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As described in our main paper, we will provide more details about our dataset CoVT-CRX, annotation
tool Labelme-CoVT, prompt generation process, and implementation details in Sec. [A] Sec.[B] Sec.[C]
and Sec. [D] respectively. Results on task T1, T2, and T3 are provided in Sec.[E] proving the multi-task
ability of our CoVT method on various clinical-related tasks. Finally, we refer the readers to Sec.[H
for visual examples of our CoVT results on TS. Our code, data, demo, and annotation tool are
partially available in this anonymous link|and will be fully accessible upon acceptance.

A DATASET DETAILS

Besides the visualization in our main paper, we provide more quantitative measures on CoVT-CXR,
including word frequency of description, the pre-defined semantic label space C as well as the
statistics at each step. Fig. [I]offers a striking word cloud visualization. In part (a), we see findings
like cardiac silhouette and hilum contours, depicted through points, lines, and masks. In part (b),
common pathologies stand out, with terms such as ‘enlargement,” ‘low,” ‘mild,” and ‘crowding’
frequently appearing. These subtle gradations are particularly elusive for current vision-language
models, making them all the more fascinating and challenging to interpret.
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Figure 1: The word cloud illustrating descriptions of pulmonary structures and pathologies.

Category of Annotated Visual Cues. The visual cues in CoVT-CXR annotations encompass 112
categories, covering five annotation types: bounding box, mask, point, line, and linestrip. The details
of these categories can be found at here. We further demonstrate the number of mask annotations in
Fig. [2) where the original 112 categories are grouped into 21 classes for visualization purposes.


https://anonymous.4open.science/r/CoVT-CXR-1B92
https://anonymous.4open.science/r/CoVT-CXR-1B92/assets/category_overview.md
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Figure 2: Number of mask annotations in 7 based on 21 high-level categories.

Rationale Step Statistics. As described in our main paper, each diagnostic report R can be divided
into multiple sentence segments S. By definition, each S corresponds to one field, referred to as the
target field. Our CoVT-CXR dataset explicitly analyzes a single chain-of-thought reasoning process
in one target field. As can be found in Fig.[3] we have at most 12 steps of reasoning for each segment
S, indicating the complexity of the reasoning process. The projection tag, which describes the type of
imaging views, requires only one step of reasoning. This is reasonable because frontal imaging with
AP and PA views, as well as lateral imaging, can be directly defined by the given CXR images. The
bone field descriptions exhibit a relatively uniform distribution of step lengths ranging from 1 to 11,
likely due to the variability in the types and quantities of bones being examined. Reports related to the
lung field show either short or very long step lengths, possibly due to the presence of simple (single
nodule) or complex (multiple abnormalities) diagnoses. Cardiac-related reports tend to cluster around
intermediate step lengths of 7-8, reflecting the predetermined heart measurement protocols, which
typically require 6 steps to complete the cardiothoracic ratio calculation. This analysis highlights
the nuanced relationship between diagnostic complexity and reasoning processes, underscoring the
importance of tailored approaches in medical image interpretation. We hope that this observation can
guide the development of more efficient and accurate diagnostic tools in the future.

The Relationship Between Target Field and Rationale Steps
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Figure 3: Statistics on number of reasoning steps in one segment sentence .S in CoVT-CXR dataset.
Ribs Distribution Notation. Some may notice a chunk of ribs or vertebrae presented in the

sunburst figure in the main paper. However, reports of bone lesions are relatively scarce in the
MIMIC-CXR (Johnson et al.}[2019). Although rib lesions account for only a small portion of the
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MIMIC-CXR dataset, ribs play a crucial role in intermediate reasoning steps, thereby are significant
in our metadata. For instance, ribs help localize lesions and indicate signs of pulmonary collapse,
hyperinflation, or atelectasis, as they are consistently present and orderly arranged within the lungs.
These abnormalities, frequently reported by MIMIC-CXR, require precise identification of ribs.
Statistically, we analyzed the frequency and percentage of occurrences of these pathologies in 120k
findings extracted from the official dataset. Results in Tab. [I)indicate that rib involvement in related
lesion descriptions spans a wide range, with both direct and indirect participation in diagnoses
exceeding 40%.

Class ‘ Ribs Collapse Hyperinflation Atelectasis ‘ Involvement of ribs
Count 10133 15456 4611 29485 48117
Percentage | 8.44% 12.88% 3.84% 24.57% 40.10%

Table 1: The count and proportion of diagnoses involving the ribs in the raw dataset.

