
Published as a conference paper at ICLR 2025

ZEROTH-ORDER FINE-TUNING OF LLMS WITH TRANS-
FERABLE STATIC SPARSITY

Wentao Guo1, Jikai Long2, Yimeng Zeng3, Zirui Liu4, Xinyu Yang5, Yide Ran2,
Jacob Gardner3, Osbert Bastani3, Christopher De Sa6, Xiaodong Yu2,
Beidi Chen5, Zhaozhuo Xu2

1Princeton University, 3University of Pennsylvania, 2Stevens Institute of Technology,
4University of Minnesota, 5Carnegie Mellon University, 6Cornell University
wg0420@princeton.edu, {jlong1,yran1,xyu38,zxu79}@stevens.edu
{yimengz,jacobrg,obastani}@seas.upenn.edu,zrliu@umn.edu
{xinyuya2,beidic}@andrew.cmu.edu,cdesa@cs.cornell.edu

ABSTRACT

Zeroth-order optimization (ZO) is a memory-efficient strategy for fine-tuning Large
Language Models using only forward passes. However, applying ZO fine-tuning
in memory-constrained settings such as mobile phones and laptops remains chal-
lenging since these settings often involve weight quantization, while ZO requires
full-precision perturbation and update. In this study, we address this limitation by
combining static sparse ZO fine-tuning with quantization. Our approach transfers
a small, static subset (0.1%) of "sensitive" parameters from pre-training to down-
stream tasks, focusing fine-tuning on this sparse set of parameters. The remaining
untuned parameters are quantized, reducing memory demands. Our proposed work-
flow enables efficient ZO fine-tuning of an Llama2-7B model on a GPU device
with less than 8GB of memory while outperforming full model ZO fine-tuning
performance and in-context learning. We provide an open-source implementation
at https://github.com/GarlGuo/SensZOQ.

1 INTRODUCTION

Large language models (LLMs) have demonstrated superior performance in general-purpose language
generation (Brown et al., 2020; Radford et al., 2019; Liu et al., 2019; Shypula et al., 2024; Hicke et al.,
2023; Liu et al., 2024a; Achiam et al., 2023). Despite their success, fine-tuning LLMs for specific
tasks remains necessary to achieve optimal results. However, the fine-tuning process often requires
significantly more memory compared to inference. Specifically, there are four main components
that occupy the memory during fine-tuning LLMs: (1) the weight parameter; (2) the optimizer state,
which contains the information about the past gradient (Kingma & Ba, 2015); (3) the gradient used to
update the parameters; (4) the activation cached to calculate the weight gradient (Liu et al., 2024e);
Previous work, such as QLoRA (Dettmers et al., 2023), has successfully reduced memory usage for
both (1) and (2) by combining weight quantization and low-rank adaptation (Hu et al., 2021), which
enables fine-tuning huge LLMs under consumer level GPUs. However, on memory-constrained
hardware, such as smartphones, the memory required for caching (3) gradient and (4) activations
remains significant. Prior approaches to address this issue are often system-based, such as CPU
offloading. The disparity between the memory demands of LLM fine-tuning and hardware capacity
limits the adaptability of LLMs, especially when customizing them for edge devices.

Exploring zeroth-order optimization in LLM fine-tuning. Recently, there has been a resurgence
of interest in Zeroth-Order (ZO) optimization methods for LLM fine-tuning (Malladi et al., 2023a;
Liu et al., 2024c; Chen et al., 2024). ZO optimization method perturbs model parameters in random
directions and utilizes the loss value difference to compute the gradient direction for parameter updates.
A key advantage of ZO methods in LLM fine-tuning is that they do not require backpropagation
procedures, significantly reducing computation and memory requirements. Being backpropagation-
free, ZO methods do not need to cache (3) gradients and (4) activations during fine-tuning. In practice,
ZO methods have demonstrated the potential to achieve performance comparable to first-order
methods in LLM fine-tuning, which creates new venues for efficient LLM adaptation strategies.

1

https://github.com/GarlGuo/SensZOQ

Published as a conference paper at ICLR 2025

Efficient ZO LLM fine-tuning with sparsity. Although ZO methods eliminate the need for
backpropagation, a significant drawback of these methods is the slow convergence rate (Zhao et al.,
2024b; Liu et al., 2024c). A recent approach addresses this by fine-tuning with a sparse mask
(Liu et al., 2024c; Zhang et al., 2024b), achieving approximately ∼ 75% dynamic sparsity (perturb
& tune 25% parameters per step). Nonetheless, this sparsity level barely reduces computational
overhead, as the latency during the forward pass with even ∼ 90% sparsity is still comparable
to that of dense matrix operations. This latency increase can greatly impact user experience on
applications such as personal assistants, where even a twofold increase in latency is perceptible. In
addition, dynamic sparsity leads to a reduction in training iterations but not necessarily wall-clock
time – determine and apply the sparsity pattern for each training step could be expensive. Moreover,
dynamic sparsity inherently assumes the whole model must all be in dense weights, and an attempt to
combine dynamic sparse training with parameter-size reduction techniques such as quantization is
not computationally tractable (otherwise it will involve frequent dequantization and quantization).
This raises the questions:

Is it possible to develop an extreme static sparsity method for ZO fine-tuning that is easy to combine
with the quantization method? Would the memory efficiency of ZO be pushed even further?

Our proposal: ZO LLM fine-tuning with transferable static sparsity. In this paper, we answer
the raised research question by proposing a transferable static sparse ZO LLM fine-tuning strategy.
We observe an extreme sparsity pattern in LLM parameters: a subset, determined by selecting the top
k magnitude entries from the diagonal of the empirical Fisher information matrix, is effective for
ZO fine-tuning. Moreover, we find this sparsity pattern can be obtained through LLM’s pre-training
process and transferred to various downstream tasks without modification (as a static selection).

Summary of contributions. Building on these insights, our work proposes a comprehensive
framework for ZO fine-tuning, making the following contributions:

• We identify that only an extremely small portion (0.1%) of LLM parameters should be updated
during ZO LLM fine-tuning. Moreover, we observe that this sparsity pattern can be derived in
LLM pre-training process and transferred across different downstream tasks while still maintaining
good ZO performance without any modification.

• Based on this observation, we propose SensZOQ, an on-device LLM personalization workflow
via integrating Sensitive ZO optimization with Quantization to further improve the memory-
efficiency of ZO fine-tuning (Figure 1).

• We conduct extensive experiments across various LLMs and demonstrate that our method achieves
competitive performance across various downstream tasks.

SensZOQ MeZO FO-Adam
LoRA

FO-Adam
Full FT

0

20

40

60

80

C
U

D
A

M
em

or
y

(G
B

)

RTE
Model weights
Optimizer
ZO Forward
ZO Perturbation
FO For-&Backward
48 GB
24 GB
8 GB (our target)

SensZOQ MeZO FO-Adam
LoRA

FO-Adam
Full FT

WiC

SensZOQ MeZO FO-Adam
LoRA

FO-Adam
Full FT

COPA

Figure 1: CUDA memory profiling of Llama2-7B on 3 fine-tuning tasks (all with batch size 8).
“SensZOQ” is our method, and MeZO refers to the ZO full fine-tuning (Malladi et al., 2023a). “ZO”
refers to backpropagation-free zeroth-order optimization method, and “FO” refers to the first-order
optimization method. “LoRA” stands for Low-Rank adaptation (Hu et al., 2021). We find that
SensZOQ can meet the 8 GB memory target without any CPU offloading.

2

Published as a conference paper at ICLR 2025

2 SPARSE ZO FINE-TUNING WITH STATIC SENSITIVE PARAMETERS IN LLM

In this section, we first go through the background of ZO optimization in Section 2.1. We then inspect
an extreme sparsity pattern in LLMs in Section 2.2 and its theoretical guarantees in Section 2.3.

2.1 ZEROTH-ORDER OPTIMIZATION

ZO surrogate gradient estimator. ZO optimizers have been studied widely in the machine learning
community. Given a dataset D = {(x1, y1), . . . , (xn, yn)} and a loss function f with model
parameters w ∈ Rd, ZO optimizer will estimate the gradient at w via ZO surrogate gradient
estimator. Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992) is such an
estimator that would first sample a random vector z ∈ Rd and uses the loss value difference to scale
the update direction. z is usually sampled from an Gaussian distribution N (0, Id).
Definition 1 (Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992)). SPSA
estimates the gradient w.r.t. w with a data example (x, y), a small constant ϵ ∈ R, and a sampled
random vector z ∈ Rd as follows:

ĝ(w, (x, y), z) =
f(w + ϵz; (x, y))− f(w − ϵz; (x, y))

2ϵ
z (1)

There are other ZO surrogate gradient estimators (Liu et al., 2020; Ohta et al., 2020), but in practice,
SPSA achieves good performance in ZO fine-tuning. Some ZO algorithms such as DeepZero (Chen
et al., 2024) would utilize the parameter-wise finite difference of loss values to derive parameter-wise
update directions. This would yield O(d) query costs per training step even when combining with
certain sparse masking methods and is not practical for LLM fine-tuning scenarios. We therefore
select SPSA with random Gaussian perturbation as our ZO gradient estimator.

ZO-SGD algorithm. ZO-SGD is an optimizer similar to SGD but replaces the FO gradient with ZO
surrogate gradient estimate per training step, as defined below:
Definition 2 (ZO-SGD update rule). ZO-SGD is an optimizer that uses ZO surrogate gradient to
update parameters wt with learning rate ηt and a data example (xt, yt) sampled at timestep t:

wt+1 = wt − ηtĝw(wt, (xt, yt), zt) (2)

MeZO (Malladi et al., 2023a) is a ZO-SGD algorithm that uses the “random seed trick” to save
the need of caching ZO surrogate gradient. The choice of optimizer (SGD) is orthogonal to ZO
optimization techniques, but in our preliminary experiments we find adaptive optimizers such as
Adam (Kingma & Ba, 2015) would not necessarily accelerate ZO convergence in LLM fine-tuning
scenarios. There are other ZO optimizers aware of the parameter-wise heterogeneity of loss curvatures
to accelerate the optimization convergence (Zhao et al., 2024b), and we leave how to combine our
method with theirs as future works.

2.2 SPARSE ZO OPTIMIZATION WITH STATIC SENSITIVE PARAMETERS.

Given model parameters w, a loss function f , a data example (x, y), sensitive parameters are defined
as parameters whose corresponding FO coordinate-wise gradient square values are maximized.
Definition 3 (Sensitive parameter mask). A sensitive sparse mask mk ∈ {0, 1}d with k nonzero
entries (

∑
i m(i) = k) is defined as1

mk = argmaxm∥m⊙∇f(w)∥22. (3)

In the context of ZO optimization, we will update sensitive parameters only. Denote that z̄ = z⊙mk.
We will modify the SPSA gradient estimator from ĝ(w, (x, y), z) to ĝ(w, (x, y), z̄), and accordingly:
Definition 4 (Sensitive sparse ZO-SGD update rule).

wt+1 = wt − ηtĝw(wt, (xt, yt), zt ⊙mk,t) (4)

The theoretical support of sensitive parameters can be derived from the lens of SPSA gradient
estimator and Fisher information matrix as follows:

1When the context is clear, we will abbreviate f(w; (x, y)) as f(w) and ∇f(w; (x, y)) as ∇f(w). Notice
that for full batched gradient we will use ∇F(w) .

3

Published as a conference paper at ICLR 2025

• Maximum zeroth-order loss value changes, from the lens of ZO SPSA estimator.
The square (account for negativity) of loss value difference for ĝw(w, (x, y), z̄) is as follows:
Ez̄{f(w + ϵz̄; (x, y))− f(w − ϵz̄; (x, y))}2 ≈ Ez̄{2ϵz̄⊤∇wf(w)}2 = 4ϵ2∥mk⊙∇wf(w)∥22

Since by Definition 3 our sensitive mask would maximize ∥mk ⊙∇wf(w)∥2 for a given sparsity
ratio, we would expect our sensitive mask to maximize the magnitude of the loss value difference for
any given sparsity ratio. This property is important for ZO as ZO directly leverages the loss-value
difference as a probe of loss landscape to determine the descent direction.
• Maximum coverage of Hessian diagonal, from the lens of Fisher matrix.
LLMs are often pre-trained on large text corpus2 to reach low perplexity before entering the fine-
tuning stage. In this case, we would assume pLLM(y|x) ∼ pD(y|x), which implies the empirical
Fisher F̂ should be close to the (true) Fisher matrix F as follows:

F = Ex∼pD,ŷ∼pLLM(·|x)∇w log pLLM(ŷ|x)(∇w log pLLM(ŷ|x))⊤

≈ F̂ = E(x,y)∼pD∇w log pLLM(y|x)(∇w log pLLM(y|x))⊤
As we assume the empirical Fisher matrix approximates Fisher, which also approximates the
Hessian, and empirical Fisher’s diagonal is equal to the coordinate-wise gradient square vector when
computing with downstream task-specific loss, our sensitive parameters would cover a large fraction
of the largest Hessian diagonal entries.

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.00

0.25

0.50

0.75

1.00

RTE
mean ± std
0.5
0.2

10−5 10−4 10−3 10−2 10−1 100

Ratio

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA

C
um

u.
no

rm
.

su
m

of
1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

Figure 2: Cumulative normalized sum of coordinate-wise 1
n

∑n
i=1[∇f(w; (xi, yi))]

2 of linear layers
during Llama2-7B (Touvron et al., 2023) FO-SGD full fine-tuning. For each linear layer, we first sort
parameters by the decreasing order of their gradient square value 1

n

∑n
i=1[∇f(w; (xi, yi))]

2, and we
take the cumulative sum and normalize it to draw a blue curve, and the red-shaded region is the mean
± std of all blue curves. Similar figures for Mistral-7B and OPT-6.7B are in Figure 7. We observe
that roughly 0.1%-1% parameters contribute about 50% gradient norm square.

This idea of sensitive parameters has been studied in the quantization community (Kim et al., 2024;
Guo et al., 2023) and FO optimization (Sung et al., 2021). However, we are the first one to leverage
the extremely sparse sensitive parameters in LLM fine-tuning to accelerate ZO fine-tuning with LLMs.
When we have perturbation and updating in the scale of billion parameters, finding which parameters
to fine-tune would be important for improving ZO performance. Notice that here we use sensitive
masks mk for understanding purposes. In Section 3.2, we will discuss how to transform Definition 4
to a parameter-efficient optimization pipeline via transferable static sparsity.

2.3 THEORETICAL CONVERGENCE RATE

We would investigate the theoretical convergence of sensitive sparse ZO-SGD on sensitive parameters
under the non-convex optimization settings. Our assumptions are included in Appendix C.1.
Theorem 1 (Convergence rate of sensitive sparse ZO-SGD (Definition 4)). If we pick ηt =
1/(L(k+2)), under Assumptions 1 (bounded gradient error), 2 (Lipschitz smoothness), and 4 (sparse
sensitive parameters), we have

1

T

T−1∑

t=0

Ez̄,(x,y)∥∇wF(wt)∥2 ≤ O

(
k

c
· L
T

)
(F(w0)−F∗) + σ2. (5)

2Here we assume data examples (x, y) ∼ pD in fine-tuning datasets after verbalization would also appear in
the large text corpus during pre-training.

