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A Proof of Theorem 1

We begin by stating and proving the following theorem, which will play an important role in the proof
of Theorem 1. Suppose we have N observations {zi}Ni=1 drawn from an arbitrary domain DS and let

Ê(g, ω) :=
1∑N
i=1Ri

N∑
i=1

Riω(zi, Ai)|g(xi)− yi|

Furthermore we define Dω = ESω(z, A)2, in this section we use ES to represent that the expectation
is taken with respect to this arbitrary domain DS . Then we have the following result:
Theorem 3. LetH be a hypothesis set with VC-dimension (pseudo dimension in regression setting)
d. Let g be an arbitrary prediction model from hypothesis setH. If Dω ≤ N/8, then, for any δ > 0,
with probability at least 1− δ, the following bound holds:∣∣∣ESω(z, A) |g(x)− y(x)| − Ê(g, ω)

∣∣∣ ≤√ BCd(N,Dω, δ)

N
[
(1 + Dω

B ) log(1 + B
Dω )− 1

] (3)

Cd(N,D
ω, δ) =

{
log (d+1)(8e)d+1

2δ + d
2 log N

2Dω if g ∈ {0, 1} is a classification model
log 2

δ

(
8e
d

)d
+ 3d

2 log N
3√
2Dω

if g ∈ [0, 1] is a regression model and N ≥ d

Proof. The proof follows a standard approach in deriving generalization error bound related to
VC-dimension (or pseudo-dimension). Recall that an observation z = {x, y}, we begin by letting
fg(z) := ω(z)|g(x) − y(x)|. Then since g ∈ H, we let F denote the set of fg. In the rest of the
proof, we simply ignore subscription g and let f(z) := ω(z)|g(x)− y(x)|. This is possible since
the analysis holds for arbitrary g ∈ H, i.e. f ∈ F . We simplify the notation by defining

Ê(g, ω) = PNf(z)

and
ESω(z) |g(x)− y(x)| = Pf(z)

We further let DN denote the training data {(xi, yi)}Ni=1. We also consider a set of “ghost” sample
D′N = {(x′i, y′i)}Ni=1 with size N . In reality we do not have access to them but we will make use
of them to prove the theorem. We let fN be the maximizer of |Pf − PNf | in F and σ2 = Var [fN ].
Similar to PN , we can define P′N for the ghost samples. Firstly notice that

I (|PfN − PNfN | > t) I (|PfN − P′NfN | < t/2) ≤ I (|P′NfN − PNfN | > t/2)

Taking expecation with respect to the ghost sample yields

I (|PfN − PNfN | > t)PD′
N

(|PfN − P′NfN | < t/2) ≤ PD′
N

(|P′NfN − PNfN | > t/2)

Chebyshev’s inequality gives

PD′
N

(|PfN − P′NfN | > t/2) ≤ 4Var [fN ]

Nt2
=

4σ2

Nt2
≤ 4Dω

Nt2

where the last inequality is given by the fact that Dω = Eω2 ≥ Var [fN ] = σ2 (see Lemma 2 in [13]).
This in turn gives

I (|PfN − PNfN | > t)

(
1− 4Dω

Nt2

)
≤ PD′

N
(|P′NfN − PNfN | > t/2)

when t ≥
√

8Dω

N , we have

P

(
sup
f∈F
|Pf − PNf | ≥ t

)
≤ 2P

(
sup
f∈F
|P′Nf − PNf | ≥ t/2

)
(4)

We further define F|N = {(f (x1, y1) , . . . , f (xN , yN )) | f ∈ H}. Then

P

(
sup
f∈F
|P′Nf − PNf | ≥ t/2

)
= P

(
sup

f∈F|2N

|P′Nf − PNf | ≥ t/2

)
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Let N1(t/8,F , 2N) denote the uniform covering number defined as

N1(t/8,F , 2N) = max
DN ,D′

N

N
(
t/8,F|2N , d1

)
(5)

where N
(
t/8,F|2N , d1

)
is the t/8-covering number of set F|2N with respect to L1 distance. Now

define G ⊆ F|2N as a t/8-cover of F|2N with |G| ≤ N1(t/8,F , 2N). Then

P

(
sup

f∈F|2N

|P′Nf − PNf | ≥ t/2

)
≤ P

(
sup
g∈G
|P′Ng − PNg| ≥ t/4

)
≤ N1(t/8,F , 2N) sup

g∈G
P (|P′Ng − PNg| ≥ t/4)