B ANNOTATION PHASE

Findings

"Portable semi-upright radiograph of the chest demonstrate low lung volumes results in bronchovascular crowding. The
cardiomediastinal contours are unchanged. There is no pneumothorax, pleural effusion, or consolidation. A right subclavian
central venous line terminates in the cavoatrial junction. Nasogastric tube courses into the stomach and out of the field of view."

Reported Sentence

Portable semi-upright There are low lung volumes results A right subclavian central venous line
radiograph of the chest in bronchovascular crowding. terminates in the cavoatrial junction.
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Figure 4: Illustration of five tasks derived from CoVT-CXR, which align our five steps well.

Obtaining Metadata. In Fig.[d we provide an example that indicate how medical trainees collaborate
to obtain metadata 7 from {I,R}. Our R is represented as "Findings," with CXR images shown
in the bottom-right of Fig.[d] Specifically, R is broken down into multiple S segments. We further
emphasize our semantic disentanglement by bolding sentences where a single sentence in R can
be divided into two S segments. For each sentence S, medical trainees are required to provide four
different 7 corresponding to various stages derived from the ultimate task TS. For example, step 1 is
the segmentation task where annotators provide visual cues v, or masks in this case, for the class c,
such as 4-1 and 4-2 for the left and right lungs, along with the description d, "Both lungs are detected".

Annotation Tool Features. To collect 7 from I, R, we adapted Labelme (Wada) to develop our
annotation tool, Labelme-CoVT, incorporating the following key features:

* Textual Component Integration: This establishes connections between the CXR image 1
and the report R.

* Flag Module Modification: This serves as a reference for reported sentences S, allowing for
the disentanglement or merging of sentences.

* SAM Integration for CXR: The SAM-CXR model, trained for T1, assists in expediting the
labeling process. This feature allows users to interactively create masks through simple
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clicks or points. Additionally, SAM for CXR within the annotation tool can accept labelers’
modifications as human feedback for further incremental learning.

More annotation features can be seen in Labelme-CoVT demo.

Annotation Simplify and Efficiency Improvement. Given the intricate rationale workflow, the
Labelme-CoVT tool plays a pivotal role in curating the CoVT-CXR dataset. It not only facilitates the
visualization of sequential interleaved cross-modal data for simplification but also accelerates the
labor-intensive manual annotation process by streamlining verification and improving efficiency. We
randomly selected four groups from a pool of 32 medical trainees, who were required to complete
a questionnaire assessing time consumption. Additionally, we measured inter-annotator agreement
among the trainees to validate the completed cases. Tab[2] summarizes the efficiency and accuracy
outcomes of the annotation phase.

Group ‘ #1 #2 #3 #4
Avg. Time (w/o tool) 43 40 40 45
Avg. Time 14 8 9 12
Speed up 3.1x 5x 4.4x 3.8x
Cross Person Agreement (w/o tool) | 62.12% 45.12% 50.44% 75.41%
Cross Person Agreement 85.12% 91.23% 87.33% 90.53%
Agreement Improvement +23.00% +46.11% +36.89% +15.12%

Table 2: Evaluation of Labelme-CoVT in annotation simplification and efficiency improvement.

The time consumption, measured in minutes, shows that the tool significantly increases annotation
efficiency, reducing the time required by three to five times. Furthermore, it enhances annotation
accuracy by approximately 1.5 times, with data usability surpassing 80%.

Data Assignment for Multi-stage Training.

We follow a progressive training scheme to gradually improve the model’s multi-step reasoning
capabilities. For instance, we incorporate single-step reasoning tasks like segmentation or image
description during pretraining, and further fine-tune the model with chain-of-visual-thought reasoning
using long contextual data. As a result, our multi-stage training setup and data volumes are arranged
as shown in Tab[3l

Stage ‘ Task ‘ Format ‘ Volume
T1 (I,p,v') = v 0.4M
Pretrain | T2 (I,p,v) =t 2.4M
T3 (I,q) = (v1,...,v;) 0.2M

Finetune

(I,¢") = ((v1,t1), ..., (vi, ), S) 30k
I — {({op ey, S™) AL 6k

ij Jij=11

TS

m=1

Table 3: The count and proportion of diagnoses involving the ribs in the raw dataset.

Notably, there are more entries for T2 than the others. This is due to our design, where versatile p
and v of specific image I are randomly combined to enhance the robustness of text generation.