4

Published as a conference paper at ICLR 2025

If we pick ηt = min{1/(L(k + 2)), 1/(cµ)} with an extra P.L. condition (Assumption 3), we have

Ez̄,(x,y){F(wT)−F∗} ≤
(
1−O

(µ

L
· c
k

))T

(F(w0)−F∗) +
σ2

2µ
. (6)

The proof for Equation 5 is in Appendix C.2 and the proof for Equation 6 is in Appendix C.3. If
we choose k = d and c = 1, both convergence rates trivially reduce to the standard zeroth-order
convergence rates as O(d/T) + O(constant) and (1 − O(1/d))T + O(constant). As we assume
c ≫ k/d, we know d ≫ k/c and therefore both O((k/c)(1/T)) and (1−O(c/k))T are much lower
than O(d/T) and (1−O(1/d))T that zeroth-order method will yield.

We want to emphasize that our contributions are more on empirical LLM fine-tuning instead of
general machine learning tasks, and in Section 4.2 we extensively compare our sparse ZO methods
with other sparse ZO methods and we demonstrate its superiority during LLM fine-tuning. We
do not use the strict “local r-effective rank” assumption that Malladi et al. (2023a) uses, and our
Assumption 4 can be easily observed empirically in Figure 7. Liu et al. (2024c) and Ohta et al. (2020)
also provide analysis on the convergence of sparse ZO optimization but they do not include our
sensitive sparse masks in their studies.

3 SENSZOQ: A SPARSE ON-DEVICE FINE-TUNING RECIPE

In this section, we describe the transferable static sparsity pattern we observed in LLMs and how we
utilize it for developing an on-device fine-tuning pipeline of LLMs as SensZOQ.

3.1 TRANSFERABILITY OF STATIC SENSITIVE PARAMETER

Transferable sensitive gradient features: from dynamic to static sparsity. Our Theorem 1 focuses
on dynamic sparse fine-tuning. However, Panigrahi et al. (2023) notices that in real LLM fine-tuning
scenarios, the fine-tuning performance could be attributed to a sparse subset of weights (∼ 0.01%).
Malladi et al. (2023b) also finds certain fine-tuning tasks would demonstrate kernel behaviors, which
include “fixed (gradient) features”: ∇wf(wafter FT; (x, y)) ∼ ∇wf(wbefore FT; (x, y)).

The similarity of gradient features during fine-tuning would imply that we do not need to re-select our
sensitive parameters during fine-tuning i.e. select once before fine-tuning should be sufficient. This
hypothesis can be validated by Figure 3 and Figure 6b. In Figure 3, the fact that “task grad, static”
does not vanish and still has a large ratio over “task grad, dyn.” at the end of training demonstrates
that we can select parameters before fine-tuning.

Surrogate static sensitive parameter mask. Another observation from Figure 3 is that the sensitive
parameters derived from pre-training datasets (C4) would still cover a large fraction of model
sensitivity. Specifically, the parameters overlap between top C4 gradient entries and task gradient
entries are much (>20×) higher than all weight magnitude baselines. Therefore, we could use it as a
surrogate sensitive sparse mask when gradients on downstream tasks are unavailable, particularly in
scenarios of on-device personalization. 3

C4 covers a diverse set of text corpus across different domains and we believe it will produce a
generally good transferable static mask. We also note that if we have better knowledge of the exact
downstream domain or task our method will be applied to, we can extract sparse masks with better
specific task performance. So we include an ablation study on other surrogate sensitive parameter
masks in Appendix D.3 and we analyze the overlap ratio of top gradient features in Appendix E.3.

3.2 SENSZOQ: AN OPPORTUNITY FOR ON-DEVICE LLM PERSONALIZATION

Transferable static sparse fine-tuning as a parameter-efficient optimization method. The sparse
optimization on fixed parameters can be implemented as a parameter-efficient optimization workflow,
which will reduce the perturbation and updating time during ZO optimization. Suppose we have

3Obtaining gradients of LLMs on edge devices is expensive, and we usually cannot transfer data from edge
devices to the cloud to compute the gradient on downstream tasks on the cloud. In this case, we would need some
surrogate gradient information to derive sensitive sparse masks onthe cloud. We will discuss this in Section 3.2.

5

Published as a conference paper at ICLR 2025

Before FT Epoch 1 End of FT

10−3

10−2

10−1

100

C
um

u.
no

rm
.

su
m

of
1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

RTE

task grad (dyn.)
task grad (static)
C4 grad (static)

weights (largest, static)
weights (smallest, static)
random (static)

Before FT Epoch 1 End of FT

WiC

Before FT Epoch 1 End of FT

COPA

Figure 3: Cumulative normalized gradient square values (y-axis) of different sparse masks on Llama2-
7B checkpoints during FO-SGD full FT. “task grad (dyn.)” refers to the sensitive parameters selected
at the given timestep (x-axis) on each downstream dataset, and “task grad (static)” refers to the
sensitive parameters selected before fine-tuning. “C4 grad (static)” refers to the sensitive parameters
selected once with gradients taken from causal language modeling on C4 dataset (Raffel et al., 2019).
“weights (largest/smallest, static)” mean we pick the weights with the largest/smallest magnitude in
the pre-trained model, respectively. We provide a longer discussion in Appendix E.2.

derived a sensitive sparse mask mk, and we know it is fixed during fine-tuning. Instead of applying
mk to z, we would apply it directly to w and extract the nonzero parts as below:

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk) (7)

Denote zk,t ∼ N (0k, Ik) as the Gaussian perturbation sampled in timestep t. We will determine
wsparse before fine-tuning and optimize on wsparse only and leave wdense frozen during fine-tuning. In
this case, our sensitive sparse ZO-SGD update rule will become:

wsparse,t+1 = wsparse,t − ηtĝ(wsparse,t, (xt, yt), zk,t) (8)

Equation 8’s formulation allows an opportunity for an on-device personalization workflow.

SensZOQ: integrating sensitive sparse ZO fine-tuning with quantization. As LLMs are often
pre-trained with user-agnostic public datasets, personalizing LLMs with individual users’ preferences
and meeting users’ specific needs before real-world deployment are vital (Tan et al., 2024a; Mairittha
et al., 2020). However, transferring the user-specific data to the upstream cloud before fine-tuning
LLMs would raise privacy concerns (Xu et al., 2018). On the other hand, personal devices usually
have less computational budget and are more memory-constrained than the cloud (Zhu et al., 2023),
and performing full fine-tuning would easily exceed the device memory budget.

In response, we propose an on-device personalization workflow SensZOQ illustrated in Figure 4.
The high-level overview is that we use surrogate gradient information from pre-training datasets
∇wpLLM(y|x) to extract sensitive parameters wsparse and keep wsparse in 16 bits, while we quantize
the remaining dense weights wdense (Step 1-4). We send wsparse and Q(wdense) to personal devices
(Step 5), and we perform on-device ZO fine-tuning only on wsparse (Step 6).

We highlight that SensZOQ’s memory consumption is nearly minimal: we can fine-tune a Llama2-7B
model under 8 GB GPU memory without any offloading as illustrated in Figure 1. This would satisfy
the memory constraint by a wide range of edge or mobile devices as illustrated in Table 13.

In addition, our method does not put strict constraints on specific choices of quantization al-
gorithms since any algorithm that aims to minimize the least-square quantization error term
Q(w) = argminŵEx∥(w − ŵ)x∥22 or its variant would suffice (Chee et al., 2024; Nagel et al.,
2020; Frantar et al., 2022; Lin et al., 2023; Kim et al., 2024).

Efficient implementation of sensitive sparse linear layers. In Appendix F, we discuss how to
efficiently implement our sensitive sparse ZO fine-tuning in forward passes of linear layers with
training and inference workflow: use Equation 19 when we have access to efficient uniform integer
matmul to compute Q(wdense)Q(x) and in other cases, we would usually use Equation 21 for token
generation and Equation 23 for ZO training.

6

Published as a conference paper at ICLR 2025

4. Quantize
dense parts

Stay frozen

ready to
serve!

1. Get gradients from
pre-training datasets

2. Get surrogate sensitive
sparse parameter masks

3. Decompose weights to
dense and sparse parts

5. send models to
personal devices

sparse parts
remain in 16-bit

6. on-device
ZO fine-tuning

Pre-trained LLM Apply sensitive sparse masks

Cloud Edge

Figure 4: SensZOQ: an on-device LLM personalization workflow via integrating Sensitive ZO
optimization with Quantization. The high-level idea is that we first decompose w to wsparse and
wdense, and then quantize wdense (on the cloud). On the edge devices, we will fine-tune wsparse only.

4 EXPERIMENTS

In this section, we aim to validate the effectiveness of our SensZOQ, shown in Figure 4, as a memory-
efficient LLM fine-tuning solution. This naturally leads to comparison with other ZO methods, which
we evaluate in Section 4.1. Additionally, we assess the effectiveness of our sensitive parameter
mask derived from pre-training texts (C4) against other heuristic sparsity methods in Section 4.2.
Specifically, we aim to address the following research questions:

• RQ1: What is the performance of our SensZOQ compared with other ZO methods?
• RQ2: Is optimizing C4-gradient-derived sensitive parameters more effective than optimizing other
subset of parameters during ZO fine-tuning?

We focus on 7B-level LLM models, including Llama2-7B (Touvron et al., 2023), Mistral-7B (Jiang
et al., 2023), and OPT-6.7B (Zhang et al., 2022) as they would fit with common on-device memory
constraints (8 GB) listed on Table 13 after applying quantization. We use SST-2 (Socher et al.,
2013), RTE (Wang et al., 2018), CB (De Marneffe et al., 2019), BoolQ (Clark et al., 2019), WSC
(Levesque et al., 2012), WiC (Pilehvar & Camacho-Collados, 2019), COPA (Roemmele et al., 2011),
and WinoGrande (WinoG) (Sakaguchi et al., 2020) datasets. We follow standard ZO fine-tuning
settings and use the same codebase as in Malladi et al. (2023a). More details of our experiments
(hyperparameters, task-specific prompts, etc.) are described in Appendix G.

We include additional results for Llama2-13B and OPT-13B, and harder tasks such as commonsense
reasoning, math reasoning, and MMLU in Appendix D. To the best of our knowledge, there are
no ZO-LLM research yet evaluated on commonsense reasoning or math tasks. We take a
pioneering step in this direction and establish these ZO baselines.

4.1 ON-DEVICE PERSONALIZATION

We evaluate the performance of our SensZOQ method in Table 1. We follow the exact recipe as
described Figure 4, where we only optimize 0.1% sensitive parameters derived from a small batch of
C4 texts on top of a 4-bit quantized model. SensZOQ’s results are shown as 1st row for each subtable.

Comparison with ICL & ZO Full FT. The results of in-context learning (ICL) and ZO full fine-
tuning (ZO Full FT) on FP16 models are shown as the 3rd and 5th row for each substable in Table 1.
7B models are usually not large enough such that ICL would outperform with FT (Liu et al., 2022;
Mosbach et al., 2023). In addition, ICL induces additional KV-cache memory burden if the number
of demonstration examples is too many. Our method SensZOQ does not induce significant inference
latency and memory burden as it only needs to use 0.1% parameters. SensZOQ also outperform ICL
and ZO Full FT. This is impressive given that quantization would degrade performance of the base
model, but SensZOQ still manages to match the fine-tuning performance.

Comparison with ZO LoRA. The primary purpose of quantization is to represent parameters in
less bits (therefore reducing model sizes) and improve system-level metrics such as weight loading
time and inference latency (Dettmers et al., 2022; Chee et al., 2024). In order to retain such benefits

7

Published as a conference paper at ICLR 2025

Table 1: Fine-tuning performance of different methods. In the first column, “Q” means the full model
is quantized with 4-bit quantization method (SqueezeLLM (Kim et al., 2024)), and “ZO-SGD” means
the model is fine-tuned with ZO-SGD optimizer. For each cell, we report the mean and standard
deviation of validation set accuracy (↑) of 3 random trials in the format of meanstd. We finally report
the average accuracy in the last 2 columns. Notice that we add the results for FO-SGD & FO-Adam
for reference and we do not use it for performance rank computation.

(a) Llama2-7B

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Acc↑

Q, ZO-SGD SensZOQ 94.40.5 76.91.0 70.83.0 83.90.4 61.90.9 63.40.6 85.71.9 65.10.5 75.3
LoRA 92.90.6 58.70.9 67.91.5 77.71.4 62.80.5 61.30.4 85.00.0 62.91.0 71.2

ZO-SGD Full FT 94.60.5 73.35.1 66.70.8 81.90.8 60.63.4 61.90.2 82.71.7 63.10.4 73.1

Zero-shot 89.00.0 57.80.0 32.10.0 69.90.2 50.20.0 36.50.0 79.00.0 64.80.6 59.9
ICL 94.80.2 71.54.3 72.615.2 77.54.6 53.21.1 61.14.3 87.02.2 67.51.3 73.2

FO-SGD Full FT 95.40.3 84.10.9 73.20.0 85.11.2 62.80.5 72.01.8 85.31.2 71.11.7 78.6
FO-Adam Full FT 95.50.1 85.70.7 92.91.5 85.30.9 64.11.2 71.30.4 85.30.5 78.31.2 82.3

(b) Mistral-7B

Q, ZO-SGD SensZOQ 94.20.4 76.83.0 67.34.5 76.31.0 59.91.2 62.20.4 87.70.5 73.60.7 74.8
LoRA 91.61.4 69.32.2 64.90.8 65.22.0 57.71.4 62.11.1 88.30.9 71.60.8 71.3

ZO-SGD Full FT 94.60.1 74.62.1 68.86.2 76.60.2 54.86.2 62.60.5 88.30.5 72.20.5 74.1

Zero-shot 54.80.0 50.50.0 37.50.0 43.41.8 50.80.0 39.40.0 78.00.0 66.20.1 52.6
ICL 60.716.7 55.24.7 33.313.1 46.86.5 50.40.6 63.80.9 88.70.5 74.00.8 59.1

FO-SGD Full FT 94.90.6 87.61.2 85.73.9 86.10.7 62.50.0 70.80.6 88.31.7 82.11.1 82.3
FO-Adam Full FT 95.10.2 86.40.7 88.13.4 83.11.5 64.77.3 72.72.9 82.71.7 85.90.3 82.3

(c) OPT-6.7B

Q, ZO-SGD SensZOQ 94.60.7 74.11.1 81.03.0 70.41.0 57.72.4 62.20.6 81.70.9 64.81.6 73.3
LoRA 93.80.9 71.02.4 69.01.7 70.21.7 60.61.6 57.50.5 84.32.5 63.00.9 71.3

ZO-SGD Full FT 94.40.3 72.71.2 79.83.0 72.11.2 57.44.6 60.20.9 82.32.6 64.60.3 72.9

Zero-shot 61.00.0 60.70.0 46.40.0 55.71.0 55.50.0 36.50.0 77.00.0 61.10.3 56.7
ICL 74.014.6 65.811.2 54.85.9 67.92.1 53.21.7 41.04.5 80.72.9 61.50.8 62.4

FO-SGD Full FT 95.20.3 81.80.9 92.33.0 79.21.3 59.07.7 66.52.3 85.70.9 68.80.6 78.6
FO-Adam Full FT 95.70.2 81.12.6 83.93.9 81.10.7 56.17.9 66.50.5 81.31.2 66.40.8 76.5

during fine-tuning stage, our fine-tuning methods should be parameter-efficient. A natural baseline
becomes fine-tuning other PEFT methods such as LoRA (Hu et al., 2021) on top of the same quantized
LLM weights as SensZOQ. These results are shown as the 2nd row for each substable in Table 1.
SensZOQ still outperforms LoRA when applied to the same 4-bit quantized base model.