≤ 2N1(t/8,F , 2N) sup
g∈G

P (|PNg − Pg| ≥ t/8)

(6)

Let us first consider the case of classification, in which the predicted outcome g(x) ∈ {0, 1}. Then
according to classical bound of covering number (Theorem 1 in [25]):

N
(
t/8,F|2N , d1

)
< e(d+ 1)

(
16e

t

)d
The part remained is analysis of the probability supg∈G P (|PNg − Pg| ≥ t/8). Bennett’s inequality
gives:

sup
g∈G

P (|PNg − Pg| ≥ t/8) ≤ exp

(
−Nσ2h(Bt/σ2)

B2

)
(7)

with h(u) := (1+u) log(1+u)−u. Notice that here t ≤ 1, we further have that hB,σ(t) = h(Bt/σ2)
is lower bounded by function

¯
h(t) =

[
(1 +

B

σ2
) log(1 +

B

σ2
)− B

σ2

]
t2

The argument is obtained by observing that
¯
h(0) = hB,σ(0),

¯
h(1) = hB,σ(1),

¯
h(0)

′
= hB,σ(0)

′

and that
¯
h(0)

′′
is decreasing while hB,σ(0)

′′
is a constant. Together with equation (7), we have that

sup
g∈G

P (|PNg − Pg| ≥ t/8) ≤ exp

(
−N
B

[
(1 +

σ2

B
) log(1 +

B

σ2
)− 1

]
t2
)

(8)

Combining the bound of covering number yields:

P

(
sup
f∈F
|Pf − PNf | ≥ t

)
< 4e(d+ 1)

(
16e

t

)d
exp

(
−N
B

[
(1 +

σ2

B
) log(1 +

B

σ2
)− 1

]
t2
)

≤ 4e(d+ 1)

(
16e

√
N

8Dω

)d
exp

(
−N
B

[
(1 +

σ2

B
) log(1 +

B

σ2
)− 1

]
t2
)

(9)

Let δ = 4e(d+ 1)
(

16e
√

N
8Dω

)d
exp

(
−NB

[
(1 + σ2

B ) log(1 + B
σ2 )− 1

]
t2
)

. Simplify the equation
gives

N

B

[
(1 +

σ2

B
) log(1 +

B

σ2
)− 1

]
t2 − Cd(N,Dω, δ) = 0

where

Cd(N,D
ω, δ) = log

(d+ 1)(8e)d+1

2δ
+
d

2
log

N

2Dω

This equation has non-negative solution

tδ =

√
BCd(N,Dω, δ)

N
[
(1 + σ2

B ) log(1 + B
σ2 )− 1

]
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Thus we have

1− δ ≤ P

(
sup
f∈F
|Pf − PNf | ≤ tδ

)
≤ P

(
sup
f∈F
|Pf − PNf | ≤

√
BCd(N,Dω, δ)

N
[
(1 + σ2

B ) log(1 + B
σ2 )− 1

])

Now we consider the regression case, in which the predicted outcome g(x) ∈ [0, 1] comes from the
hypothesis classH with pseudo dimension d. Notice that all the results above hold before equation
(6). Now by Theorem 12.2 in [3], we have that

N
(
t/8,F|2N , d1

)
≤ N

(
t/8,F|2N , d∞

)
≤
(

16Ne

td

)d
when N ≥ d/2. Combining with (7) yields

P

(
sup
f∈F
|Pf − PNf | ≥ t

)
< 2

(
16Ne

td

)d
exp

(
−N
B

[
(1 +

σ2

B
) log(1 +

B

σ2
)− 1

]
t2
)

≤ 2

(
16Ne

d

√
N

8Dω

)d
exp

(
−N
B

[
(1 +

σ2

B
) log(1 +

B

σ2
)− 1

]
t2
)

Let δ = 2
(

16Ne
d

√
N

8Dω

)d
exp

(
−NB

[
(1 + σ2

B ) log(1 + B
σ2 )− 1

]
t2
)

and define

Cd(N,D
ω, δ) = log

2

δ

(
8e

d

)d
+

3d

2
log

N
3
√

2Dω

Following exactly the same procedure as above, we can have

1−δ ≤ P

(
sup
f∈F
|Pf − PNf | ≤ tδ

)
≤ P

(
sup
f∈F
|Pf − PNf | ≤

√
BCd(N,Dω, δ)

N
[
(1 + σ2

B ) log(1 + B
σ2 )− 1

])
Finally, notice that Dω ≥ σ2 and that (1 + x) log(1 + 1/x) is monotonic decreasing, we have that

P

(
sup
f∈F
|Pf − PNf | ≤

√
BCd(N,Dω, δ)

N
[
(1 + Dω

B ) log(1 + B
Dω )− 1

]) ≥ 1− δ

for both classification and regression cases.