Separating the SAM-CXR and CoVT Pretraining Data. The T1 task data is used both to assist
the build SAM-CXR and CoVT pretrain after the annotation process. Initially, one-third of the data is
annotated manually, and this data is then used to train the SAM-CXR for CoVT-CXR data curation.
The trained SAM-CXR is subsequently employed to assist in annotating the remaining two-thirds of
the data. Once the annotation process is complete, the fully-annotated dataset is then used to update
all relevant models, including SAM-CXR and CoVT.


https://anonymous.4open.science/r/CoVT-CXR-1B92/assets/annotation_tool_demo.gif
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C GPT PROMPT FOR CONTEXTUAL REFINEMENT & GENERATION

# Define the intermediate step flow )
intermediate step tmp = dict()
for step_id, step in enumerate(intermediate step):
intermediate_step_tmp[f*rationale of step{step id + 1}”] =\
{“type”: “string”, "description": {"the rationale description of step{step_id + 1}"}
intermediate _step_des = str()
for step_id, des in enumerate(intermediate _step):
intermediate_step_des += f"step {step_id + 1}: {des},\n"
# Define the tools
Function Name: Intermediate diagnostic rationale generation
Function Description:
"There is one or several highlighted image-text pair showing intermediate steps with a final diagnostic report for
interpreting a chest X-ray. Based on this report, please provide the finding clues and rationale of diagnosing this
report for every mentioned step in this case. Do not mention the given specific step number and provided raw
description, and retain the numerical content appearing in each step. The current rationale could be able to
reference the previous images and generated rationales, and should gradually lead towards the final report. The
given step input and the generated rationale of step must be one-to-one."
Parameters:{
"type": "object",
"properties": intermediate _step tmp,
"required": list(intermediate step tmp.keys())
}
# Define the messages
messages = [
{"role": "system", "content": f"This is auxiliary information: Request ID: {request id}"},
{"role": "user", "content":
The final report description states that these findings suggest that " {final reported sentence}".
The intermediate step descriptions are as following: \n{intermediate step des}
}s
]
\requestilist.append(gptirequestiwrap(modeliname, messages, tools)) )

Table 4: Rationale refinement for d.

Rationale Refinement. Unlike machines, human descriptions R can vary in levels of abstraction and
may omit background information, considering the conversational context during communication.
While this approach is efficient among doctors, it is machine-unfriendly, particularly when deep
reasoning is required based on the provided descriptions. To this end, we propose incorporating
external knowledge, such as LLMs, to augment chain-of-thought reasoning descriptions. In practice,
we use the GPT-4 (OpenAl et al., 2024)) API to refine descriptive content, as illustrated in Tab. E}
Specifically, we first convert the class c to a textual description with the phrase, "the highlighted area
showing the <c>". We then input this converted description, the raw textual descriptions provided
by annotators at the current reasoning step, and the corresponding sentence segment S into the
LLMs. The LLMs can understand the causal relationship between the annotated content at the current
diagnostic step and the formation of the given final diagnostic sentence. For example, when we
provide the annotation of five ribs along with a statement indicating reduced lung capacity, GPT-4
may generate a rationale like, "Only five ribs are visible; normally, 9-10 ribs can be seen with fully
expanded lungs." This sentence becomes the final textual description d at the current reasoning step.
This design helps in forming a more reliable chain-of-thought process, leading to a more confident
diagnostic reasoning process by leveraging the strengths of LLMs to support medical professionals in
making informed decisions.

Instruction Generation. As stated in our main paper, T4 requires instructions ¢, or equivalently
questions, as input, and GPT-4 is utilized to generate these instructions. However, simply applying
GPT-4 on whatever sentence S would lead to overly specific or vague questions as sentences from
pathological or normal reports vary a lot. This discrepancy can mislead the CoVT model by causing
it to focus on the questions rather than considering the CXR images. For instance, sentences from a
pathological report typically offer detailed descriptions of a lesion, leading to highly specific questions
about that lesion. Conversely, sentences from a normal report are often oversimplified, causing GPT-4
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( )

# Define the tools
Function Name: Medical question generator
Function Description:
Given a report sentence of a CXR image, complete the content according to the following requirements.
1) Please complete it into a full report sentence without changing the meaning, Delete blank descriptions and any
descriptions related to comparisons with previous results.
2) After that, decide which field the given sentence refers to.
3) Arrange a question that can be confidently answered by the reported sentence.
Never generate a too-specific question that indicates the position or clues of disease directly. If there any devices,
ask what findings/condition in related field”
Parameters:{
"properties": {
"completed_sentence": {
"type": "string",
"description": "The completed report sentence.”