Empirical convergence speedup over ZO full FT. To investigate the empirical convergence rate
of SensZOQ, we plot their training losses w.r.t. 20k optimization steps for OPT-13B fine-tuning tasks,
as shown in Figure 5. In this figure, "Sensitive ZO (C4 mask, 4 bits)" is our SensZOQ method, and
the Sensitive ZO (C4 mask, FP16) will keep the dense weights in FP16.

In Figure 5a, we find that a direct learning rate transfer from ZO Full FT to SensZOQ already results
in a similar convergence. In Figure 5b, we identify that SensZOQ achieves faster convergence
under the same hyperparameter searching efforts. In Figure 5b, the best learning rates for ZO Full
FT are still 2e-7 while we use 5e-7 for Sensitive ZO and produce much faster convergence results.

Comparison with Adam Full FT of smaller size model. The memory-efficiency of ZO is achieved
via cheap queries in the loss landscape with random perturbation. The absence of accurate descent
direction naturally leads an inferior performance than first-order (FO) full FT on the same model size,
as also observed by Malladi et al. (2023a). However, we argue that such performance degradation
is still acceptable in terms that ZO FT on larger models outperforms FO FT on smaller models. In
Table 2, we pick 2 popular LLM sizes (1B and 7B scales) and we find that applying SensZOQ on
6.7B OPT model generally outperforms FO-Adam full FT on 1.3B OPT model, and the latter already
surpasses the 8 GB memory budget (e.g., 12.5 GB on RTE compared to SensZOQ’s 5.6 GB).

8

Published as a conference paper at ICLR 2025

0 5 10 15 20
Optimization steps (×103)

0.55

0.60

0.65

0.70

Tr
ai

ni
ng

lo
ss

RTE
Sensitive ZO (C4, 4 bits)
Sensitive ZO (C4, FP16)
ZO Full FT (FP16)

0 5 10 15 20
Optimization steps (×103)

0.67

0.68

0.69

0.70

0.71

WiC

0 5 10 15 20
Optimization steps (×103)

1.6

1.8

2.0

2.2

COPA

(a) Convergence of Sensitive ZO vs. ZO Full FT under the best learning rate for ZO Full FT only.

0 5 10 15 20
Optimization steps (×103)

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

lo
ss

RTE

Sensitive ZO (C4, 4 bits)
Sensitive ZO (C4, FP16)
ZO Full FT (FP16)

0 5 10 15 20
Optimization steps (×103)

0.66

0.68

0.70

WiC

0 5 10 15 20
Optimization steps (×103)

1.50

1.75

2.00

2.25

COPA

(b) Convergence of Sensitive ZO vs. ZO Full FT under the best learning rate for each method.

Figure 5: Convergence of SensZOQ for OPT-13B. SensZOQ refers to "Sensitive ZO (C4 mask, 4
bit)", and we also provide the convergence results of fine-tuning FP16 sensitive weights. In Figure 5a,
We first search the best learning rate for ZO Full FT that reaches the lowest training loss in [1e-7, 2e-7,
5e-7, 1e-6] grid, and we use such learning rate for sensitive ZO. In Figure 5b, we search for the best
learning rate for ZO Full FT and sensitive ZO separately on the same grid. The other hyperparameters
are kept the same for both subfigures. We plot the mean over 3 random trials for all lines.

Table 2: Fine-tuning performance of SensZOQ versus Adam FT of smaller model in the OPT family.
We follow the same experiment procedure as in Table 1.

Params Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Acc↑

4 bits
ZO-SGD 6.7B SensZOQ 94.60.7 74.11.1 81.03.0 70.41.0 57.72.4 62.20.6 81.70.9 64.81.6 73.3

FP16
ZO-SGD 6.7B Full FT 94.40.3 72.71.2 79.83.0 72.11.2 57.44.6 60.20.9 82.32.6 64.60.3 72.9

BF16
FO-Adam 1.3B Full FT 93.60.5 73.92.4 75.03.9 73.81.0 61.91.2 62.41.5 76.71.2 60.80.6 72.3

4.2 EFFECTIVENESS OF SPARSE ZO FINE-TUNING ON SENSITIVE PARAMETERS

Comparison with other static sparsity masks. We investigate the performance of optimizing
our sensitive parameters versus other subsets of parameters in a static sparsity regime with the
FP16 model. We consider standard weight-magnitude baselines as weights with largest or smallest
magnitude (SparseMeZO’s sparsity patterns (Liu et al., 2024c)), and a random subset of weights
baseline. There are some other weight importance metrics in the pruning community, such as GraSP
(Wang et al., 2020), and we also evaluate their performance in the static transfer setting. We note that
these pruning metrics were originally proposed for deciding which parameters to retain instead of
being removed during pruning, and it has no direct implications for ZO FT. Given a threshold vector
τ , the definitions of all methods are listed below:

• sensitive parameters with C4 gradients: m = |∇f(wbefore FT; (xC4, yC4))| ≥ τ
• random subsets: m = random_dim_d_vector_with_k_nnz(d, k)
• weights with largest magnitude: m = |wbefore FT| ≥ τ
• weights with smallest magnitude: m = |wbefore FT| ≤ τ
• smallest GraSP scores: m = −wbefore FT ⊙ E(x,y)∼DH(wbefore FT)∇wf(wbefore FT) ≤ τ

9

Published as a conference paper at ICLR 2025

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

60

65

70

75

A
cc

ur
ac

y

RTE

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

55.0

57.5

60.0

62.5

65.0

WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

80

82

84

86

COPA

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

65.0

67.5

70.0

72.5

75.0

77.5 100 × sparser

Average

Sensitive (C4 grad, static)
Weights (largest, static)
Weights (smallest, static)
GraSP (static)
Random (static)
Full fine-tuning

(a) Static transferability performance of different sparsity masks. “static” means that we will determine the
trainable parameters (sparsity mask) before fine-tuning and other parameters are kept unchanged.

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

55

60

65

70

75

A
cc

ur
ac

y

RTE

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

58

60

62

64

66

68
WiC

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

80

82

84

86

COPA

10−5 10−4 10−3 10−2 10−1 100

Ratio to optimize

65.0

67.5

70.0

72.5

75.0

Gap is small

Average

Sensitive (C4 grad, static)
Sensitive (task grad, static)
Sensitive (task grad, dyn.)
Random (static)
Random (dyn.)
Full fine-tuning

(b) The performance of sensitive parameters derived from causal LM loss in C4 datasets and gradients from each
fine-tuning task. “Dyn.” means the sparse masks are updated every 100 training steps (dynamic sparsity).

Figure 6: Performance of different sparsity methods in Llama2-7B ZO fine-tuning.

As illustrated in Figure 6a, we can find that ZO FT would benefit from sparse optimization, as all
methods would achieve higher than ZO full FT when optimizing 10% parameters. However, only
sensitive parameters would maintain its performance as we move to the extreme sparsity region
(<1%). In fact, the performance curve of sensitive parameters w.r.t. different sparsity levels is
near a flat curve, which indicates the performance loss by moving from 10% to 0.1% is minimal.
We also find that optimizing weights with smallest magnitude is more effectively than optimizing
weights with largest magnitude, which aligns with Liu et al. (2024c)’s findings. However, sensitive
parameters is still more effective for optimizing weights with smallest magnitude. This suggests that
sensitive parameters are more effective to serve as the sparse parameters in our SensZOQ instead of
SparseMeZO’s weights with smallest magnitude.

Transferability of SensZOQ’s sparsity masks. SensZOQ uses C4 gradients to produce a transfer-
able static mask used in downstream tasks. In Figure 6b, we compare the performance of optimizing
sensitive parameters with gradients on C4 dataset with its theoretical upper bound: static sensitive
parameters derived from gradients on each fine-tuning task as the solid line and its dynamic version
as the dash-dotted line. We also include the static and dynamic random subset parameters as a
baseline. We can find that the gap of sensitive parameters between deriving from gradients on the
C4 dataset and gradients on each fine-tuning task at a ratio 1e-3 is small. Together with Figure 9
that we evaluate the top gradient entries’ similarity between C4 and downstream tasks, we believe
SensZOQ’s sensitive masks from C4 gradients would yield satisfactory performance in general.

5 CONCLUSION

In this work, we identify that only a small portion of LLM parameters needs to be updated during ZO
fine-tuning, and these static and sparse subset parameters can be derived during the pre-training phase
and transferred across various downstream tasks without requiring any modifications, preserving effi-
cient ZO performance. We propose SensZOQ, a workflow that integrates sparse ZO optimization with
4-bit quantization to further enhance the memory efficiency of on-device fine-tuning. SensZOQ lever-
ages static sparse fine-tuning to enable the personalization of 7B LLMs on-device, reducing memory
consumption to less than 8 GB of CUDA memory. In addition to this efficiency, SensZOQ achieves
better performance than both in-context learning and ZO full fine-tuning. Therefore, SensZOQ creates
a new venue to facilitate on-device fine-tuning.

10

Published as a conference paper at ICLR 2025

6 ACKNOWLEDGMENT

This research used resources of the Argonne Leadership Computing Facility, a U.S. Department
of Energy (DOE) Office of Science user facility at Argonne National Laboratory and is based on
research supported by the U.S. DOE Office of Science-Advanced Scientific Computing Research
Program, under Contract No. DE-AC02-06CH11357. We also appreciate the support from Amazon,
Intel, Li Auto, and Moffet AI. We also thank Lin Xiao and numerous anonymous reviewers for
providing valuable feedback on this paper.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
large language models with guarantees. Advances in Neural Information Processing Systems, 36,
2024.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling
up zeroth-order optimization for deep model training. In International Conference on Learning
Representations, 2024. doi: 10.48550/arXiv.2310.02025.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
documents. Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), 2018.
doi: 10.18653/v1/n18-2097. URL http://dx.doi.org/10.18653/v1/n18-2097.

A Feder Cooper, Wentao Guo, Khiem Pham, Tiancheng Yuan, Charlie F Ruan, Yucheng Lu, and
Christopher De Sa. Coordinating distributed example orders for provably accelerated training. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: Inves-
tigating projection in naturally occurring discourse. In Proceedings of Sinn und Bedeutung, pp.
107–124, 2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 10088–10115. Curran
Associates, Inc., 2023.

11

http://dx.doi.org/10.18653/v1/n18-2097

Published as a conference paper at ICLR 2025

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. doi: 10.48550/arXiv.
1803.03635.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models, 2024.

In Gim and JeongGil Ko. Memory-efficient dnn training on mobile devices. In Proceedings of the
20th Annual International Conference on Mobile Systems, Applications and Services, pp. 464–476,
2022.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. In The Twelfth International Conference
on Learning Representations, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

Yann Hicke, Abhishek Masand, Wentao Guo, and Tushaar Gangavarapu. Assessing the efficacy of
large language models in generating accurate teacher responses. arXiv preprint arXiv:2307.04274,
2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5254–5276, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi
Liu, and Xiaobao Song. Zo-adamu optimizer: Adapting perturbation by the momentum and
uncertainty in zeroth-order optimization. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(16):18363–18371, Mar. 2024. doi: 10.1609/aaai.v38i16.29796. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/29796.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Sehoon Kim, Coleman Richard Charles Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen,
Michael W Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In Forty-first
International Conference on Machine Learning, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. doi: 10.48550/arXiv.1412.6980.

12

https://ojs.aaai.org/index.php/AAAI/article/view/29796
https://ojs.aaai.org/index.php/AAAI/article/view/29796

Published as a conference paper at ICLR 2025

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth international conference on the principles of knowledge representation and reasoning,
2012.

Luchang Li, Sheng Qian, Jie Lu, Lunxi Yuan, Rui Wang, and Qin Xie. Transformer-lite:
High-efficiency deployment of large language models on mobile phone gpus. arXiv preprint
arXiv:2403.20041, 2024a.

Zeman Li, Xinwei Zhang, and Meisam Razaviyayn. Addax: Memory-efficient fine-tuning of language
models with a combination of forward-backward and forward-only passes. In 5th Workshop on
practical ML for limited/low resource settings, 2024b.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. ACL, 2017.

Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence of
zeroth-order federated tuning for large language models. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD ’24, pp. 1827–1838, New York, NY,
USA, 2024. Association for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.
3671865. URL https://doi.org/10.1145/3637528.3671865.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
stochastic second-order optimizer for language model pre-training. In The Twelfth International
Conference on Learning Representations, 2024b.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse mezo: Less
parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint arXiv:2402.15751,
2024c.

Z Liu, J Lou, W Bao, Y Hu, B Li, Z Qin, and K Ren. Differentially private zeroth-order methods
for scalable large language model finetuning. arXiv preprint arXiv:2402.07818, 2024d. URL
https://arxiv.org/abs/2402.07818.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

Zirui Liu, Guanchu Wang, Shaochen Henry Zhong, Zhaozhuo Xu, Daochen Zha, Ruixiang Ryan
Tang, Zhimeng Stephen Jiang, Kaixiong Zhou, Vipin Chaudhary, Shuai Xu, et al. Winner-take-all
column row sampling for memory efficient adaptation of language model. Advances in Neural
Information Processing Systems, 36, 2024e.

13

https://doi.org/10.1145/3637528.3671865
https://arxiv.org/abs/2402.07818

Published as a conference paper at ICLR 2025

Yucheng Lu, Wentao Guo, and Christopher M De Sa. Grab: Finding provably better data permutations
than random reshuffling. Advances in Neural Information Processing Systems, 35:8969–8981,
2022.

Kai Lv, Hang Yan, Qipeng Guo, Haijun Lv, and Xipeng Qiu. Adalomo: Low-memory optimization
with adaptive learning rate. In Findings of the Association for Computational Linguistics ACL
2024, pp. 12486–12502, 2024.

J MacQueen. Some methods for classification and analysis of multivariate observations. In Pro-
ceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability/University of
California Press, 1967.

Nattaya Mairittha, Tittaya Mairittha, and Sozo Inoue. Improving activity data collection with on-
device personalization using fine-tuning. In Adjunct Proceedings of the 2020 ACM International
Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM
International Symposium on Wearable Computers, pp. 255–260, 2020.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023a.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610–23641. PMLR, 2023b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2016.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar. Few-shot fine-
tuning vs. in-context learning: A fair comparison and evaluation. arXiv preprint arXiv:2305.16938,
2023.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Mayumi Ohta, Nathaniel Berger, Artem Sokolov, and Stefan Riezler. Sparse perturbations for
improved convergence in stochastic zeroth-order optimization. In Machine Learning, Optimization,
and Data Science: 6th International Conference, LOD 2020, Siena, Italy, July 19–23, 2020,
Revised Selected Papers, Part II 6, pp. 39–64. Springer, 2020.

