547

I.5 Proof of Theorem E.4548

Proof. Since this theorem is a special case of its following Theorem E.5 when Ω(1) ≤ VT ≤ o(T ),549

it can be proved as we derive Theorem E.5 in the following subsection.550

In fact, as we assume Ω(1) ≤ VT ≤ o(T ), in the following derivation of Theorem E.5, we are551

always in the case of (i). In addition, when Ω(1) ≤ VT ≤ o(T ) in Theorem E.5 we exactly have552

η = 2
G (γDVT

GT )1/3. Hence this theorem can be directly derived from Theorem E.5. ■553

I.6 Proof of Theorem E.5554

Proof. Denote η0 = 2
G (γDVT

GT )1/3. We consider the following three cases:555

(i) When 4VT

G2T ≤ η0 ≤ 4VT

G2 , we can directly apply the above lemma.556

(ii) When η0 < 4VT

G2T , or equivalently VT > (γD8 )1/2GT , we have η = 4VT

G2T . Set δ = 1 in Lemma557

E.3, then it can be verified that558

RMOD(T ) ≤ 2VT +
2VT

G2T

T∑
t=1

(α∥λt − λ0∥1 + ∥∇Ft(xt)λt∥2∗) +
γDG2T 2

4VT

≤ 4VT +
2VT

G2T

T∑
t=1

∥∇Ft(xt)λ0∥2∗

≤ 4VT +
2VT

G2T

T∑
t=1

G2 = 6VT .

(iii) When η0 > 4VT

G2 , or equivalently VT < (γD8T )1/2G, we have η = 4VT

G2 . Set δ = T in Lemma E.3,559

then it can be verified that560

RMOD(T ) ≤ 2TVT +
2VT

G2

T∑
t=1

(α∥λt − λ0∥1 + ∥∇Ft(xt)λt∥2∗) +
γDG2

4VT

≤ G(2γD)1/2T 1/2 +
2VT

G2

T∑
t=1

∥∇Ft(xt)λ0∥2∗

≤ G(2γD)1/2T 1/2 +
2VT

G2

T∑
t=1

G2 ≤ 3G

2
(2γD)1/2T 1/2.

Combining (i)-(iii), we prove the theorem. ■561

I.7 Proof of Corollary E.2562

Proof. Since this corollary is a special case of its following Corollary E.6 when Ω(1) ≤ VT ≤ o(T ),563

it can be directly derived from Corollary E.6.564

Specifically, since VT ≥ Ω(1), we have V
1/3
T T 2/3 ≥ O(T 1/2). Moreover, since VT ≤ o(T ), we565

have V 1/3T 2/3 ≥ o(VT ). Therefore, the dominating term in the bound of Corollary E.6 is V 1/3T 2/3,566

which proves the corollary. ■567
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I.8 Proof of Corollary E.6568

Proof. We start from the general bound derived in Theorem E.5. Specifically, in the first regret term,569

since λt is selected to minimize α∥λt − λt−1∥1 + ∥∇Ft(xt)λt∥∗2 at each step t, we further have570

min
λ∈Sm

{α∥λ− λt−1∥1 + ∥∇Ft(xt)λ∥2∗} ≤ ∥∇Ft(xt)λt−1∥2∗ ≤ (∥λt−1∥1∥∇Ft(xt)∥∞)2 ≤ G2.

Plugging it into the bound in Theorem E.5 directly proves the corollary. ■571

J Omitted Proofs of the Regret Bounds for A-DR-OMMD572

The proofs of A-DR-OMMD are very similar to the proofs of DR-OMMD in Appendix I, except that573

we replace the fixed learning rate η by the adaptive ones ηt. For conciseness, we here only highlight574

the different steps from the proofs of DR-OMMD.575

J.1 Proof of Theorem D.2576

Proof. For any λ ∈ Sm and λ1 . . . , λT ∈ Sm, by the same deduction in the proof of Theorem 4.4 in577

Appendix I.1, we have578

RMOS(T ) ≤ 2F

T∑
t=1

∥λ− λt∥1 +
T∑

t=1

λt
⊤(Ft(xt)− Ft(x

∗)).