b
"field": {
"type": "string",
"description": "The field that the sentence refers to.",
"enum": ["lungs"”, "pleura”, "mediastinum", "heart", "bones", "diaphragm”, "trachea and bronchi", "soft
tissues", "hilum", "projection tag"]
}

"

enerated question": {
"type": "string",
"description": "The course question to ask the filed's findings or condition. ”

}

<,

equired”: [ “completed sentence”, “field”, "generated question"],

}

# Define the messages
for request_id, reported_sentence in enumerate(samples):
messages = [
{"role": "system", "content": f"This is auxiliary information: Request ID: {request id}"},
{"role": "user", "content": reported sentence}
]

request_list.append(gpt request wrap(model name, messages, tools))

- J

Table 5: Generated question instruction ¢’ for visual question answering.

to generate vague questions more frequently. To avoid this, GPT is asked to identify the relevant
field for each report sentence first. Then it formulates questions based on this field, as demonstrated
in Tab.[5| During inference, our CoVT takes {I, ¢’} as input, generates a chain-of-thought process
((v1,t1),...,(vi,t;)), and finally provides sentence S.

D IMPLEMENTATION DETAILS

Implementation of SAM for CXR (T1). We apply the SAM (Kirillov et al.| |2023) model for
CXR segmentation, choosing the smallest configuration with 12 vision encoder layers and 768
visual embedding channels, along with the default mask decoder setup. To adapt SAM for CXR
segmentation, we modify the prompt encoder by removing the bounding box prompt due to the
irregular pulmonary structures and using a point sample strategy within 5 iterations. Additionally,
we introduce 76 category prompts to compensate for the absence of a text prompt encoder, as SAM
reportedly uses CLIP (Radford et al.,[2021). The model is trained in mixed precision with the AdamW
optimizer (Loshchilov & Hutter, [2019)), using a learning rate of le-3 and a weight decay of 0.1.
Gradient accumulation is employed to increase the batch size to 128. The training process of SAM
for CXR takes more than 48 hours with 12 RTX 4090 GPUs.

Implementation of VQGAN for Tokenization. We set the autoencoder (Esser et al.,[2021)) to have a
discrete codebook size of 8192 with a latent dimension of 256. Given a resized image of resolution
336, the image encoder reduces the resolution to 21, resulting in an image or mask taking a contextual
length of 212 = 441 in the subsequent foundation model. The model employs L1 reconstruction
loss and LPIPS perceptual loss (Zhang et al., 2018). We train the tokenizer on 1.4M samples of
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various masks and image combinations from the CoVT-CXR dataset for 250k iterations. Generative
adversarial loss is enabled at the 10,0004 step when the reconstructed image achieves a certain level
of quality. We set the batch size to 48 and it takes us 30 hours on 12 RTX 4090 GPUs to complete the
tokenizer training process.

Implementation of Foundation Model for CoVT. We adopt Llama3-Instruct-7B (Meta} 2024)) as
our base model and redefine the model’s embedding layer to map visual tokens from VQGAN and
textual tokens into a unified embedding space, encompassing representations for both modalities.
Subsequently, we perform full-parameter pretraining on a dataset of 1.3 million extracted samples.
During the pretraining phase, we use 8 HI00 GPUs with a batch size of 128 and a learning rate
of le-4, taking 24 hours to complete one epoch. In the SFT phase, we fine-tune the model on the
CoVT-CXR dataset with a batch size of 64 and a learning rate of 4e-5, training for 4 epochs in 3
hours.

E MORE DETAILS ABOUT EXPERIMENTAL RESULTS

T1: SAM-CXR. As areminder, T1 is a image-to-image task aiming to mimic the recognition process
of doctors, which is fulfilled with SAM framework. In experiments, we take Meta SAM (Kirillov,
et al.| 2023)) and MedSAM (Ma et al.,[2024) as our baselines; the former performs strong zero-shot
capabilities on various natural images, while the latter has undergone extensive fine-tuning for 2D
medical images. Given the significant variability in image distributions of different structures in CXR,
we choose five of them, namely the trachea, lungs, heart, bones, and mediastinum, to represent the
majority of visible structures in CXR. We exploit point-wise prompts for SAM and SAM-CXR for its
simplicity and effectiveness.