Now we are ready to prove Theorem 1:

Proof. Notice that for both groups a ∈ {0, 1}:∣∣∣Ea(g)− ESaω(z, a)|g(x)− y(x)|
∣∣∣ =

∣∣∣ESa(ω0(z, a)− ω(z, a)) |g(x)− y(x)|
∣∣∣ (10)

By triangle inequality, combining (10) in Theorem 3 and (3) yields that with at least probability
1− 2δ:∣∣∣∣∣∣E0(g)− E1(g)

∣∣∣− ∣∣∣Ê0(g, ω)− Ê1(g, ω)
∣∣∣∣∣∣

≤
∑

a∈{0,1}

∣∣∣ESa
(ω0(z, a)− ω(z, a)) |g(x)− y(x)|

∣∣∣+
∣∣∣ESa

ω(z, a) |g(x)− y(x)| − Êa(g, ω)
∣∣∣

≤
∑

a∈{0,1}

∣∣∣ESa
(ω0(z, a)− ω(z, a)) |g(x)− y(x)|

∣∣∣+

√√√√ BCd(na, Dω
a , δ)

na

[
(1 +

Dω
a

B ) log(1 + B
Dω

a
)− 1

]
(11)

Notice that by definition of total variation distance:

dTV(DTa ||ωDSa) ≥
∣∣∣ESa(ω0(z, a)− ω(z, a)) |g(x)− y(x)|

∣∣∣
Finally substituting δ to δ/2 yields the result.
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B Proof of Theorem 2

Proof. Since we have ω = ω0, we only use ω in the proof for the sake of simplicity. The proof
is inspired by the technique used in Theorem 9 in [13]. Assume (x, y) = {(xi, yi)}n0+n1

i=1 is the
complete cases, in which n0 of the data belongs to sensitive group A = 0. Let

φg(x, y) = Ê0(g, ω)− Ê1(g, ω)

=
1

n0

n0∑
i=1

ω((x0,i, y0,i), 0)|g(x0,i)− y0,i| −
1

n1

n1∑
i=1

ω((x1,i, y1,i), 1)|g(x1,i)− y1,i|

with g ∈ H. Obviously when true weights are adopted, we have Eφg(x, y) = E0(g) − E1(g).
Without loss of generality, we assume n0 < n1. We let σ2

i := VarSi(ω|g − y|). Furthermore let
σ2 = σ2

0 + (n0/n1)σ2
1 . Now consider U :=

Eφg(x,y)−φg(x,y)
σ . Notice that

EZ2 =
1
n0
σ2
0 + 1

n1
σ2
1

σ2
=

1

n0
(12)

Meanwhile we can split the expectation into

EU21|U |∈[0,1/(k√n0)) + EU21|U |∈[1/(k√n0),u/
√
n0) + EU21|U |∈[u/√n0,+∞)

which is upper bounded by

1

k2n0
+
u2

n0
P (u/

√
n0 > |U | > 1/(k

√
n0)) + EU21|U |∈[u/√n0,+∞)

Combined with (12) yields

P (u/
√
n0 > |U | > 1/(k

√
n0)) ≥ k2 − 1

k2u2
− n0
u2

EU21|U |∈[u/√n0,+∞) (13)

Now notice that n0EU21|U |∈[u/√n0,+∞) can be written as

n0EU21|U |∈[u/√n0,+∞) =

∫ +∞

0

P
[
n0|U |21|U |> u√

n0
> t
]
dt

=

∫ u2

0

P

[
|U | > u

√
n0

]
dt+

∫ +∞

u2

P

[
|U | >

√
t

n0

]
dt

= u2P

[
|U | > u

√
n0

]
+

∫ +∞

u2

P

[
|U | >

√
t

n0

]
dt

(14)

The probability in the last line can be upper bounded by

P

[
|U | >

√
t

n0

]
≤ P

[
|( 1

n0

n0∑
i=1

ω(x0,i, y0,i)|g(x0,i)− y0,i| − ES0ω(z, 0)|g(x)− y|)| > σ

2

√
t

n0

]