To proceed, we introduce two lemmas, which are the analogies of Lemma I.1 and I.2 in Appendix I.3.579

Lemma J.1. For the standard OMD algorithm with non-increasing learning rates ηt and loss580

λt
⊤Ft(x), we have the following recursion581

λt
⊤Ft(xt)− λt

⊤Ft(x
∗
t ) ≤

1

ηt
(BR(x

∗
t ;xt)−BR(x

∗
t ;xt+1)) +

ηt
2
∥∇Ft(xt)λt∥2∗, (2)

for any t ∈ {1, . . . , T}.582

Proof. Since the lemma is only regarding any single round t, the proof is nearly the same as the proof583

of Lemma I.1 in Appendix I.3. In fact, we just need to replace all λ in the proof of Lemma I.1 by λt,584

then we recovers the proof of this lemma. ■585

Lemma J.2. For an arbitrary comparator sequence u1, . . . , uT ∈ X , we have586

T∑
t=1

λt
⊤(Ft(xt)− Ft(ut)) ≤

γD

ηT
+

T−1∑
t=1

γ

ηt
∥ut − ut+1∥+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗.

Proof. Summing the inequality in Lemma J.1 over t ∈ {1, . . . , T}, we have587

T∑
t=1

λt
⊤(Ft(xt)− Ft(ut)) ≤

T∑
t=1

1

ηt
(BR(ut, xt)−BR(ut, xt+1)) +

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗.

Since the Bregman divergence is always non-negative, we have588

T∑
t=1

1

ηt
(BR(ut, xt)−BR(ut, xt+1))

≤
T−1∑
t=1

(
1

ηt+1
BR(ut+1, xt+1)−

1

ηt
BR(ut, xt+1)) +

1

η1
BR(u1, x1).

Now we consider each summation term. Since {ηt}Tt=1 is non-increasing, we have 1
ηt

≤ 1
ηt+1

, hence589

1

ηt+1
BR(ut+1, xt+1)−

1

ηt
BR(ut, xt+1)

= (
1

ηt+1
− 1

ηt
)BR(ut+1, xt+1) +

1

ηt
(BR(ut+1, xt+1)−BR(ut, xt+1))
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Recall the assumption that BR(x, z) − BR(y, z) ≤ γ∥x − y∥,∀x, y, z ∈ X . We then obtain590

BR(ut+1, xt+1)−BR(ut, xt+1) ≤ γ∥ut+1 − ut∥ and BR(ut+1, xt+1) ≤ γD. Hence591

1

ηt+1
BR(ut+1, xt+1)−

1

ηt
BR(ut, xt+1) ≤ (

1

ηt+1
− 1

ηt
)γD +

1

ηt
γ∥ut − ut+1∥.

Plugging it into the desired formula, we have592

T∑
t=1

λt
⊤(Ft(xt)− Ft(ut)) ≤

γD

ηT
+

T−1∑
t=1

γ

ηt
∥ut − ut+1∥+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗,

which proves the lemma. ■593

Now set u1 = u2 = . . . = uT = x∗ in Lemma J.2, we have594

T∑
t=1

λt
⊤(Ft(xt)− Ft(x

∗)) ≤ γD

ηT
+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗.

Consequently, the static regret can be bounded as595

RMOS(T ) ≤ 2F

T∑
t=1

∥λt − λ0∥1 +
γD

ηT
+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗

=
γD

ηT
+

T∑
t=1

ηt
2
(∥∇Ft(xt)λt∥2∗ +

4F

ηt
∥λt − λ0∥1),

which proves the theorem. ■596

J.2 Proof of Corollary D.3597

Proof. In A-DR-OMMD, when αt =
4F
ηt

, from the formulation of λt we have598

RMOS(T ) =
γD

ηT
+

T∑
t=1

ηt
2

min
λ∈Sm

{∥∇Ft(xt)λ∥2∗ + αt∥λ− λ0∥1}

≤ γD

ηT
+

T∑
t=1

ηt
2
∥∇Ft(xt)λ0∥2∗ ≤ γD

ηT
+

G2

2

T∑
t=1

ηt.