Model \ Trachea Heart Lungs Ribs Clavicles Mediastinum \ Avg.
SAM(K:irillov et al.;[2023) 3.89 23.66 78.79 5.23 9.08 2491 24.26
MedSAM(Ma et al.|[2024) | 4942  75.01 89.70 15.82 10.87 70.23 51.85

CXR-SAM \ 7411 86.88 9841 84.70 91.70 88.16 \ 90.76

Table 6: The comparison of Meta SAM, medical image fine-tuned MedSAM, and SAM-CXR in
CXR applications. The evaluation metric used is Intersection over Union (IoU), with *Avg.” refering
to the average IoU score when considering all reported structures

In contrast, MedSAM is trained exclusively with a bounding box (bbox) prompt encoder thus bbox-
wise prompts are used in our experiment. Results in Tab. [6] show that the general SAM model
performs reasonably well in lung segmentation, likely due to the distinct segmentation boundaries of
the lungs. However, it fails in segmenting the heart, mediastinum, and bones. We attribute this to the
overlapping structures in X-ray imaging, which obscure the target image features. In addition, it is
worth noting that the MedSAM fine-tuned on medical images seems to perform better than SAM.
This might be because the bbox-wise prompts, which are used by MedSAM, provide more precise
location information compared to point-wise ones.

Again, the low accuracy in segmenting the most challenging bones suggests that MedSAM also fails
on CXR segmentation. Our approach successfully addresses the shortcomings of the SAM model in
CXR segmentation, providing a robust visual foundation model for downstream CXR tasks.

Metric | BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-L METEOR CIDEr
Value | 0.3877 0.2404 0.1563 0.1020 0.5154 0.3328 0.3221 0.3529

Table 7: Benchmark performance for the T2 task

T2: Imaging Caption. The design of T2 is inspired by the process where doctors proceed to draw
conclusions or summarize results in T1, thereby is a image-to-text task.

Similar to (Huang et al.| [2023)), our CoVT focuses on summarizing a prompted region rather than
describing the entire CXR image, which turns out to be beneficial for understanding finer details in
CXR images.
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Q: What does the mask indicate in this CXR image?

GT: The highlighted area in the CXR image indicates the location of the right 3rd rib as observed on a frontal view. The
reference to 'the mask of right 3rd rib' likely means that this specific rib has been marked or identified for some reason,
possibly due to an abnormality or area of interest that the radiologist needs to examine closely. This could be for an
evaluation of fractures, lesions, or any other pathology localized to this rib. Further details from the image itself would be
necessary to provide more specific insights.

CoVT: The highlighted segment in the CXR image corresponds to the anatomical location of the right 3rd rib as seen on a
frontal view. This area represents the intersection of the rib with the X-ray beam, which can appear as a dense, linear shadow.
There are no abnormalities such as fractures, lesions, or abnormal bone density.

Q: What feature is highlighted in this CXR image?

GT: The highlighted area in the X-ray indicates the cardiacmediastinal or mediastinal region on the frontal view. This area
often pertains to the region encompassing the heart and mediastinum. Abnormalities in this region may suggest a range of
conditions such as cardiomegaly (enlarged heart), mediastinal mass (e.g., lymphadenopathy, tumors), or other anomalies like
an aortic aneurysm or pericardial effusion. Interpretation would depend on the specific characteristics of the highlighted area,
such as its size, shape, and density, as well as accompanying clinical information and symptoms.

CoVT: The highlighted area in the chest X-ray indicates the cardiacmediastinal or mediastinal region, which is an area of
interest in the central part of the chest. This region includes the heart, major blood vessels like the aorta and pulmonary
arteries, as well as other structures. Abnormalities in this area can suggest a variety of conditions, such as an enlarged heart
(cardiomegaly), mediastinal mass, lymphadenopathy, or fluid accumulation (mediastinal effusion). A detailed evaluation is
needed to provide a specific diagnosis, often requiring correlation with clinical findings and possibly further imaging or tests.

Table 8: Exsamples for visual question answering. The model highlights specific regions based on
the question and further generates region-specific relevant descriptions based on the content of the
highlighted areas.

Fig.[8] and Tab. [7] show the qualitative and quantitative results of T2 on CoVT-CXR respectively.
Furthermore, thanks to SAM-CXR, we can interactively generate captions for specific regions in
CXR images using points, masks, or text prompts. Please check the demo| for the interactive caption
generation process.