+ P

[
|( 1

n1

n1∑
i=1

ω(x1,i, y1,i)|g(x1,i)− y1,i| − ES1
ω(z, 1)|g(x)− y|)| > σ

2

√
t

n0

]

≤ exp

− σ2t

8σ2
0 + 4/3Bσ

√
t
n0

+ exp

− (n1/n0)σ2t

8σ2
1 + 4/3Bσ

√
t
n0


where the second inequality is given by Bernstein’s inequality. We now state that

(n1/n0)σ2t

8σ2
1 + 4/3Bσ

√
t
n0

≥ t

8 + 4/3
√
t

To see this, consider two cases σ > σ1 and σ ≤ σ1. If σ > σ1 then

(n1/n0)σ2t

8σ2
1 + 4/3Bσ

√
t
n0

≥ σ2t

8σ2 + 4/3Bσ
√

t
n0

≥ t

8 + 4/3
√
t
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where the second inequality is given by the assumption B2/σ2 ≤ n0. If σ ≤ σ1
(n1/n0)σ2t

8σ2
1 + 4/3Bσ

√
t
n0

=
t((n1/n0)σ2

0 + σ2
1)

8σ2
1 + 4/3Bσ

√
t
n0

≥ tσ2
1

8σ2
1 + 4/3Bσ2

1

√
t
n0

≥ t

8 + 4/3
√
t

Similarly σ2t

8σ2
0+4/3Bσ

√
t

n0

≥ t
8+4/3

√
t
. Notice that

√
t ≥ 1/k, take k = 24, we have

P

[
|U | >

√
t

n0

]
≤ 2 exp

(
− t

8 + 4/3
√
t

)
≤ 2 exp

(
−3
√
t

5

)
(15)

Plug into (14) gives that

n0EU21|U |∈[u/√n0,+∞) ≤ 2u2 exp

(
−3u

5

)
+

∫ +∞

u2

2 exp

(
−3
√
t

5

)
dt

= 2

(
u2 +

10u

3
+ 2

(
5

3

)2
)

exp

(
−3u

5

)
when u = 12, above is smaller than 0.29. In this case, (13) yields

P (|U | > 1/(24
√
n0)) > P (u/

√
n0 > |U | > 1/(24

√
n0)) =

575

576u2
−0.29

u2
=

7

10u2
=

7

10

(
1

12

)2

(16)
Finally we have the observation

P (|U | > 1/(24
√
n0)) = P

∣∣∣(E0(g)− E1(g)
)
−
(
Ê0(g, ω)− Ê1(g, ω)

)∣∣∣ > 1

24

√
σ2
0

n0
+
σ2
1

n1


which completes the proof of first argument. To see the second argument, it can be proven that when

∆̂S(g, ω) ≥ 13

2

√
σ2
0(g, ω)

n0
+
σ2
1(g, ω)

n1
>
u+ 1/24

2

√
σ2
0(g, ω)

n0
+
σ2
1(g, ω)

n1

the interval
[
∆̂S(g, ω)− u/√n0, ∆̂S(g, ω) + u/

√
n0

]
will never intersect with the interval[

−∆̂S(g, ω)− 1/(24
√
n0),−∆̂S(g, ω) + 1/(24

√
n0)
]
. Hence we have

P

∣∣∣∆T (g)− ∆̂S(g, ω)
∣∣∣ > 1

24

√
σ2
0(g, ω)

n0
+
σ2
1(g, ω)

n1

 > P (u/
√
n0 > |U | > 1/(24

√
n0))

The third argument can be proved in a similar way: when ∆̂S(g, ω) ≤ 1
72

√
σ2
0(g,ω)
n0

+
σ2
1(g,ω)
n1

, we
have that∣∣∣∆T (g)− ∆̂S(g, ω)

∣∣∣ ≥ ∣∣∣(E0(g)− E1(g)
)
−
(
Ê0(g, ω)− Ê1(g, ω)

)∣∣∣− 2∆̂S(g, ω)

≥ 1

72

√
σ2
0(g, ω)

n0
+
σ2
1(g, ω)

n1

At the end of this section, we would like to provide a brief discussion about the case when the true
weights ω0 are estimated by ω, from a correctly-specified propensity score model. In this case, we
apply Theorem 2 to w and obtain that:

∣∣∣(ES0
ω(x, 0)|g(x)− y(x)| − ES1

ω(x, 1)|g(x)− y(x)|
)
−
(
Ê0(g, ω)− Ê1(g, ω)

)∣∣∣
≥ 1

24

√
σ2
0(g, ω)

n0
+
σ2
1(g, ω)

n1

(17)

with probability at least 7
10 ( 1

12 )2. We make two additional assumptions:
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• The propensity score model is correctly specified and satisfies: |ω − ω0| = Op((n0 +

n1)−1/2)

• The prediction model satisfies that for arbitrary x, E|g(x)−y(x)| P→ 0 where the expectation
is taken with respect to y given x.