When ηt =
√
2γD

G
√
t

, we further have599

RMOS(T ) ≤ G
√

2γDT ,

which proves corollary. ■600

J.3 Proof of Theorem D.4601

Similar to the proof of Theorem 4.6, before analyzing the dynamic regret of A-DR-OMMD, we first602

introduce a lemma, which is an analogy to Lemma E.3 with adaptive ηt and αt.603

Lemma J.3. Suppose the assumptions of Lemma E.3 hold. Then for any λ0 ∈ Sm,∆ ∈ {1, . . . , T},604

and non-increasing {ηt}Tt=1, DR-OMMD attains the following dynamic regret605

RMOD(T ) ≤ ⌈T
∆
⌉γD
ηT

+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗ + 4∆F

T∑
t=1

∥λt − λ0∥1 + 2∆VT .

Proof. Similar to the proof of Lemma E.3, we decompose the regret as606

T∑
t=1

λt
⊤Ft(xt)−

T∑
t=1

λt
⊤Ft(x

∗
t )

=

T∑
t=1

λt
⊤Ft(xt)−

T∑
t=1

λt
⊤Ft(ut)︸ ︷︷ ︸

term A

+

T∑
t=1

λt
⊤Ft(ut)−

T∑
t=1

λt
⊤Ft(x

∗
t )︸ ︷︷ ︸

term B

,
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and construct a comparator sequence607

{u1, . . . , uT } =

w⋆
I1
, . . . , w⋆

I1︸ ︷︷ ︸
∆ times

, . . . , w⋆
I⌈ T

∆
⌉−1

, . . . , w⋆
I⌈ T

∆
⌉−1︸ ︷︷ ︸

∆ times

, w⋆
I⌈ T

∆
⌉
, . . . , w⋆

I⌈ T
∆

⌉︸ ︷︷ ︸
(1+ T

∆−⌈ T
∆ ⌉)∆ times

 .

For any i ∈ {1, . . . , ⌈T/∆⌉}, denote pi = (i− 1)∆ + 1 and qi = i∆. Then Ii = [pi, qi] is the i-th608

stationary piece of the comparator sequence. For any i ∈ {1, . . . , ⌈T/∆⌉}, we set all ut, t ∈ Ii to be609

x⋆
Ii

= argminx∈X
∑

t∈Ii
λt

⊤Ft(x). Then we can apply Lemma J.2 to bound the term A as610

A ≤
⌈T/∆⌉−1∑

i=1

γ

ηpi

∥uIi
− uIi+1

∥+ γD

ηT
+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗

≤ γD(
1

ηT
+

⌈T/∆⌉−1∑
i=1

1

ηpi

) +

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗.

Since {ηt}Tt=1 is non-increasing, we further have611

A ≤ ⌈T
∆
⌉γD
ηT

+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗.

The analysis of the term B is the same as that in the proof of Lemma E.3, i.e.,612

B ≤ 2∆

T−1∑
t=1

sup
x∈X

|λt
⊤Ft(x)− λt+1

⊤Ft+1(x)|.

We can further apply Lemma I.3 to the term B and derive613

B ≤ 4∆F

T∑
t=1

∥λt − λ0∥1 + 2∆VT .

Combining the above two inequalities, we have614

RMOD(T ) ≤ ⌈T
∆
⌉γD
ηT

+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗ + 4∆F

T∑
t=1

∥λt − λ0∥1 + 2∆VT ,

which proves the lemma. ■615

Now we can go back to prove Theorem D.4.616

Proof of Theorem D.4. We start from the general bound in Lemma J.3. Set ∆ = ηTG2T
VT

, then617

RMOD(T ) ≤
γDVT

G2η2T
+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥2∗ +

4ηTG
2FT

VT

T∑
t=1

∥λt − λ0∥1 + 2ηTG
2T,

which proves the theorem. ■618

J.4 Proof of Corollary D.5619

Proof. When αt =
8G2FT

VT
(ηT

ηt
), from the formulation of λt, we have620

RMOD(T ) ≤
γDVT

G2η2T
+

T∑
t=1

ηt
2
argmin
λ∈Sm

{∥∇Ft(xt)λ∥2∗ + αt∥λ− λ0∥1}+ 2ηTG
2T

≤ γDVT

G2η2T
+

T∑
t=1

ηt
2
∥∇Ft(xt)λ0∥2∗ + 2ηTG

2T

≤ γDVT

G2η2T
+

G2

2

T∑
t=1

ηt + 2ηTG
2T.
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When ηt =
1
G (γDVT