( »Locate the carina of the bronchus » Detect the bottom contours of the lateral lung cavity )
»Locate the contours of the left and right heart »Detect the blunted costophrenic angle in the lateral view
> Setting board line of cardiac contours »>Frontal view right rib blunted contour
»Measuring the width of heart/cardia »Frontal view left rib blunted contour
»Detect abnormal heart contours »Find the tip of the ET tube
»Locate the board line of the outer contours of both lungs »Measure the distance between the tip of ET tube
»Measure the width of both lungs and the carina
»Detect the contour of the aortic arch »Check if the NG tube is in the stomach
» Detect mediastinal contours » Detect the pacemaker with electrode
»Find abnormal protruding mediastinal contours »>Find the tip of the pacemaker electrode
»Trace the vertebral line of the thoracic spine »Find the end of the venous tube
L »Detect the hilum contours »Locate the tip of the chest tube or drainage tube )

Table 9: Predefined instruction for building visual reasoning chain.

T3: Instruction-following Visual Thought. Apart from the cross-modal chain of visual thought, we
recognize that single visual reasoning is also beneficial for accomplishing clinical-related tasks, such
as coarse-to-fine detection, marking subtle points, and performing complex medical measurements.
Tab. D] displays our predefined instructions used to guide single-step visual reasoning. The specific
meanings of the instructions can be found in here, where class id mentioned are following categories
of [A] It is worth noting that predefined instructions can be combined to form a series of visual
reasoning steps to complete more complex clinical-related tasks. More details for visual reasoning
guided by instructions can be seen in visual reasoning pipeline.

Why is the multi-step visual thought design helpful? To explicitly showcase the impact of
multi-step reasoning, we provide case-wise explorations on the average sampling probability on
the ground truth (GT) for final findings across varying numbers of visual cues. As evidenced
in Fig. 5} incorporating additional intermediate visual cues and translating them into meaningful
sentences significantly increases the average sampling probability of GT tokens, thereby improving
the likelihood of generating accurate GT reports.


https://anonymous.4open.science/r/CoVT-CXR-1B92/assets/interactive_cxr_caption.gif
https://anonymous.4open.science/r/CoVT-CXR-1B92/assets/visual_reasoning_instruction.md
https://anonymous.4open.science/r/CoVT-CXR-1B92/assets/visual_reasoning_instruction.gif
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Figure 5: Ground truth sampling gains in token-level as intermediate steps increases.

F VISUALIZATION OF COVT RESULTS

Generalization for Unseen Data. CXR images, unlike CT or MRI, exhibit a more consistent
distribution, distinguishing them from other medical imaging. Consequently, SAM-CXR and CoVT
have shown strong generalization capabilities on unseen data, as illustrated in FigJg| SAM-CXR excels
in segmenting bones and airways via prompt-based segmentation, which are typically challenging to
discern by Meta SAM (Kirillov et al.,[2023) and medical SAM 2024) due to overlapping
shadows in radiographs. CoVT also performs well on datasets like Vindr (Nguyen et al., 2022),
being less affected by distribution shifts. This is due to the precise visual prompts in Chain-of-
Visual-Thought, which reduce noise by focusing on highlighted bone pathology regions, avoiding
interference from surrounding tissues. Additionally, CoVT aids in identifying CXR views and lesions,
enabling interpretable reasoning process through single or multi-step diagnostic tasks.

<Find trachea or bronchus on frontal
view>

From https://en.wikipedia.org/wiki/Chest_radiograph

What feature is highlighted in this image?

From https://vindr.ai/datasets/cxr

What view is the image taken?

What is the condition of the left lung?

| lower left lobe.

<Locating the both clavicle on frontal
view>

The highlighted areas in the given image represent the first eight
ribs of a human, showing no obvious signs of fractures, aging, or
degeneration. The first eight ribs in humans, also known as the
true ribs, are primarily responsible for protecting vital organs in
the thoracic cavity.

This is an AP and single portable view of the chest.

The left lung is highlighted, revealing a partial opacity in the

Some blurry opacities are observed in the lower and middle parts
of the left lung, which may be related to pleural effusion.