Yijiang Pang and Jiayu Zhou. Stochastic two points method for deep model zeroth-order optimization.
arXiv preprint arXiv:2402.01621, 2024. URL https://arxiv.org/abs/2402.01621.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. In International Conference on Machine Learning, pp. 27011–
27033. PMLR, 2023.

Gunho Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung Kwon, Byeong-
wook Kim, Youngjoo Lee, Dongsoo Lee, et al. Lut-gemm: Quantized matrix multiplication
based on luts for efficient inference in large-scale generative language models. In The Twelfth
International Conference on Learning Representations, 2024.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open dataset
of high-quality mathematical web text. In The Twelfth International Conference on Learning
Representations, 2024.

Zhimin Peng, Ming Yan, and Wotao Yin. Parallel and distributed sparse optimization. In 2013
Asilomar conference on signals, systems and computers, pp. 659–646. IEEE, 2013.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for
evaluating context-sensitive meaning representations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 1267–1273, 2019.

14

https://arxiv.org/abs/2402.01621

Published as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI Spring Symposium Series, 2011.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 8732–8740, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi,
Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning
performance-improving code edits. In International Conference on Learning Representations,
2024. doi: 2302.07867.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha, Sachin
Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang
Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh, Luke Zettlemoyer, Noah
Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an
open corpus of three trillion tokens for language model pretraining research. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 15725–15788, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.840.
URL https://aclanthology.org/2024.acl-long.840.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democra-
tizing large language models via personalized parameter-efficient fine-tuning. arXiv preprint
arXiv:2402.04401, 2024a.

Zhen Tan, Tianlong Chen, Zhenyu Zhang, and Huan Liu. Sparsity-guided holistic explanation for
llms with interpretable inference-time intervention. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 21619–21627, 2024b.

Xinyu Tang, Ashwinee Panda, Milad Nasr, Saeed Mahloujifar, and Prateek Mittal. Private fine-tuning
of large language models with zeroth-order optimization. arXiv preprint arXiv:2401.04343, 2024.
URL https://arxiv.org/abs/2401.04343.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

15

https://aclanthology.org/2024.acl-long.840
https://arxiv.org/abs/2401.04343

Published as a conference paper at ICLR 2025

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
Advances in Neural Information Processing Systems, 36:49146–49168, 2023.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin,
and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large generative
model inference with unstructured sparsity. In Proceedings of the VLDB Endowment, Vol. 17, No.
2, 2023. doi: 10.14778/3626292.3626303.

Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. Deeptype: On-device deep
learning for input personalization service with minimal privacy concern. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(4):1–26, 2018.

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Shaochen Zhong, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia
Hu, and Anshumali Shrivastava. Soft prompt recovers compressed llms, transferably. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=muBJPCIqZT.

Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao,
and Beidi Chen. s2ft: Efficient, scalable and generalizable llm fine-tuning by structured sparsity.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2020.

Eric Zelikman, Qian Huang, Percy Liang, Nick Haber, and Noah D. Goodman. Just one byte
(per gradient): A note on low-bandwidth decentralized language model finetuning using shared
randomness. arXiv preprint arXiv:2306.10015, 2023. URL https://arxiv.org/abs/
2306.10015.

Liang Zhang, Bingcong Li, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Dpzero:
Private fine-tuning of language models without backpropagation. arXiv preprint arXiv:2310.09639,
2024a. URL https://arxiv.org/abs/2310.09639.

Linfan Zhang and Arash Amini. Label consistency in overfitted generalized k-means. Advances in
Neural Information Processing Systems, 34:7965–7977, 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024b.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In International
Conference on Machine Learning, pp. 61121–61143. PMLR, 2024a.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024b.

Shaochen Zhong, Guanqun Zhang, Ningjia Huang, and Shuai Xu. Revisit kernel pruning with lottery
regulated grouped convolutions. In International Conference on Learning Representations, 2021.

16

https://openreview.net/forum?id=muBJPCIqZT
https://arxiv.org/abs/2306.10015
https://arxiv.org/abs/2306.10015
https://arxiv.org/abs/2310.09639

Published as a conference paper at ICLR 2025

Shaochen Henry Zhong, Zaichuan You, Jiamu Zhang, Sebastian Zhao, Zachary LeClaire, Zirui
Liu, Daochen Zha, Vipin Chaudhary, Shuai Xu, and Xia Hu. One less reason for filter pruning:
Gaining free adversarial robustness with structured grouped kernel pruning. Advances in Neural
Information Processing Systems, 36, 2024.

Ligeng Zhu, Lanxiang Hu, Ji Lin, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han.
Pockengine: Sparse and efficient fine-tuning in a pocket. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 1381–1394, 2023.

17

Published as a conference paper at ICLR 2025

APPENDIX

In Section A, we discuss some related works of our paper. In Section B we describe all notations
used in this paper. In Section C, we include the assumptions and exact proof on the convergence
rate (Theorem 1). In Section D, we include experiment results on OPT-13B and Llama2-13B.
We also take a pioneering move to investigate the effectiveness of SensZOQ and ZO methods in
commonsense reasoning, Math, and MMLU tasks. In Section E, we inspect the appearance of sensitive
parameters across models and tasks. We also investigate the effects of different data sources that would
produce different sensitive masks. In Section F, we provide a high-level recommendation on how to
efficiently implement our SensZOQ’s framework in linear layers with existing quantization methods
or training/inference workflow. In Section G, we describe miscellaneous details (hyperparameters,
task templates, hardware config, etc.) in our experiments.

A RELATED WORKS

Zeroth-order fine-tuning of LLMs. Since MeZO (Malladi et al., 2023a) first demonstrates the ef-
fectiveness of ZO for LLM fine-tuning, ZO has attracted great research interest from the LLM commu-
nity in different aspects. For example, ZO is effective for edge device fine-tuning in communication-
constrained and federated settings (Ling et al., 2024; Zhang et al., 2024a; Tang et al., 2024; Liu
et al., 2024d). Notably, Zelikman et al. (2023) illustrates the possibility of exchanging single-byte
projected gradients in distributed zeroth-order workloads, yielding both communication and privacy
benefits. Numerous research has also focused on enhancing the optimizer aspect of zeroth-order
optimization (Jiang et al., 2024; Pang & Zhou, 2024; Gautam et al., 2024). Other researchers are also
interested in improving ZO’s efficiency or convergence rate from cleverer optimizer designs. Li et al.
(2024b) explores the middle ground between small-batched FO-SGD and large-batched ZO-SGD to
balance the convergence speed and memory footprints. Liu et al. (2024c) and Zhang et al. (2024b)
suggest that sparsity would potentially accelerate ZO optimization convergence. Zhao et al. (2024b)
preconditions ZO perturbation with knowledge from parameter-wise loss curvature heterogeneity
to gain convergence speedup. To the best of our knowledge, Liu et al. (2024c)’s work is the only
ZO fine-tuning with sparsity (smallest weight magnitude mask) work at this moment, and we have
ablated on its static extreme sparsity performance in Figure 6a.

Sparsity in LLM. Sparsity-driven techniques are widely adopted in improving ML model’s effi-
ciency (Frankle & Carbin, 2019; Xia et al., 2023; Liu et al., 2023; Peng et al., 2013; Xu et al., 2024;
Tan et al., 2024b) and robustness (Zhong et al., 2024; 2021). Frankle & Carbin (2019) shows that
within large feed-forward networks, there exists a subnetwork that, when trained in isolation, can
achieve test accuracy comparable to that of the original network. In the foundation models era, Liu
et al. (2023) demonstrates that transformer-based models, such as OPT (Zhang et al., 2022), exhibit
great sparsity (≥ 95%) in activations. Moreover, Panigrahi et al. (2023) discovers that for RoBERTa
(Liu et al., 2019), fine-tuning a very small subset of parameters (∼ 0.01%) can yield performance
exceeding 95% of that achieved by full fine-tuning.

First-order gradient optimization methods. Researchers in the optimization community also
propose a variety of first-order optimization methods to promote faster convergence or reduce the
memory footprints. For faster convergence, Liu et al. (2024b) designs a second-order optimizer
that approximates the diagonal Hessian and enables more stable and faster LLM training. You et al.
(2020) proposes a variant of Adam that enables the use of large batch sizes to finish BERT (Devlin
et al., 2019) pre-training within 76 minutes. Cooper et al. (2023) and Lu et al. (2022) also attempt to
effectively reorder the training dataset online to accelerate convergence. To reduce memory footprints,
Zhao et al. (2024a) projects the gradient to a low-rank subspace that will simultaneously reduce
gradients and Adam optimizer states. Both Shazeer & Stern (2018) and Lv et al. (2024) factor the
second-moment of adaptive optimizer to reduce the Adam optimizer state memory costs.

18

Published as a conference paper at ICLR 2025

B NOTATIONS

We present the notations used in this work as follows.

Table 3: Notations used in this paper

Term/Symbol Explanation
f loss function
t optimization timestep t

n number of training data examples (training dataset size)
d number of model parameters
dlayer number of parameters in one linear layer. This means the number of input channels

times the number of output channels in each linear layer.

(xt, yt) a data example sampled at timestep t as a pair of input vector and training target

wt ∈ Rd weight/parameter vector at optimization timestep t

f(w; (x, y)) training loss of w evaluated at a single data example (x, y)

F(w) full-batched training loss of w

H(w; (x, y)) Hessian matrix of w evaluated at (x, y)
ϵ a small perturbation scaling constant (close to 0)

zt ∈ Rd random Gaussian perturbation vector sampled at timestep t

ĝ(w, (x, y), z) estimated ZO surrogate gradient for w with a data example (x, y) and a sampled
Gaussian perturbation vector z (Definition 1)

ηt learning rate for ZO-SGD optimizer (Definition 2) at timestep t

mk ∈ {0, 1}d a sensitive sparse mask with k nonzero entries (Definition 3)

mk,t ∈ {0, 1}d a sensitive sparse mask with k nonzero entries derived at optimization timestep t

Id Identity matrix with shape Rd×d

Ĩd,mk Identity matrix Id with the main diagonal masked by mk

1d a vector of size d with all entries equal to 1
Tr trace operation

Q(w) parameter vector w that is quantized by quantizer Q
F (true) Fisher information matrix

F̂ empirical Fisher information matrix
pLLM LLM as a probabilistic model
pD data distribution
L Lipschitz constant in Assumption 2
µ P.L. condition number in Assumption 3

σ2 stochastic gradient error term in Assumption 1
WQ the query weight matrix in self attention layers
WK the key weight matrix in self attention layers
WV the value weight matrix in self attention layers
WO the output weight matrix in self attention layers
WGate the weight matrix for the gated linear unit in SwiGLU layers
WUp the weight matrix for the up projection layer in SwiGLU/MLP layers
WDown the weight matrix for the down projection layer in SwiGLU/MLP layers

19

Published as a conference paper at ICLR 2025

C THEORETICAL CONVERGENCE RATE

C.1 ASSUMPTIONS

We start with listing standard assumptions in the nonconvex optimization literature:
Assumption 1 (Bounded stochastic gradient errors). For any data example (x, y) ∈ D and for
any w ∈ Rd, denote the full-batched loss function F(w) = E(x,y)∈Df(w; (x, y)), we have

∥∇wf(w; (x, y))−∇wF(w)∥2 ≤ σ2. (9)
Assumption 2 (Lipschitz smoothness). We assume that f(w,x) is L-Lipschitz smooth (L > 0): for
any w,w′ ∈ Rd,

∥∇wf(w; (x, y))−∇wf(w′; (x, y))∥ ≤ L∥w −w′∥. (10)
Assumption 3 (P.L. inequality). We assume that F(w) fulfills the Polyak-Lojasiewicz (P.L.) condi-
tion: there exists some µ > 0, for any w ∈ Rd

1

2
∥∇wF(w)∥2 ≥ µ(F(w)−F∗), F∗ is the minimum value F∗ = inf

w
F(w). (11)

Inspired by Figure 7, we assume the sensitive parameters of w are sparse.
Assumption 4 (Sensitive parameters are sparse). We assume at timestep t ∃mt ∈ {0, 1}d with the
number of nonzero entries as k, ∃c ∈ [0, 1] such that

∥mt ⊙∇wf(wt; (xt, yt))∥2 = c∥∇wf(wt; (xt, yt))∥2.
Here we assume c ≫ k/d. 4

C.2 PROOF FOR EQUATION 5, THEOREM 1

We will start with formulating the expectation of sensitive sparse ZO surrogate gradient norm square
in terms of its corresponding stochastic gradient norm square.
Lemma 1 (Sensitive sparse ZO surrogate gradient norm square).

Ez̄[∥ĝ(wt, (xt, yt), z̄t)∥2] = (2 + k)c∥∇wf(w, (xt, yt))∥2

Proof for Lemma 1. We know that our z̄ can be considered as being sampled from N (0, Ĩd,mk
)

where Ĩd,mk
is the identity matrix Id with the main diagonal masked by mk.

We expand the sensitive sparse ZO surrogate gradient covariance matrix as follows:

Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), z̄)⊤

= Ez̄i
[z̄iz̄

⊤
i

(
(mk ⊙∇wf(w; (x, y)))(mk ⊙∇wf(w; (x, y)))⊤

)
z̄iz̄

⊤
i]

= 2
(
(mk ⊙∇wf(w; (x, y)))(mk ⊙∇wf(w; (x, y)))⊤

)
+ ∥mk ⊙∇wf(w; (x, y))∥2Ĩd,mk

Then the sensitive sparse ZO surrogate gradient norm square is the square of the diagonal of its
corresponding covariance matrix:

Ez̄[∥ĝ(wt,xt, z̄t)∥2] = diag
(
Ez̄ĝ(w, (x, y), z̄)ĝ(w, (x, y), y), z̄)⊤

)2

= 2c∥∇wf(w, (xt, yt))∥2 + kc∥∇wf(w, (xt, yt))∥2

= (2 + k)c∥∇wf(w, (xt, yt))∥2

Then we are in good shape of deriving the convergence rate under the Lipschitz smoothness condition:

4From Figure 7, we know that for c ∼ 0.5, we only need k/d ∼ 0.001 to 0.01. In this case k/c ∼ 0.002d
to 0.02d.