From above we have that Dω
a − Dω0

a = ESa
ω2 − ESa

ω2
0 = Op((n0 + n1)−1/2) for both groups

a ∈ {0, 1}. This yields√
σ2
0(g, ω)

n0
+
σ2
1(g, ω)

n1
=

√
σ2
0(g, ω0)

n0
+
σ2
1(g, ω0)

n1
+ op(n

−1/2
0 + n

−1/2
1 ) (18)

Meanwhile, we have∣∣∣ESaω(x, a)|g(x)− y(x)| − Ea(g)
∣∣∣ =

∣∣∣ESa(ω − ω0)|g(x)− y(x)|
∣∣∣ = op((n0 + n1)−1/2) (19)

for both groups. Therefore,∣∣∣(E0(g)− E1(g)
)
−
(
Ê0(g, ω)− Ê1(g, ω)

)∣∣∣
=
∣∣∣(ES0

ω0(x, 0)|g(x)− y(x)| − ES1
ω0(x, 1)|g(x)− y(x)|

)
−
(
Ê0(g, ω)− Ê1(g, ω)

)∣∣∣
≥
∣∣∣(ES0

(ω(x, 0)− ω0(x, 0))|g(x)− y(x)| − ES1
(ω(x, 1)− ω0(x, 1))|g(x)− y(x)|

)∣∣∣
−
∣∣∣(ES0

ω(x, 0)|g(x)− y(x)| − ES1
ω(x, 1)|g(x)− y(x)|

)
−
(
E0(g)− E1(g)

)∣∣∣
≥
∣∣∣(ES0

(ω(x, 0)− ω0(x, 0))|g(x)− y(x)| − ES1
(ω(x, 1)− ω0(x, 1))|g(x)− y(x)|

)∣∣∣
+

1

24

√
σ2
0(g, ω)

n0
+
σ2
1(g, ω)

n1

where the last inequality holds with probability at least 7
1440 . Combining equation (18) and (19), we

know that for arbitrary δ, there exists N0 and N1 such that whenever n0 > N0 and n1 > N1, with
probability at least 1− δ,∣∣∣(ES0

(ω(x, 0)− ω0(x, 0))|g(x)− y(x)| − ES1
(ω(x, 1)− ω0(x, 1))|g(x)− y(x)|

)∣∣∣
≤ 1

24

√
σ2
0(g, ω)

n0
+
σ2
1(g, ω)

n1
− 1

25

√
σ2
0(g, ω0)

n0
+
σ2
1(g, ω0)

n1

Thus with probability at least 7
1440 − δ,

∣∣∣(E0(g)− E1(g)
)
−
(
Ê0(g, ω)− Ê1(g, ω)

)∣∣∣ ≥ 1

25

√
σ2
0(g, ω0)

n0
+
σ2
1(g, ω0)

n1

Following the procedure as that of Theorem 2, we can prove that the lower bound have order
O((n0)−1/2). Of course, the bound also holds with a low probability.

C Experiment details

The experiments are run using R (version 3.6.1) on a single 6-Core Intel Core i7 (2.6GHz). We
use R package ‘e1071’ (licensed under GPL-2 | GPL-3) for SVM, ‘ranger’ (used for prediction
model, licensed under GPL-3) and ‘randomForest’ (used for PS model, licensed under GPL-2 |
GPL-3) for random forest and ‘xgboost’ (licensed under Apache License (== 2.0)) for XGB. The
‘randomForest’ is a commonly-used package for random forest and ‘ranger’ provides an efficient
implementation for the algorithm, which can be adapted to the learning task in high dimensions. (e.g.,
the prediction model in the real data experiments).
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Data Availability

The de-identified COMPAS dataset is publicly available at https://github.com/propublica/compas-
analysis/blob/master/compas-scores-two-years.csv. The de-identified ADNI dataset is publicly
available at http://adni.loni.usc.edu/.
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