Figure 6: Generalization test visualization from several unseen data.
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Chain of Visual Thought Visualization. We provide some examples of our CoVT results on
CoVT-CXR on task T4 and T5 in Fig.[7]and Fig. [§|respectively. Clearly, our CoVT generates more
accurate answers and reports compared to existing methods, demonstrating its superiority over the
baselines. More importantly, CoVT provides interpretable cross-modal intermediate reasoning steps,
enhancing the reliability and interpretability of state-of-the-art methods.

-
Q: What is the projection view of the chest?

GT: AP view of the chest

Gemini-1.5-Pro: The projection of this chest X-ray is anteroposterior (AP). This means the X-ray beam passed from the front
(anterior) of the patient to the back (posterior). You can tell this is an AP view because Scapulae are not cleared: The scapulae
(shoulder blades) are superimposed over the lung fields, which is typical of an AP projection where the patient can't always
pull their shoulders forward effectively.

GPT-4V: The projection view of the chest X-ray provided is an anteroposterior (AP) view, typically taken in the upright
position, as indicated by the labels "PORTABLE" and "UPRIGHT ".

CoVT: . The bounding box of the word
“portble" in image indicates
an AP view of the chest.

<findings>Single AP view of the chest</findings>.

Q: What are the findings of the mediastinal silhouettes?
GT: Calcification of the aortic knob is seen.
Gemini-1.5-Pro: The mediastinal contours are within normal limits. There is no mediastinal widening.

GPT-4V: The mediastinal contours appear normal with no signs of widening.

CoVT: The mediastinal . There is a
The aortic arch . .
structures appear . g calcification
is not prominent. .
s to be normal. s s of the aortic

<findings>calcification of the aortic knob is seen.</findings>

Q: What is the condition of the lungs?
Gemini-1.5-Pro: The lungs are clear bilaterally. There is no evidence of consolidation, pleural effusion, or pneumothorax.

GPT-4V: Based on the provided chest X-ray image, the lungs appear clear without signs of consolidation, effusion, or
pneumothorax. There are no obvious abnormalities such as masses or lesions observed within the lung fields. The costophrenic
angles are sharp, indicating no pleural effusion. Overall, the lungs seem to be in a normal condition.

the right and left lung areas are examined on the frontal view. both lungs exhibit
clear fields without any signs of focal consolidation. additionally, there are no visible
signs of pleural effusion or pneumothorax, which supports the final report

<findings>There is no focal consolidation, pleural effusion, or pneumothorax identified.</findings>

Figure 7: One example of our CoVT for VQA task based on T4
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Report: The lungs are clear of consolidation,

effusion, or pneumothorax. The cardiac silhouette is top normal
in size. Mildly tortuous descending thoracic aorta is seen.

No acute osseous abnormality detected.

User: Can you assist with writing a diagnostic report?

Gemini-1.5-Pro: Lateral chest radiograph demonstrates clear lungs without focal consolidation, pleural effusion, or
pneumothorax. The cardiomediastinal and hilar contours are within normal limits. No acute osseous abnormalities are seen.

GPT-4V: The chest X-ray images reveal clear lung fields with no evidence of focal consolidations, pneumothorax, or pleural
effusions. The cardiac silhouette appears normal in size, and the mediastinal contours are within normal limits. The bony thorax,
including the ribs, clavicles, and spine, show no obvious abnormalities or fractures. The diaphragms are well-positioned and
without abnormal elevation or flattening. Overall, the chest radiographs are unremarkable, with no significant pathology
detected.

CoVT:
PA and lateral views of the chest obtained.
<findings>PA and lateral views of the chest</findings>.

The lungs appear to clear The lateral view also There is no blunting of the costophrenic
without consolidation, shows no obvious angles in the posterior lung bases,
effusion, or pneumothorax Py abnormalities. -, suggesting the absence of pleural effusion.

The cardiac
. . Measure the
silhouette is ;
heart width.
stable.

<findings>The heart size is within normal. </findings>

The mediastinal The descending aorta
structures are normal. tends to be mildly tortuous.

<findings>The mediastinum is unremarkable, but there is mildly tortuous descending thoracic aorta </findings>
The lateral view

Measure the lung width;
the cardiothoracic ratio is
less than 50%, indicating
no cardiomegaly.

Identify the
structures of
both lungs.

\

X The ribs show The thoracic L

The clavicle . L shows no significant
L no obvious spine is located . 3

is intact. . e degeneration of the

abnormalities. at the midline.
J vertebrae.
<findings>No acute osseous abnormality. </findings>
S J

Figure 8: One example of our CoVT for report generation task based on TS
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