20

Published as a conference paper at ICLR 2025

Proof for Equation 5, Theorem 1.

f(wt+1,xt) ≤ f(wt; (xt, yt)) + ⟨∇f(wt; (xt, yt)),wt+1 −wt⟩+
L

2
∥wt+1 −wt∥2

≤ f(wt; (xt, yt))− ηt⟨∇f(wt; (xt, yt)), ĝ(wt,xt, z̄t)⟩+
Lη2t
2

∥ĝ(wt,xt, z̄t)∥2

Ez̄f(wt+1,xt) ≤ Ez̄f(wt; (xt, yt))− ηtEz̄∥mk,t ⊙∇f(wt; (xt, yt))∥2 +
Lη2t
2

Ez̄∥ĝ(wt,xt, z̄)∥2

Ez̄f(wt+1,xt) ≤ Ez̄f(wt; (xt, yt))− cηtEz̄∥∇f(wt; (xt, yt))∥2 +
Lη2t
2

c(k + 2)Ez̄∥∇wf(wt; (xt, yt))∥2

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)− cηt∥∇wF(wt)∥2 +
Lη2t
2

c(k + 2)∥∇wF(wt)∥2 +
Lη2t
2

c(k + 2)σ2}

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y){F(wt)−
(
cηt −

Lη2t
2

c(k + 2)

)
∥∇wF(wt)∥2 +

Lη2t
2

c(k + 2)σ2}

Denote α = Lc(k + 2), we will have

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y)

{
F(wt)− ηt

(
c− α

2
ηt

)
∥∇wF(wt)∥2

}
+

α

2
σ2η2t

Suppose we use a constant learning rate ηt = η =
c

α
=

1

L(k + 2)
5, we have

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y)

{
F(wt)−

cη

2
∥∇F(wt)∥2

}
+

α

2
σ2η2 (12)

If we apply our descent rule (Equation 12) recursively for T steps,

1

T

T−1∑

t=0

Ez̄,(x,y)∥∇wF(wt)∥2 ≤ 2

cηT
(F(w0)−F∗) +

1

T

T−1∑

t=0

(α
2
σ2η2

)

cη

2

≤ 2L(k + 2)

cT
(F(w0)−F∗) + σ2

≤ 2L(k + 2)

c

1

T
(F(w0)−F∗) + σ2

= O

(
k

c
· L
T

)
(F(w0)−F∗) +O(constant)

C.3 PROOF FOR EQUATION 6, THEOREM 1

We can derive a convergence rate of sensitive sparse ZO-SGD optimization method under P.L.
inequality and Lipschitz-smoothness as follows (this proof resumes from our prior proof with the
Lipschitz-smoothness condition alone):

Proof for Equation 6, Theorem 1. Let’s resume from Equation 12:

5If we use a diminishing learning rate we can remove the constant noise term, but this is not our main focus
in this paper.

21

Published as a conference paper at ICLR 2025

Ez̄,(x,y)F(wt+1) ≤ Ez̄,(x,y)

{
F(wt)−

cη

2
∥∇F(wt)∥2

}
+

α

2
σ2η2

≤ Ez̄,(x,y) {F(wt)− cµη(F(wt)−F∗)}+ α

2
σ2η2

Ez̄,(x,y){F(wt+1)−F∗} ≤ Ez̄,(x,y) {(F(wt)−F∗)− cµη(F(wt)−F∗)}+ α

2
σ2η2

Ez̄,(x,y){F(wt+1)−F∗} ≤ (1− cµη)Ez̄,(x,y){F(wt)−F∗}+ α

2
σ2η2

Plugging in a constant learning rate η = min{ 1

L(k + 2)
,
1

cµ
} and sum up recursively for T iterations,

Ez̄,(x,y){F(wT)−F∗} ≤ (1− cµ

L(k + 2)
)T (F(w0)−F∗) +

α

2
σ2 · η2 ·

T−1∑

j=0

(1− cµη)j

≤ (1− cµ

L(k + 2)
)T (F(w0)−F∗) +

α

2
σ2 · η2 · 1

cµη

≤ (1− cµ

L(k + 2)
)T (F(w0)−F∗) +

α

2
σ2 · c

α
· 1

cµ

≤ (1− cµ

L(k + 2)
)T (F(w0)−F∗) +

σ2

2µ

=
(
1−O

(µ

L
· c
k

))T

(F(w0)−F∗) +O(constant)

22

Published as a conference paper at ICLR 2025

D MORE EXPERIMENT RESULTS

D.1 13B MODEL RESULTS.

In Table 4, we compare SensZOQ vs. ZO full FT & ICL in 2 popular 13B models: Llama2-13B
and OPT-13B. SensZOQ still maintains its superior performance over both ICL and ZO Full FT.
In the last row of OPT-13B (Table 4b), we ablate on the effect of 4-bit SqueezeLLM quantization
(K-means (MacQueen, 1967; Zhang & Amini, 2021) based quantization) and as expected, the average
test accuracy is roughly the same after we remove the quantization on the dense weight parts.

Table 4: Fine-tuning performance of different methods. In the first column, “Q” means the full model
is quantized with 4-bit quantization method (SqueezeLLM (Kim et al., 2024)), and “ZO” means
the model is fine-tuned with ZO-SGD optimizer. For each cell, we report the mean and standard
deviation of test set accuracy (↑) of 3 random trials in the format of meanstd. We finally report the
average accuracy across tasks in the last column.

(a) Llama2-13B

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG Avg

Q, ZO SensZOQ 95.80.3 78.81.0 81.54.5 80.60.3 63.50.8 59.80.9 89.70.5 74.60.6 78.0

ZO Full FT 95.00.2 74.41.0 85.71.5 80.50.4 54.84.7 60.91.4 90.70.5 70.50.2 76.6

Zero-shot 75.60.0 54.50.0 48.20.0 76.10.2 39.40.0 50.60.0 83.00.0 65.40.4 61.6
ICL 95.40.4 78.62.5 79.85.9 75.74.2 57.41.6 57.63.0 89.30.9 71.30.5 75.6

(b) OPT-13B

Q, ZO SensZOQ 93.60.5 75.22.1 69.01.7 73.01.4 61.50.8 61.01.6 87.00.5 65.10.2 73.2

ZO Full FT 93.90.5 74.01.0 67.92.5 72.40.3 61.52.4 58.62.3 87.01.4 63.31.3 72.3

Zero-shot 61.00.0 58.50.0 48.20.0 59.80.1 36.50.0 52.00.0 80.00.0 60.70.2 57.1
ICL 83.08.5 59.84.2 72.01.7 71.62.4 38.12.3 53.62.2 84.02.9 63.20.8 65.6

ZO Sens. (C4, static) 94.10.6 75.12.1 69.02.2 72.01.0 59.02.0 60.90.7 88.70.5 65.40.7 73.0

D.2 COMMONSENSE REASONING, MATH, MMLU DATASET RESULTS.

In Table 5, we still compare SensZOQ vs. ZO full FT & ICL in standard commonsense benchmarks
(Hu et al., 2023; Yang et al., 2024), 1 math algebraic word problem task AQuA (Ling et al., 2017), and
MMLU (Hendrycks et al., 2021). To the best of our knowledge, there are no ZO-LLM research
yet evaluated on harder commonsense reasoning or math tasks. We take a pioneering step in
this direction and establish the ZO baselines.

If we compare SensZOQ with ZO full FT on pairs, SensZOQ wins 6/8 for commonsense reasoning,
and the math task. However, SensZOQ loses in MMLU task, and we speculate it might be due to
a data distribution mismatch between C4 and education domain in MMLU. In Table 6 we find that
switching the source of extracting sensitive parameters from C4 to OpenWebMath will significantly
close this gap. Even so, C4 is still a generally good choice.

D.3 ALTERNATIVE DATA SOURCES FOR EXTRACTING SENSITIVE PARAMETERS.

C4 (Raffel et al., 2019) is extracted and cleaned from the CommonCrawl and covers a wide range of
domains, and this drives us to adopt it as the default choice for extracting sensitive parameters. Here,
we evaluate the SensZOQ’s performance when fine-tuning sensitive parameters extracted from some
alternative text choices that have certain domain specialties. As a case study, we pick 3 alternative
choices that are more domain-specific and also commonly selected for pre-training dataset mixtures
(e.g. Dolma (Soldaini et al., 2024)) as follows:

23

Published as a conference paper at ICLR 2025

Table 5: Fine-tuning performance of different methods for Mistral-7B on 8 commonsense reasoning
tasks (cs), 1 math task (math), and MMLU task. For each cell, we report the mean and standard
deviation of validation set accuracy (↑) of 3 random trials in the format of meanstd. We finally report
the average accuracy across tasks in the last column.

Methods Arc-E (cs) Arc-C (cs) HS (cs) OBQA (cs) PIQA (cs) SIQA (cs) BoolQ (cs) WinoG (cs) AQuA (math) MMLU Avg

SensZOQ 88.90.2 79.80.9 83.60.5 77.50.7 84.90.9 69.41.0 76.31.0 73.60.7 26.10.7 58.40.0 71.9

ZO Full FT 89.60.4 78.31.5 82.30.6 76.80.3 84.30.3 68.50.4 76.60.2 72.20.5 24.01.4 59.20.1 71.2

Zero-shot 86.80.0 75.90.0 77.90.8 71.00.0 82.10.3 59.90.5 43.41.8 66.20.1 23.51.9 57.50.0 64.4

ICL 90.50.2 80.02.0 80.31.4 79.80.7 84.50.9 69.91.0 46.86.5 74.00.8 26.61.1 59.20.2 69.2

•ArXiv (Cohan et al., 2018), a pile of scientific papers. We use the ArXiv articles subset from this
dataset. https://huggingface.co/datasets/armanc/scientific_papers
• OpenWebMath (Paster et al., 2024), a pile of Internet mathematical proofs. https://
huggingface.co/datasets/open-web-math/open-web-math
•Wiki103 (Merity et al., 2016), a pile of selected Wikipedia articles. https://huggingface.
co/datasets/Salesforce/wikitext

Table 6: Fine-tuning performance of SensZOQ with 0.1% sensitive parameters extracted from
C4, OpenWebMath, ArXiv, and Wiki103 for Mistral-7B on 8 commonsense reasoning tasks, 1
math task, MMLU task, and 3 SuperGLUE tasks (task category follows this order and is separated by
vertical bars). For each cell, we report the mean accuracy (↑) over 3 random trials. In the last row,
we give ZO Full FT & ICL baselines as reference. We finally report the average accuracy across
tasks in the last column.

Source Arc-E Arc-C HS OBQA PIQA SIQA BoolQ WinoG AQuA MMLU RTE WiC COPA Avg

C4 88.9 79.8 83.6 77.5 84.9 69.4 76.3 73.6 26.1 58.4 76.8 62.2 87.7 72.7
ArXiv 89.1 76.0 82.4 76.3 84.3 69.1 76.0 73.6 26.9 58.4 70.0 61.6 88.7 71.7

OpenWebMath 89.5 79.9 82.7 75.7 83.1 67.4 73.8 73.2 26.9 58.8 77.9 61.1 88.0 72.2
Wiki103 88.5 77.6 83.0 77.6 84.6 67.8 76.4 73.2 26.5 58.6 75.8 61.8 88.3 72.3

ZO Full FT 89.6 78.3 82.3 76.8 84.3 68.5 76.6 72.2 24.0 59.2 74.6 62.6 88.3 72.1
ICL 90.5 80.0 80.3 79.8 84.5 69.9 46.8 74.0 26.6 59.2 55.2 63.8 74.0 68.0

In Table 6, we can find that when fine-tuning 0.1% sensitive parameters with Mistral-7B, C4 achieves
the highest average accuracy, with notable performance on commonsense QA tasks like OBQA,
PIQA and SIQA. If we want better performance on an expert-level knowledge task such as MMLU,
OpenWebMath is a better choice than C4.

We believe that C4 is not the only choice but rather a generally good choice for downstream tasks,
and the latter is more desired as we are using the same set of sparse parameters for different tasks and
we want it to produce satisfactory performance for as many tasks as possible rather than focusing on
excellent performance on a single task. Otherwise, we would have to create a separate sparse mask
and quantized models for each task, and this will make our method impractical.

We also believe that a high-quality and diverse pre-training dataset mixture such as Pile (Gao et al.,
2020) and Dolma (Soldaini et al., 2024) should also perform well, and we leave this study to future
research.

24

https://huggingface.co/datasets/armanc/scientific_papers
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/open-web-math/open-web-math
https://huggingface.co/datasets/Salesforce/wikitext
https://huggingface.co/datasets/Salesforce/wikitext

Published as a conference paper at ICLR 2025

E SENSITIVE PARAMETERS IN LLMS

E.1 GRADIENT SPARSITY DURING LLM FINE-TUNING

SuperGLUE tasks. In Figure 2, we explore the gradient sparsity of Llama2-7B during FO-SGD
fine-tuning (at epoch 1 or 10% training steps). Here we plot the FO-SGD gradient sparsity for Llama2-
7B, Mistral-7B, and OPT-6.7B before fine-tuning, epoch 1 (10% steps), and end of fine-tuning.

We observe that the gradient sparsity is exhibited throughout the fine-tuning and increases toward the
end. OPT-6.7B, which uses ReLU as the activation function, demonstrates greater sparsity across
tasks compared to Llama2-7B and Mistral-7B which both use SiLU. Overall, the gradient sparsity
pattern is generally consistent across architectures, tasks, and fine-tuning time.

25

Published as a conference paper at ICLR 2025

0.0

0.5

1.0

RTE, Before FT
mean ± std
0.5
0.2

RTE, Epoch 1 RTE, End of FT

0.0

0.5

1.0

WiC, Before FT WiC, Epoch 1 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Before FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

(a) Llama2-7B

0.0

0.5

1.0

RTE, Before FT
mean ± std
0.5
0.2

RTE, Epoch 1 RTE, End of FT

0.0

0.5

1.0

WiC, Before FT WiC, Epoch 1 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Before FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

(b) Mistral-7B

0.0

0.5

1.0

RTE, Before FT

mean ± std
0.5
0.2

RTE, Epoch 1 RTE, End of FT

0.0

0.5

1.0

WiC, Before FT WiC, Epoch 1 WiC, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

COPA, Before FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, Epoch 1

10−5 10−4 10−3 10−2 10−1 100

Ratio

COPA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

(c) OPT-6.7B

Figure 7: Cumulative normalized sum of coordinate-wise gradient square 1
n

∑n
i=1[∇f(w; (xi, yi))]

2

of linear layers for Llama2-7B (subfigure 7a), Mistral-7B (subfigure 7b), and OPT-6.7B (sub-
figure 7c) across RTE, WiC, and COPA tasks during FO-SGD full FT for 10 epochs. For
each linear layer, we first sort parameters by the decreasing order of their gradient square value
1
n

∑n
i=1[∇f(w; (xi, yi))]

2, i ∈ [dlayer], and we take the cumulative sum and normalize it to draw a
blue curve, and the red-shaded region is the mean ± std of all blue curves.

26

Published as a conference paper at ICLR 2025

0.0

0.5

1.0

Arc-C, Before FT
mean ± std
0.5
0.2

Arc-C, Step 100 Arc-C, End of FT

0.0

0.5

1.0

HellaSwag, Before FT HellaSwag, Step 100 HellaSwag, End of FT

0.0

0.5

1.0

PIQA, Before FT PIQA, Step 100 PIQA, End of FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

0.0

0.5

1.0

AQuA, Before FT

10−5 10−4 10−3 10−2 10−1 100

Ratio

AQuA, Step 100

10−5 10−4 10−3 10−2 10−1 100

Ratio

AQuA, End of FT

C
um

ul
at

iv
e

no
rm

al
iz

ed
su

m
of

1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

Figure 8: Cumulative normalized sum of coordinate-wise gradient square 1
n

∑n
i=1[∇f(w; (xi, yi))]

2

of linear layers for Mistral-7B across Arc-C, HS, PIQA, and AQuA tasks during FO-Adam full FT
for 1000 steps.

Reasoning tasks. We further analyze the sparsity of sensitive parameters for hard reasoning tasks
such as Arc-C, HellaSwag, PIQA, and math reasoning task AQuA. We follow the same method that
produced Figure 7b to produce Figure 8. We can see that sensitive parameters are still fairly sparse:
we still need 0.1%-1% sensitive parameters for a sufficient coverage of the gradient norm.