Gt )1/3, since by induction we can prove that
∑T

t=1(
1
t )

1/3 ≤ 2T 2/3, we have621

RMOD(T ) ≤ O(T 2/3V
1/3
T ),

which proves the corollary. ■622

References623

[1] Jacob Abernethy, Peter L Bartlett, and Elad Hazan. Blackwell approachability and no-regret624

learning are equivalent. In Annual Conference on Learning Theory, pages 27–46, 2011.625

[2] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for626

convex optimization. Operations Research Letters, 31(3):167–175, 2003.627

[3] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Opera-628

tions Research, 63(5):1227–1244, 2015.629

[4] David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of630

Mathematics, 6(1):1–8, 1956.631

[5] Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, and Shie Mannor. Multi-objective bandits:632

Optimizing the generalized gini index. In International Conference on Machine Learning, pages633

625–634. PMLR, 2017.634

[6] Nicolò Campolongo and Francesco Orabona. A closer look at temporal variability in dynamic635

online learning. arXiv preprint arXiv:2102.07666, 2021.636

[7] Nicolò Cesa-bianchi, Pierre Gaillard, Gabor Lugosi, and Gilles Stoltz. Mirror descent meets637

fixed share (and feels no regret). In Advances in Neural Information Processing Systems, pages638

980–988, 2012.639

[8] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai,640

and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign641

dropout. Advances in Neural Information Processing Systems, 2020.642

[9] Rémy Degenne, Thomas Nedelec, Clément Calauzènes, and Vianney Perchet. Bridging the gap643

between regret minimization and best arm identification, with application to a/b tests. In The644

22nd International Conference on Artificial Intelligence and Statistics, pages 1988–1996, 2019.645

[10] Jean-Antoine Désidéri. Multiple-gradient descent algorithm for multiobjective optimization.646

Comptes Rendus Mathematique, 350(5-6):313–318, 2012.647

[11] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.648

[12] Michael TM Emmerich and André H Deutz. A tutorial on multiobjective optimization: Funda-649

mentals and evolutionary methods. Natural Computing, 17(3):585–609, 2018.650

[13] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in651

Optimization, 2(3-4):157–325, 2016.652

[14] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Interna-653

tional Conference on Machine Learning, pages 427–435, 2013.654

[15] Adrián Javaloy and Isabel Valera. Rotograd: Gradient homogenization in multitask learning.655

arXiv preprint arXiv:2103.02631, 2021.656

[16] Wouter Koolen. The pareto regret frontier. Advances in Neural Information Processing Systems,657

pages 1–9, 2013.658

[17] Wouter M Koolen and Tim Van Erven. Second-order quantile methods for experts and combina-659

torial games. In Conference on Learning Theory, pages 1155–1175, 2015.660

[18] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task661

learning. In Advances in Neural Information Processing Systems, pages 12060–12070, 2019.662

24



[19] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent663

for multi-task learning. arXiv preprint arXiv:2110.14048, 2021.664

[20] Shiyin Lu, Guanghui Wang, Yao Hu, and Lijun Zhang. Multi-objective generalized linear665

bandits. In International Joint Conference on Artificial Intelligence, pages 3080–3086, 2019.666

[21] Shie Mannor, Vianney Perchet, and Gilles Stoltz. Approachability in unknown games: Online667

learning meets multi-objective optimization. In Annual Conference on Learning Theory, pages668

339–355, 2014.669

[22] Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous dis-670

tributed online learning. Advances in Neural Information Processing Systems, 27, 2014.671

[23] Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,672

2019.673

[24] Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable674

sequences. In Advances in Neural Information Processing Systems, pages 3066–3074, 2013.675

[25] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In676

International Conference on Learning Representations, 2018.677

[26] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In678

Advances in Neural Information Processing Systems, pages 3859–3869, 2017.679

[27] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In680

Advances in Neural Information Processing Systems, pages 525–536, 2018.681

[28] Nati Srebro, Karthik Sridharan, and Ambuj Tewari. On the universality of online mirror descent.682

In Advances in Neural Information Processing Systems, pages 2645–2653, 2011.683
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