E.2 TRANSFERABILITY OF GRADIENT FEATURES FROM PRE-TRAINING DATASETS TO
DOWNSTREAM TASKS

SuperGLUE tasks. In Figure 3, we explore the transferability of gradient features from pre-training
datasets (C4) to downstream tasks, and here we will also validate this phenomenon across models, as
shown in Figure 9. As there are no solid lines (top-(1e-2,1e-3,1e-4)) parameters with C4 gradient
entries prior to fine-tuning) vanish to 0, we know the transferability of gradient features from C4
datasets to downstream datasets hold across models and tasks. We also include the results of weights
with largest magnitude, weights with smallest magnitude, and random subsets of weights in Figure 10
at 1e-3 nnz level (same as 1e-3 in Figure 9) for comparison. It is clear that “C4 grad (static)” has
much higher similarity with “task grad (dyn.)” than all of these 3 baselines. We also note that weights
with largest magnitude (weight outliers) are usually NOT gradient outliers as observed in Figure 10.

In this case, sensitive parameters determined from C4 gradients would still be similar to sensitive
parameters determined from downstream task-specific gradients across models.

Reasoning tasks. The transferability results for reasoning tasks are shown in Figure 11.

As there are still no solid lines (for all top-(1e-2,1e-3,1e-4) parameters with C4 mask) vanish to 0,
C4 gradient mask still demonstrates great transferability to these 3 commonsense and 1 math task.
At step 100, the lowest covered gradient norm for top-1e-3 C4 gradient mask is ∼0.2, while the
maximum possible (task grad, dyn.) is ∼0.3 across tasks.

We still note that for AQuA (math algebraic word problem task), C4’s transferability is weaker than
the other 3 commonsense reasoning tasks. We speculate that this is due to the need of learning more
math knowledge during FT as the covered task gradient squares by task gradient mask before FT
mask (task grad, static) also declines more during FT.

27

Published as a conference paper at ICLR 2025

Before FT Epoch 1 End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

u.
no

rm
.

su
m

of
1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

RTE

10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT Epoch 1 End of FT

WiC

Before FT Epoch 1 End of FT

COPA

(a) Llama2-7B

Before FT Epoch 1 End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

u.
no

rm
.

su
m

of
1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

RTE

10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT Epoch 1 End of FT

WiC

Before FT Epoch 1 End of FT

COPA

(b) Mistral-7B

Before FT Epoch 1 End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

u.
no

rm
.

su
m

of
1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

RTE

10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT Epoch 1 End of FT

WiC

Before FT Epoch 1 End of FT

COPA

(c) OPT-6.7B

Figure 9: Cumulative normalized sum of coordinate-wise 1
n

∑n
i=1[∇f(w; (xi, yi))]

2 of Llama2-7B
(subfigure 9a), Mistral-7B (subfigure 9b), and OPT-6.7B (subfigure 9c)’s linear layers after applying
sparsity masks of each method during FO-SGD full fine-tuning for 10 epochs. For a given model
and training checkpoint, we report the average value across all linear layers as a line in each subfigure.
For each line, the colors represent the fraction of parameters (1e-2,1e-3,1e-4) and the line style
represents the category. “task grad, dyn.” refers to the sensitive parameters selected at the given
timestep (x-axis), and “task grad, static” refers to the sensitive parameters selected before fine-tuning.
“C4 grad, static” refers to the sensitive parameters selected with gradients taken from causal language
modeling on C4 datasets, and we keep it unchanged during fine-tuning.

28

Published as a conference paper at ICLR 2025

Before FT Epoch 1 End of FT

10−3

10−2

10−1

100

C
um

u.
no

rm
.

su
m

of
1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

RTE

task grad (dyn.)
task grad (static)
C4 grad (static)

weights (largest, static)
weights (smallest, static)
random (static)

Before FT Epoch 1 End of FT

WiC

Before FT Epoch 1 End of FT

COPA

(a) Llama2-7B

Before FT Epoch 1 End of FT

10−3

10−2

10−1

100

C
um

u.
no

rm
.

su
m

of
1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

RTE

task grad (dyn.)
task grad (static)
C4 grad (static)

weights (largest, static)
weights (smallest, static)
random (static)

Before FT Epoch 1 End of FT

WiC

Before FT Epoch 1 End of FT

COPA

(b) Mistral-7B

Before FT Epoch 1 End of FT

10−3

10−2

10−1

100

C
um

u.
no

rm
.

su
m

of
1 n

∑
n i=

1
[∇
f

(w
;(

x
i,
y i

))
]2

RTE

task grad (dyn.)
task grad (static)
C4 grad (static)

weights (largest, static)
weights (smallest, static)
random (static)

Before FT Epoch 1 End of FT

WiC

Before FT Epoch 1 End of FT

COPA

(c) OPT-6.7B

Figure 10: Cumulative normalized sum of coordinate-wise 1
n

∑n
i=1[∇f(w; (xi, yi))]

2 of Llama2-7B
(subfigure 10a), Mistral-7B (subfigure 10b), and OPT-6.7B (subfigure 10c)’s linear layers after
applying 99.9% sparsity masks of each method during FO-SGD full fine-tuning. The results
of “C4 grad, static”, “task grad, dyn.”, and “task grad, static” are the same as their 1e-3 results in
Figure 9.

Before FT

Step 100

End of FT
0.0

0.2

0.4

0.6

0.8

1.0

C
um

u.
no

rm
.

su
m

of
1 n

∑
n i=

1
[∇
f

(w
;(

x
,y

))
]2

Arc-C
10−2

10−3

10−4

task grad, dyn.
task grad, static
C4 grad, static

Before FT

Step 100

End of FT

HellaSwag

Before FT

Step 100

End of FT

PIQA

Before FT

Step 100

End of FT

AQuA

Figure 11: Cumulative normalized sum of coordinate-wise 1
n

∑n
i=1[∇f(w; (xi, yi))]

2 of Mistral-7B
after applying sparsity masks of each method during FO-Adam full FT for 1000 steps.

29

Published as a conference paper at ICLR 2025

E.3 OVERLAP RATIO OF TOP GRADIENT FEATURES

In addition to Table 6, we dive into the overlap ratio of the top gradient square entries from different
data sources, as shown in Figure 12.

Notice that the order here is mapped to the column/row rank for each subfigure in Figure 12.

1. C4. SensZOQ’s default choice.
2. OpenWebMath.

We abbreviate it as “Math”.
3. ArXiv
4. Wiki103

We abbreviate it as “Wiki”.
5. Task gradient before FT: ∇ 1

n

∑n
i=1[∇f(wbefore FT; (xi, yi))]

2.
We abbreviate it as ∇f(wst.).

6. Task gradient after 10% fine-tuning steps: ∇ 1
n

∑n
i=1[∇f(wmid FT; (xi, yi))]

2.
We abbreviate it as ∇f(wmid).

7. Task gradient at the end of FT: ∇ 1
n

∑n
i=1[∇f(wend of FT; (xi, yi))]

2.
We abbreviate it as ∇f(wend).

We consider 7 tasks (3 commonsense reasoning tasks Arc-C, HellaSwag, PIQA, 1 math task AQuA,
3 SuperGLUE tasks RTE, WiC, COPA).

For a quick overview, we include Figure 13 as the average overlap ratio across tasks for the 4
pre-training text. The second row in Figure 13 provides an empirical evidence for the "fixed gradient
feature" during FT as the top entries in ∇f(wst.) (task grad before FT) resemble ∇f(wmid) (task
grad during FT) and ∇f(wend) (task grad at the end of FT)

Empirical findings

• The top gradient entries from all 4 pre-training text corpus overlap considerably with the
task gradient.

• C4 generally covers more top gradient entries than OpenWebMath, ArXiv, and Wiki103.

30

Published as a conference paper at ICLR 2025

C4

Math

ArXiv

Wiki

∇f(wst.)

∇f(wmid)

∇f(wend)

1.000

0.809

0.400

0.685

0.154

0.169

0.027

0.809

1.000

0.452

0.709

0.162

0.189

0.046

0.400

0.452

1.000

0.421

0.104

0.153

0.081

0.685

0.709

0.421

1.000

0.146

0.168

0.033

0.154

0.162

0.104

0.146

1.000

0.411

0.130

0.169

0.189

0.153

0.168

0.411

1.000

0.247

0.027

0.046

0.081

0.033

0.130

0.247

1.000

Arc-C, Top 0.01%
1.000

0.625

0.363

0.575

0.252

0.225

0.124

0.625

1.000

0.511

0.657

0.324

0.283

0.183

0.363

0.511

1.000

0.502

0.264

0.244

0.160

0.575

0.657

0.502

1.000

0.320

0.275

0.177

0.252

0.324

0.264

0.320

1.000

0.522

0.285

0.225

0.283

0.244

0.275

0.522

1.000

0.353

0.124

0.183

0.160

0.177

0.285

0.353

1.000

Arc-C, Top 0.1%
1.000

0.669

0.556

0.663

0.233

0.265

0.154

0.669

1.000

0.655

0.602

0.243

0.273

0.175

0.556

0.655

1.000

0.597

0.221

0.242

0.156

0.663

0.602

0.597

1.000

0.224

0.255

0.158

0.233

0.243

0.221

0.224

1.000

0.531

0.312

0.265

0.273

0.242

0.255

0.531

1.000

0.450

0.154

0.175

0.156

0.158

0.312

0.450

1.000

Arc-C, Top 1%

C4

Math

ArXiv

Wiki

∇f(wst.)

∇f(wmid)

∇f(wend)

1.000

0.809

0.400

0.685

0.820

0.058

0.040

0.809

1.000

0.452

0.709

0.768

0.073

0.057

0.400

0.452

1.000

0.421

0.396

0.017

0.008

0.685

0.709

0.421

1.000

0.670

0.080

0.064

0.820

0.768

0.396

0.670

1.000

0.031

0.017

0.058

0.073

0.017

0.080

0.031

1.000

0.799

0.040

0.057

0.008

0.064

0.017

0.799

1.000

HellaSwag, Top 0.01%
1.000

0.625

0.363

0.575

0.576

0.449

0.153

0.625

1.000

0.511

0.657

0.473

0.420

0.149

0.363

0.511

1.000

0.502

0.345

0.242

0.083

0.575

0.657

0.502

1.000

0.448

0.388

0.144

0.576

0.473

0.345

0.448

1.000

0.317

0.077

0.449

0.420

0.242

0.388

0.317

1.000

0.444

0.153

0.149

0.083

0.144

0.077

0.444

1.000

HellaSwag, Top 0.1%
1.000

0.669

0.556

0.663

0.615

0.375

0.323

0.669

1.000

0.655

0.602

0.495

0.296

0.284

0.556

0.655

1.000

0.597

0.480

0.253

0.239

0.663

0.602

0.597

1.000

0.566

0.330

0.311

0.615

0.495

0.480

0.566

1.000

0.344

0.311

0.375

0.296

0.253

0.330

0.344

1.000

0.468

0.323

0.284

0.239

0.311

0.311

0.468

1.000

HellaSwag, Top 1%

C4

Math

ArXiv

Wiki

∇f(wst.)

∇f(wmid)

∇f(wend)

1.000

0.809

0.400

0.685

0.779

0.333

0.032

0.809

1.000

0.452

0.709

0.768

0.346

0.049

0.400

0.452

1.000

0.421

0.405

0.187

0.006

0.685

0.709

0.421

1.000

0.678

0.342

0.058

0.779

0.768

0.405

0.678

1.000

0.307

0.008

0.333

0.346

0.187

0.342

0.307

1.000

0.686

0.032

0.049

0.006

0.058

0.008

0.686

1.000

PIQA, Top 0.01%
1.000

0.625

0.363

0.575

0.459

0.381

0.187

0.625

1.000

0.511

0.657

0.510

0.326

0.184

0.363

0.511

1.000

0.502

0.383

0.194

0.123

0.575

0.657

0.502

1.000

0.457

0.273

0.174

0.459

0.510

0.383

0.457

1.000

0.299

0.099

0.381

0.326

0.194

0.273

0.299

1.000

0.426

0.187

0.184

0.123

0.174

0.099

0.426

1.000

PIQA, Top 0.1%
1.000

0.669

0.556

0.663

0.560

0.515

0.251

0.669

1.000

0.655

0.602

0.522

0.464

0.227

0.556

0.655

1.000

0.597

0.503

0.409

0.201

0.663

0.602

0.597

1.000

0.518

0.476

0.246

0.560

0.522

0.503

0.518

1.000

0.539

0.231

0.515

0.464

0.409

0.476

0.539

1.000

0.401

0.251

0.227

0.201

0.246

0.231

0.401

1.000

PIQA, Top 1%

C4

Math

ArXiv

Wiki

∇f(wst.)

∇f(wmid)

∇f(wend)

1.000

0.809

0.400

0.685

0.013

0.001

0.364

0.809

1.000

0.452

0.709

0.014

0.001

0.360

0.400

0.452

1.000

0.421

0.009

0.001

0.201

0.685

0.709

0.421

1.000

0.011

0.001

0.336

0.013

0.014

0.009

0.011

1.000

0.358

0.097

0.001

0.001

0.001

0.001

0.358

1.000

0.001

0.364

0.360

0.201

0.336

0.097

0.001

1.000

AQuA, Top 0.01%
1.000

0.625

0.363

0.575

0.116

0.153

0.176

0.625

1.000

0.511

0.657

0.192

0.244

0.224

0.363

0.511

1.000

0.502

0.139

0.228

0.195

0.575

0.657

0.502

1.000

0.170

0.224

0.217

0.116

0.192

0.139

0.170

1.000

0.386

0.436

0.153

0.244

0.228

0.224

0.386

1.000

0.315

0.176

0.224

0.195

0.217

0.436

0.315

1.000

AQuA, Top 0.1%
1.000

0.669

0.556

0.663

0.212

0.235

0.252

0.669

1.000

0.655

0.602

0.251

0.279

0.287

0.556

0.655

1.000

0.597

0.221

0.257

0.259

0.663

0.602

0.597

1.000

0.210

0.233

0.255

0.212

0.251

0.221

0.210

1.000

0.321

0.370

0.235

0.279

0.257

0.233

0.321

1.000

0.361

0.252

0.287

0.259

0.255

0.370

0.361

1.000

AQuA, Top 1%

C4

Math

ArXiv

Wiki

∇f(wst.)

∇f(wmid)

∇f(wend)

1.000

0.809

0.400

0.685

0.023

0.032

0.185

0.809

1.000

0.452

0.709

0.022

0.032

0.179

0.400

0.452

1.000

0.421

0.010

0.015

0.105

0.685

0.709

0.421

1.000

0.012

0.022

0.163

0.023

0.022

0.010

0.012

1.000

0.700

0.039

0.032

0.032

0.015

0.022

0.700

1.000

0.072

0.185

0.179

0.105

0.163

0.039

0.072

1.000

RTE, Top 0.01%
1.000

0.625

0.363

0.575

0.082

0.082

0.188

0.625

1.000

0.511

0.657

0.108

0.105

0.177

0.363

0.511

1.000

0.502

0.074

0.072

0.154

0.575

0.657

0.502

1.000

0.074

0.077

0.168

0.082

0.108

0.074

0.074

1.000

0.624

0.240

0.082

0.105

0.072

0.077

0.624

1.000

0.305

0.188

0.177

0.154

0.168

0.240

0.305

1.000

RTE, Top 0.1%
1.000

0.669

0.556

0.663

0.169

0.168

0.195

0.669

1.000

0.655

0.602

0.159

0.155

0.175

0.556

0.655

1.000

0.597

0.151

0.149

0.164

0.663

0.602

0.597

1.000

0.161

0.160

0.183

0.169

0.159

0.151

0.161

1.000

0.651

0.414

0.168

0.155

0.149

0.160

0.651

1.000

0.496

0.195

0.175

0.164

0.183

0.414

0.496

1.000

RTE, Top 1%

C4

Math

ArXiv

Wiki

∇f(wst.)

∇f(wmid)

∇f(wend)

1.000

0.809

0.400

0.685

0.022

0.018

0.033

0.809

1.000

0.452

0.709

0.025

0.023

0.035

0.400

0.452

1.000

0.421

0.015

0.015

0.027

0.685

0.709

0.421

1.000

0.016

0.015

0.021

0.022

0.025

0.015

0.016

1.000

0.803

0.459

0.018

0.023

0.015

0.015

0.803

1.000

0.617

0.033

0.035

0.027

0.021

0.459

0.617

1.000

WiC, Top 0.01%
1.000

0.625

0.363

0.575

0.096

0.118

0.134

0.625

1.000

0.511

0.657

0.128

0.144

0.116

0.363

0.511

1.000

0.502

0.096

0.114

0.095

0.575

0.657

0.502

1.000

0.095

0.119

0.103

0.096

0.128

0.096

0.095

1.000

0.781

0.571

0.118

0.144

0.114

0.119

0.781

1.000

0.670

0.134

0.116

0.095

0.103

0.571

0.670

1.000

WiC, Top 0.1%
1.000

0.669

0.556

0.663

0.181

0.190

0.211

0.669

1.000

0.655

0.602

0.175

0.180

0.191

0.556

0.655

1.000

0.597

0.168

0.173

0.183

0.663

0.602

0.597

1.000

0.176

0.186

0.205

0.181

0.175

0.168

0.176

1.000

0.782

0.644

0.190

0.180

0.173

0.186

0.782

1.000

0.718

0.211

0.191

0.183

0.205

0.644

0.718

1.000

WiC, Top 1%

C4 Math ArXiv Wiki ∇f(wst.) ∇f(wmid) ∇f(wend)

C4

Math

ArXiv

Wiki

∇f(wst.)

∇f(wmid)

∇f(wend)

1.000

0.809

0.400

0.685

0.738

0.765

0.520

0.809

1.000

0.452

0.709

0.714

0.753

0.510

0.400

0.452

1.000

0.421

0.377

0.384

0.260

0.685

0.709

0.421

1.000

0.646

0.670

0.458

0.738

0.714

0.377

0.646

1.000

0.723

0.487

0.765

0.753

0.384

0.670

0.723

1.000

0.512

0.520

0.510

0.260

0.458

0.487

0.512

1.000

COPA, Top 0.01%

C4 Math ArXiv Wiki ∇f(wst.) ∇f(wmid) ∇f(wend)

1.000

0.625

0.363

0.575

0.550

0.685

0.429

0.625

1.000

0.511

0.657

0.480

0.593

0.365

0.363

0.511

1.000

0.502

0.338

0.380

0.196

0.575

0.657

0.502

1.000

0.451

0.595

0.327

0.550

0.480

0.338

0.451

1.000

0.578

0.290

0.685

0.593

0.380

0.595

0.578

1.000

0.474

0.429

0.365

0.196

0.327

0.290

0.474

1.000

COPA, Top 0.1%

C4 Math ArXiv Wiki ∇f(wst.)∇f(wmid)∇f(wend)

1.000

0.669

0.556

0.663

0.559

0.557

0.394

0.669

1.000

0.655

0.602

0.439

0.439

0.333

0.556

0.655

1.000

0.597

0.401

0.405

0.303

0.663

0.602

0.597

1.000

0.507

0.531

0.393

0.559

0.439

0.401

0.507

1.000

0.621

0.367

0.557

0.439

0.405

0.531

0.621

1.000

0.496

0.394

0.333

0.303

0.393

0.367

0.496

1.000

COPA, Top 1%

10−2

10−1

100

10−2

10−1

100

10−2

10−1

100

10−2

10−1

100

10−2

10−1

100

10−2

10−1

100

10−2

10−1

100

O
ve

rla
p

ra
tio

of
to

p
en

tr
ie

s
of

gr
ad

ie
nt

sq
ua

re
s

Figure 12: Overlap ratio in top entries of gradient squares of Mistral-7B for C4, OpenWebMath,
ArXiv, Wiki103, and ∇f(wst.), ∇f(wmid), and ∇f(wend) across 3 commonsense reasoning, 1 math,
and 3 SuperGLUE tasks.

31

Published as a conference paper at ICLR 2025

C4

Math

ArXiv

Wiki

0.364 0.196 0.172

0.353 0.202 0.177

0.188 0.110 0.098

0.311 0.185 0.162

Top 0.01%

0.304 0.299 0.199

0.316 0.302 0.200

0.234 0.211 0.144

0.288 0.279 0.187

Top 0.1%

0.361 0.329 0.254

0.326 0.298 0.239

0.306 0.270 0.215

0.337 0.310 0.250

Top 1%

∇f(wst.) ∇f(wmid) ∇f(wend)

∇f(wst.)

∇f(wmid)

∇f(wend)

1.000

0.476

0.177

0.476

1.000

0.419

0.177

0.419

1.000

∇f(wst.) ∇f(wmid) ∇f(wend)

1.000

0.501

0.285

0.501

1.000

0.427

0.285

0.427

1.000

∇f(wst.) ∇f(wmid) ∇f(wend)

1.000

0.541

0.378

0.541

1.000

0.484

0.378

0.484

1.000

10−2

10−1

100

10−2

10−1

100

A
ve

ra
ge

ov
er

la
p

ra
tio

of
to

p
gr

ad
ie

nt
sq

ua
re

en
tr

ie
s

ac
ro

ss
3

co
m

m
on

se
ns

e,
1

m
at

h,
an

d
3

S
up

er
G

LU
E

ta
sk

s

Figure 13: Average overlap ratio of top gradient square entries across 7 tasks in Figure 12.

C4 Math ArXiv Wiki

C4

Math

ArXiv

Wiki

1.000 0.809 0.400 0.685

0.809 1.000 0.452 0.709

0.400 0.452 1.000 0.421

0.685 0.709 0.421 1.000

Top 0.01%

C4 Math ArXiv Wiki

1.000 0.625 0.363 0.575

0.625 1.000 0.511 0.657

0.363 0.511 1.000 0.502

0.575 0.657 0.502 1.000

Top 0.1%

C4 Math ArXiv Wiki

1.000 0.669 0.556 0.663

0.669 1.000 0.655 0.602

0.556 0.655 1.000 0.597

0.663 0.602 0.597 1.000

Top 1%

10−2

10−1

100

O
ve

rla
p

ra
tio

of
to

p
gr

ad
ie

nt
sq

ua
re

en
tr

ie
s

ac
ro

ss
4

da
ta

m
ix

tu
re

s

Figure 14: Overlap ratio of top gradient square entries among C4, OpenWebMath, ArXiv, and
Wiki103 in Figure 12.

32

Published as a conference paper at ICLR 2025

F IMPLEMENTATION OF SPARSE OPERATIONS IN LINEAR LAYERS

Linear layers in LLMs often contribute most parameters (Kaplan et al., 2020). Since from Equation 7
we know

wsparse = w ⊙mk, wdense = w ⊙ (1d −mk), w = wsparse +wdense (13)

and since wdense would have the same shape (and the same computational intensities) as w, we need
to improve wall-clock time efficiency of wsparsex to improve the computational efficiency of linear
layers after extracting the sparse parameters. In this case, we would have two different methods to
implement the forward pass of linear layers (with induced sparse operation colored in red):

wx = wdensex+wsparsex (14)
= SparseAddMM(DenseMM(wdense,x),wsparse,x) faster with token generation (15)
= (wdense+wsparse)x (16)
= DenseMM(SparseAdd(wsparse,wdense),x) faster with ZO training (17)

1 # PyTorch’s F.linear uses Y = X W^T + b.
2 # Here we use Y = W X + b for simplicity.
3 class SensitiveZOLinear(Linear):
4 w_sparse # in FP16, CSR format
5 w_dense # in FP16, dense tensor
6 bias # in FP16, dense tensor
7

8 def forward_small_batched_decoding(self, X):
9 # dense matmul (linear forward)

10 dense_result = dense_linear(self.w_dense, X, self.bias)
11 # sparse addmm
12 return sparse_addmm(dense_result, self.w_sparse, X) + self.bias
13

14 def forward_large_batched_ZO_training(self, X):
15 # add sparse weights to the dense weights
16 w = self.w_dense + self.w_sparse
17 # dense matmul (linear forward)
18 return dense_linear(w, X, self.bias)

Listing 1: Example PyTorch-like code snippet that implements the forward calls with FP16 sparse
and FP16 dense parameters.

0.01% 0.1% 1%

Fraction to optimize

0.01

0.1

1.0

10.0

S
ec

/f
or

w
ar

d

Training
(A6000)
SparseAdd
SparseAddMM

0.01% 0.1% 1%

Fraction to optimize

Training
(A100)

0.01% 0.1% 1%

Fraction to optimize

0

0.1

0.2

0.3

S
ec

/t
ok

en

Inference
(A6000)

0.01% 0.1% 1%

Fraction to optimize

Inference
(A100)

Figure 15: Time of SparseAdd (Equation 17) versus SparseAddMM (Equation 15) in Llama2-7B ZO
training forward & inference. In subfigure 1 and 3, we use Nvidia RTX A6000 and Intel Xeno Gold
6342 CPUs, with PyTorch version 2.2, HuggingFace version 4.36, and CUDA 12.2. In subfigure 2
and 4, we use Nvidia A100-SXM4 (40 GB) and AMD EPYC 7543P 32-Core CPU with PyTorch
version 2.1, HuggingFace version 4.38.2, and CUDA 12.2. We use Flash Attention 2 (Dao, 2023) for
all 4 subfigures.

33

Published as a conference paper at ICLR 2025

The specific choice of employing Equation 15 or Equation 17 needs benchmarking, and we also
provide a general guideline based on the size of input vectors x and the resulting arithmetic intensity.

Size of input vectors x and arithmetic intensity. wsparsex in Equation 15 would have a compu-
tational dependency over x. During large-batched ZO training, x would be large enough such that
Equation 15 would induce large computational overhead, as shown in subfigure 1 of Figure 15. In
contrast, the computational costs of Equation 17 is independent of x and when x is large, we would
expect Equation 17 is much faster than Equation 15. As an example, we use sequence length of 512
and batch size 16 sampled from WikiText-2 dataset (Merity et al., 2016) as a representative forward
costs for ZO training in subfigures 1 and 2 in Figure 15.

However, during autoregressive token generation, on each step we would only append a single token
to the previously cached embeddings, and in this case x is small and computing wdense +wsparse is
generally not worthwhile, especially given that wsparse is already sparse. This is also illustrated in
subfigure 3 and 4 in Figure 15. However, we note that the specific implementation choice is hardware
and task dependent and requires thorough benchmarking and we will leave it as a future work.

We recommend using Equation 17 during large-batched ZO training and Equation 15 during
small-batched autoregressive token generation.

Integration with weight quantization method. Weight integer quantization algorithms can be
categorized into 2 categories: uniform integer quantization method and non-uniform integer quan-
tization method. For uniform integer quantization method, we use integer matrix multiplication
with fused scaling to compute Q(wdense)Q(x) efficiently without first dequantizing Q(wdense) to
FP16 (Xi et al., 2023; Park et al., 2024). However, this is not compatible with our “SparseAdd”
approach as we will violate the constraint of uniformly-spaced int quantization bins by computing
SparseAdd(Q(wdense) +wsparse). In this case, we also have 3 different implementations:

Q(w)x ∼ Q(wdense)Q(x)+wsparsex (18)

= SparseAddMM
(
ScaledIntMM

(
Q(wdense), Q(x)

)
,wsparse,x

)
uniform int Q (19)

∼ Q(wdense)x+wsparsex (20)

= SparseAddMM
(
Dequantize(Q(wdense)),x,wsparse

)
similar to Equation 15 (21)

∼
(
Q(wdense)+wsparse

)
x (22)

= DenseMM
(
SparseAdd (wsparse,Dequantize(Q(wdense)) ,x

)
similar to Equation 17

(23)

Equation 19 would compute ScaledIntMM
(
Q(wdense), Q(x)

)
without dequantizing Q(wdense) to

FP16. Notice that both Equation 21 and Equation 23 would still dequantize Q(wdense) first and the
choice of implementation would follow into our discussion of input vector size x in last paragraph.
We leave a practical implementation and thorough benchmarking into a future work.

1 class SensZOQ(Linear):
2 w_sparse # in FP16, CSR format
3 w_dense_quantized # in Int4, dense tensor
4 bias # in FP16, dense tensor
5

6 def dequantize(self, w_quantized):
7 ...
8 return w_16_bit
9

10 def forward_scaled_int_matmul(self, X):
11 # dense int4 matmul with fused scaling
12 dense_result = scaled_int_matmul(self.w_dense_quantized, X)
13 # sparse addmm
14 return sparse_addmm(dense_result, self.w_sparse, X) + self.bias
15

16 def forward_small_batched_decoding(self, X):

34

Published as a conference paper at ICLR 2025

17 # dequantize the dense weights to FP16
18 w_dense_16_bit = self.dequantize(self.w_dense_quantized)
19 # dense FP16 linear forward
20 dense_result = dense_linear(w_dense_16_bit, X, self.bias)
21 # sparse addmm
22 return sparse_addmm(dense_result, self.w_sparse, X) + self.bias
23

24 def forward_large_batched_ZO_training(self, X):
25 # dequantize the dense weights to FP16
26 w_dense_16_bit = self.dequantize(self.w_dense_quantized)
27 # add sparse weights to the dense weights
28 w = w_dense_16_bit + self.w_sparse
29 # dense FP16 linear forward
30 return dense_linear(w, X, self.bias)

Listing 2: Example PyTorch-like code snippet that implements the forward calls with 16-bit sparse
and quantized dense parameters.

We recommend using Equation 19 when we use integer matmul to compute Q(wdense)Q(x)
and in other cases, using Equation 21 or Equation 23 follows our previous recommendation.

35

Published as a conference paper at ICLR 2025

G SUPPLEMENTARY EXPERIMENT DETAILS

G.1 HYPERPARAMETERS IN EXPERIMENTS

For all ZO experiments, we use 20,000 training steps with ZO-SGD optimizer (Definition 2). We
evaluate on the validation or test set at the end of the training. Usually, the training/validation set will
be sampled from the original training dataset with size 1000/500 respectively and the evaluation set
is of size min(1000, |original validation or test set|). However, for CB and COPA, we use 100 for
the validation set size. We use 2051/200 for Arc-E, 919/200 for Arc-C, 39705/200 for HellaSwag,
15913/200 for PIQA, 4757/200 for OBQA, 33210/200 for SIQA, 20000/200 for MMLU (training is
on an auxiliary training set), and 97267/200 for AQuA.

For all ZO experiments in Table 7, 8, and 9, we use a batch size of 16 except for the Mistral-7B on
MMLU experiment in Table 8 we use a batch size of 8 for all methods.

Table 7: The chosen hyperparameters (ZO perturbation constant, learning rates, and # ICL examples)
for experiments in Table 1 and 4. We repeat each learning rate for 3 random trials and report the
average and standard deviation in Table 1 and 4.

(a) Llama2-7B

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG

Q, ZO, SGD SensZOQ (ϵ =1e-3) 5e-7 1e-6 1e-6 1e-6 5e-7 1e-6 1e-6 2e-6
LoRA (ϵ =1e-3) 1e-5 2e-5 1e-5 2e-5 1e-5 2e-5 1e-5 5e-5

ZO, SGD Full FT (ϵ =1e-3) 5e-7 5e-7 5e-7 5e-7 2e-7 5e-7 5e-7 1e-7

ICL (#examples) 16 16 16 8 16 8 8 16

FO, SGD Full FT 1e-4 1e-4 2e-5 5e-5 5e-5 5e-5 5e-5 1e-4
FO, Adam Full FT 1e-5 5e-6 2e-5 1e-5 5e-6 5e-6 2e-6 2e-5

(b) Mistral-7B

Q, ZO, SGD SensZOQ (ϵ =1e-4) 2e-8 5e-8 2e-8 2e-8 1e-8 2e-8 2e-8 1e-7
LoRA (ϵ =1e-4) 2e-6 5e-6 2e-6 2e-6 2e-6 2e-6 2e-6 1e-5

ZO, SGD Full FT (ϵ =1e-4) 2e-8 2e-8 1e-8 1e-8 1e-8 1e-8 2e-8 5e-8

ICL (#examples) 4 8 4 16 4 4 8 8

FO, SGD Full FT 2e-6 5e-6 1e-5 2e-6 1e-5 2e-6 1e-5 5e-6
FO, Adam Full FT 2e-6 2e-6 2e-6 1e-6 2e-6 2e-6 2e-6 2e-6

(c) OPT-6.7B

Q, ZO SensZOQ (ϵ =1e-3) 2e-7 5e-7 5e-7 5e-7 2e-7 5e-7 2e-7 1e-6
LoRA (ϵ =1e-3) 1e-5 2e-5 1e-5 2e-5 1e-5 2e-5 2e-5 5e-5

ZO, SGD Full FT (ϵ =1e-3) 2e-7 2e-7 2e-7 2e-7 2e-7 2e-7 5e-7 5e-7

ICL (#examples) 16 4 16 16 16 8 16 16

FO, SGD Full FT 5e-5 2e-5 1e-4 2e-5 1e-5 2e-5 1e-4 5e-5
FO, Adam Full FT 5e-6 5e-6 2e-5 1e-5 5e-6 1e-5 2e-6 2e-6

(d) Llama2-13B

Q, ZO, SGD SensZOQ (ϵ =1e-3) 1e-6 1e-6 1e-6 1e-6 1e-7 1e-6 2e-6 5e-6

ZO, SGD Full FT (ϵ =1e-3) 5e-7 5e-7 5e-7 5e-7 1e-7 5e-7 5e-7 2e-6

ICL (#examples) 16 8 16 8 8 8 16 16

(e) OPT-13B

Q, ZO, SGD SensZOQ (ϵ =1e-3) 2e-7 5e-7 2e-7 2e-7 2e-7 5e-7 2e-7 1e-6

ZO, SGD Full FT (ϵ =1e-3) 2e-7 5e-7 2e-7 2e-7 1e-6 2e-7 2e-7 5e-7
Sens. (C4, static) (ϵ =1e-3) 2e-7 5e-7 2e-7 2e-7 2e-7 5e-7 2e-7 1e-6

ICL (#examples) 16 16 16 16 16 16 16 16

For the ZO-LoRA baseline in Table 1, we always add it to all linear layers with r = 8 and α = 16.

36

https://huggingface.co/datasets/cais/mmlu/viewer/auxiliary_train

Published as a conference paper at ICLR 2025

Table 8: The chosen learning rates for experiments in Table 5 and 6. We repeat each learning rate for
3 random trials and report the average and standard deviation. Notice that in Table 6, the learning
rates for RTE, WiC, COPA tasks for SensZOQ (OpenWebMath, ArXiv, and Wiki103) are the same as
SensZOQ (C4), which are reported in Table 7.

Methods Arc-E Arc-C HS OBQA PIQA SIQA AQuA MMLU

Q, ZO, SGD C4 (ϵ =1e-4) 5e-9 1e-8 1e-7 2e-8 2e-7 2e-8 5e-8 1e-8
ArXiv (ϵ =1e-4) 5e-9 1e-8 1e-7 2e-8 2e-7 2e-8 5e-8 1e-8

OpenWebMath (ϵ =1e-4) 5e-9 1e-8 1e-7 2e-8 2e-7 2e-8 5e-8 1e-8
Wiki103 (ϵ =1e-4) 5e-9 1e-8 1e-7 2e-8 2e-7 2e-8 5e-8 1e-8

ZO, SGD Full FT (ϵ =1e-4) 5e-9 5e-9 5e-8 5e-9 5e-8 1e-8 1e-8 5e-9

ICL (#examples) 16 16 16 8 16 16 16 16

Table 9: The chosen learning rates for experiments in Figure 6a and Figure 6b. We repeat each
learning rate for 3 random trials and report the average to draw a line in Figure 6a and Figure 6b, and
we use Llama2-7B for all experiments. For each subtable, we include the fraction to optimize on its
header and report the chosen learning rate on each cell.

(a) RTE

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 1e-6 1e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 5e-6 1e-6 1e-6 1e-6 5e-7
Random (static) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-5

Random (dynamic) (ϵ =1e-3) 2e-2 5e-3 2e-4 5e-5 5e-6
Weights with largest magnitude (static) (ϵ =1e-3) 2e-3 1e-3 2e-4 5e-5 1e-5

Weights with smallest magnitude (static) (ϵ =1e-3) 2e-3 5e-4 1e-4 1e-5 1e-6
smallest GraSP scores (static) (ϵ =1e-3) 2e-5 5e-6 2e-6 2e-6 1e-6

(b) WiC

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6

Sensitive (task-specific, dynamic) (ϵ =1e-3) 1e-5 2e-6 1e-6 1e-6 1e-6
Random (static) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-6

Random (dynamic) (ϵ =1e-3) 2e-2 5e-3 5e-4 5e-5 5e-6
Weights with largest magnitude (static) (ϵ =1e-3) 1e-3 5e-4 2e-4 1e-4 2e-5

Weights with smallest magnitude (static) (ϵ =1e-3) 1e-3 5e-4 1e-4 1e-5 2e-6
smallest GraSP scores (static) (ϵ =1e-3) 2e-5 1e-5 5e-6 2e-6 2e-6

(c) COPA

Methods 1e-5 1e-4 1e-3 1e-2 1e-1

Sensitive (C4, static) (ϵ =1e-3) 5e-6 1e-6 5e-7 1e-6 1e-6
Sensitive (task-specific, static) (ϵ =1e-3) 1e-5 1e-6 2e-6 1e-6 5e-7

Sensitive (task-specific, dynamic) (ϵ =1e-3) 5e-6 1e-6 1e-6 1e-6 5e-7
Random (static) (ϵ =1e-3) 1e-2 2e-3 5e-4 5e-5 5e-6

Random (dynamic) (ϵ =1e-3) 2e-3 1e-3 2e-4 2e-5 2e-6
Weights with largest magnitude (static) (ϵ =1e-3) 1e-3 5e-4 5e-4 1e-4 1e-5

Weights with smallest magnitude (static) (ϵ =1e-3) 2e-3 5e-4 2e-5 2e-6 2e-6
smallest GraSP scores (static) (ϵ =1e-3) 5e-6 5e-6 1e-6 2e-6 1e-6

37

Published as a conference paper at ICLR 2025

For the smaller FO-Adam experiment in Table 2, we report the used learning rates in Table 10. We
use a batch size of 8 and train for 1000 steps. We use the Adam optimizer with linear learning rate
decay (without warmup) to 0 and no weight decay. We evaluate the model’s performance at the end
of 1000-step training.

Table 10: The chosen learning rates for experiments in OPT-1.3B FO FT in Table 2. We repeat each
learning rate for 3 random trials and report the average and standard deviation in Table 2.

Methods SST-2 RTE CB BoolQ WSC WiC COPA WinoG

FO-Adam Full FT 1e-5 2e-5 1e-5 1e-5 2e-5 1e-5 1e-5 2e-5

38

Published as a conference paper at ICLR 2025

G.2 TASK-SPECIFIC PROMPTS IN EXPERIMENTS

We describe our task templates in Table 11 and 12.

Table 11: Task templates for all experiments (1/2). On the left column we include the task name and
the model name, and on the right column we describe the exact prompt with answer candidates.

Task Prompts

SST-2
(Llama2-7B, Llama2-13B)

Sentence: <text> ### Sentiment: negative/positive

SST-2
(Mistral-7B, OPT-6.7B, OPT-13B)

<text> It was terrible/great

RTE
(Llama2-7B, Llama2-13B)

Suppose "<premise>" Can we infer that "<hypothesis>"?
Yes or No? Yes/No

RTE
(Mistral-7B, OPT-6.7B, OPT-13B)

<premise>
Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB
(Llama2-7B, Mistral-7B, OPT-6.7B,
Llama2-13B, OPT-13B)

Suppose <premise> Can we infer that "<hypothesis>"? Yes,
No, or Maybe?
Yes/No/Maybe

BoolQ
(Llama2-7B, Llama2-13B)

<passage> <question>? Yes/No

BoolQ
(Mistral-7B, OPT-6.7B, OPT-13B)

<passage> <question>?
Yes/No

WSC
(Llama2-7B, Mistral-7B, OPT-6.7B,
Llama2-13B, OPT-13B)

<text>
In the previous sentence, does the pronoun "<span2>" refer
to <span1>? Yes or No?
Yes/No

WiC
(Llama2-7B, Mistral-7B, OPT-6.7B,
Llama2-13B, OPT-13B)

Does the word "<word>" have the same meaning in these
two sentences? Yes, No?
<sent1>
<sent2>
Yes/No

COPA
(Llama2-7B, Mistral-7B, OPT-6.7B,
Llama2-13B, OPT-13B)

<premise> so/because <candidate>

WinoGrande
(Llama2-7B, Mistral-7B, OPT-6.7B,
Llama2-13B, OPT-13B)

<context> <option>

39

Published as a conference paper at ICLR 2025

Table 12: Task templates for all experiments (2/2).

Arc-E, Arc-C, OBQA, MMLU
(Mistral-7B)

Question: <question>
(A) <choice A>
(B) <choice B>
(C) <choice C>
(D) <choice D>
Answer: A/B/C/D

HS (HellaSwag)
(Mistral-7B)

<context> <candidate>

PIQA
(Mistral-7B)

Goal: <goal>?
Answer: <candidate>

SIQA
(Mistral-7B)

Question: <question>
(A) <choice A>
(B) <choice B>
(C) <choice C>
Answer: A/B/C

AQuA
(Mistral-7B)

Question: <question>
(A) <choice A>
(B) <choice B>
(C) <choice C>
(D) <choice D>
(E) <choice E>
Answer: A/B/C/D/E

40

Published as a conference paper at ICLR 2025

G.3 ON-DEVICE MEMORY CONSTRAINTS

As illustrated in Table 13, a wide range of mobile or edge devices impose a memory constraint of 8
GB, which is the our target when we develop our SensZOQ in Section 3.2.

Table 13: Device memory of some mobile devices or consumer-graded GPUs.

Devices Memory

NVidia GeForce GTX 1080 Ti 11 GB

NVidia GeForce RTX 3060 Ti 8 GB

NVidia Jetson TX2 8 GB

OPPO Find X7 Ultra (Li et al., 2024a) 12 GB

Samsung Galaxy S10 with Mali-G76 GPU (Gim & Ko, 2022) 8 GB

G.4 HARDWARE, PLATFORM, LIBRARIES, AND OTHER DETAILS FOR FINE-TUNING AND
BENCHMARKING

Figure 15 (subfigure 1 and 3) is trained and evaluated on an single GPU node with 1 NVidia RTX
A6000 GPU and 1 Intel Xeon Gold 6342 CPU, with PyTorch version 2.2, HuggingFace Transformer
version 4.36, and CUDA 12.2. In subfigure 2 and 4 in Figure 15, we use NVidia A100-SXM4 (40 GB)
and AMD EPYC 7543P 32-Core CPU with PyTorch version 2.1, HuggingFace version 4.38.2, and
CUDA 12.2. We use Flash Attention 2 (Dao, 2023) in HuggingFace Transformers library throughout
our experiments, and the base model for ZO full fine-tuning and benchmarking is always Llama2-7B
with Float16 datatype (torch.float16). We also use the Float16 datatype (torch.float16) for all of
our sparse parameters (sensitive sparse, random subsets, etc.) in ZO fine-tuning experiments. In
our preliminary experiments we found BrainFloat16 with 7 bits (ULP=2−7 ≈8e-3) of mantissa
cannot make ZO FT’s training loss decreases, but ZO FT still works with Float16 that has
10 bits of mantissa (ULP=2−10 ≈1e-3). We leave the investigation between ZO FT and the
number of precision bits to future research. We still use Float16 for FO-SGD Full FT while using
BrainFloat16 for FO-Adam Full FT.

In Figure 15, we use sequence length of 512 and batch size 16 sampled from WikiText-2 dataset (Mer-
ity et al., 2016) as a representative computational intensity for ZO training.

41

	Introduction
	Sparse ZO Fine-tuning with Static Sensitive Parameters in LLM
	Zeroth-order Optimization
	Sparse ZO optimization with static sensitive parameters.
	Theoretical Convergence Rate

	SensZOQ: a Sparse On-device Fine-tuning Recipe
	Transferability of Static Sensitive Parameter
	SensZOQ: an Opportunity for On-Device LLM Personalization

	Experiments
	On-Device Personalization
	Effectiveness of Sparse ZO Fine-Tuning on Sensitive Parameters

	Conclusion
	Acknowledgment
	Related works
	Notations
	Theoretical Convergence Rate
	Assumptions
	Proof for Equation 5, Theorem 1
	Proof for Equation 6, Theorem 1

	More experiment results
	13B model results.
	Commonsense reasoning, math, MMLU dataset results.
	Alternative data sources for extracting sensitive parameters.

	Sensitive parameters in LLMs
	Gradient sparsity during LLM fine-tuning
	Transferability of gradient features from pre-training datasets to downstream tasks
	Overlap ratio of top gradient features

	Implementation of sparse operations in linear layers
	Supplementary Experiment Details
	Hyperparameters in experiments
	Task-specific prompts in experiments
	On-device memory constraints
	Hardware, platform, libraries, and other details for fine-tuning and benchmarking

