
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Details in Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] We include
python implementation of CAPE in the Appendix A. All our experiments are based
on top of the open-sourced code where used state-of-the-art recipes for machine trans-
lation, Vision Transformer and speech recognition were published. We provide these
URLs in the Appendix B.1, C.2, and D.1.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] . This information is provided in the main text and also in the
Appendix B.1, C.1, C.2, C.3, D.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We look at results across different domains and models
types, which presents variability in a different format than error bars. For machine
translation we report BLEU score and generalization measure averaged across 3 runs
for each model (Table 2 and Figure 8).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We specify all compute details in
Appendix B.1, C.2 and D.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We provide biblio-

graphic references or URLs for the relevant resources.
(b) Did you mention the license of the assets? [No] Provided bibliographic references and

URLs allow checking the licenses of various external assets used in the paper.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We provide our code in the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We use existing assets in compliance with their respective
licenses, that do not require direct consent by the creators. We also use our in-house
English video dataset in according to our data policy: it is aggregated and deidentified
before transcription.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Our work does not contain or use personally
identifiable information or offensive content. Specifically, we discuss this issue only
for our in-house English video dataset in Section 5.2.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

A CAPE Implementation in Python

import numpy as np

def augment_positions_�d(
positions_�d: np.ndarray,
mean_normalize: bool,
augment: bool, � True during training
max_global_shift, � delta max
max_local_shift, � epsilon max
max_scale, � lambda max
rng�np.random.RandomState(��)

):
"""
Takes original positions, returns modified ones.
Can reuse sin/cos embedding from "Attention is all you need".
Code handles NaNs is positions_�d input as if those correspond to pad tokens
"""
assert max_scale �� �
batch_size, n_tokens � positions_�d.shape
if mean_normalize:

positions_�d -� np.nanmean(positions_�d, axis��, keepdims�True)
if augment:

delta � rng.uniform(-max_global_shift, �max_global_shift, size�[batch_size, �])
delta_local � rng.uniform(-max_local_shift, �max_local_shift, size�[batch_size, n_tokens])
log_lambdas � rng.uniform(-np.log(max_scale), �np.log(max_scale), size�[batch_size, �])
new_positions � (positions_�d � delta � delta_local) * np.exp(log_lambdas)
return new_positions

else:
return positions_�d

def CAPE_�d(
n_patches: int, � number of patches, default in ViT is ��
batch_size: int,
augment: bool, � True during training
n_channels: int, � embedding size for one patch
max_global_shift, � delta max
max_local_shift, � epsilon max
max_scale, � lambda max
rng�np.random.RandomState(��)

):
"""Prepares grid of CAPE embeddings for provided grid size"""
x � np.zeros([batch_size, n_patches, n_patches])
y � np.zeros([batch_size, n_patches, n_patches])
x �� np.linspace(-�, �, n_patches)[None, :, None]
y �� np.linspace(-�, �, n_patches)[None, None, :]
if augment:

� global shift
x �� rng.uniform(-max_global_shift, �max_global_shift, size�[batch_size, �, �])
y �� rng.uniform(-max_global_shift, �max_global_shift, size�[batch_size, �, �])
� local shift
x �� rng.uniform(-max_local_shift, �max_local_shift, size�x.shape)
y �� rng.uniform(-max_local_shift, �max_local_shift, size�y.shape)
� scaling
lambdas � np.exp(rng.uniform(-np.log(max_scale), � np.log(max_scale), size�[batch_size, �, �]))
x *� lambdas
y *� lambdas

assert n_channels � � �� �
half_channels � n_channels // �
rho � �� ** (np.arange(�, half_channels � �) / half_channels)
� recommended simpler approximate implementation
� rho � �� ** np.linspace(�, �, half_channels)
w_x � rho * np.cos(np.arange(half_channels))
w_y � rho * np.sin(np.arange(half_channels))

phase � np.pi * (w_x * x[:, :, :, None] � w_y * y[:, :, :, None])
return np.concatenate([np.cos(phase), np.sin(phase)], axis�-�)

16

B Image Recognition Experiments

B.1 Technical Details

Table 3: Top-1 accuracy (%) for ViT and UniViT models evaluated on ImageNet validation set
and ImageNet-v2 test sets with images resized to different resolutions: 1602, 2242, 3842 and 6722.
Models trained on 2242 and further fine-tuned on 3842 resolution are marked with “+ft”. “-S” and
“-Ti” refer to small and tiny architectures [16], respectively.

Model Train ImageNet ImageNet-v2-a ImageNet-v2-b ImageNet-v2-c

Res. 1602 2242 3842 6722 1602 2242 3842 6722 1602 2242 3842 6722 1602 2242 3842 6722

nopos

1602

77.33 78.38 75.46 61.00 72.39 73.78 69.65 52.99 64.41 66.25 62.58 46.58 77.67 78.76 75.28 59.13
abspos 78.45 79.04 73.96 57.56 74.31 74.75 68.02 49.54 66.02 66.47 60.18 42.53 79.08 79.15 73.31 55.48
sinpos 79.05 74.38 65.65 44.13 74.75 70.11 59.61 36.75 66.91 62.13 52.28 30.55 79.37 75.41 65.45 42.51
CAPE, � = 1 78.74 79.69 75.82 61.87 74.94 75.75 70.50 54.91 66.56 68.17 62.78 46.74 79.51 80.18 75.71 60.39
CAPE 78.70 79.73 76.18 62.59 74.98 75.94 71.17 56.13 66.95 68.65 64.19 48.72 79.38 80.38 76.23 62.00

nopos

2242

75.30 78.97 78.68 72.92 70.52 74.79 74.15 65.99 61.59 66.93 67.01 59.41 75.94 79.50 78.81 71.06
abspos 77.78 80.90 79.90 72.21 73.38 77.01 75.66 65.47 65.07 69.38 68.05 57.69 78.53 81.53 80.14 70.90
sinpos 77.15 81.32 79.72 70.71 72.91 77.52 75.48 63.74 64.45 70.14 67.96 55.67 78.30 82.19 80.13 69.28
CAPE, � = 1,� = 0 77.53 81.08 80.18 72.34 73.41 77.61 75.81 65.99 64.85 70.23 68.22 57.83 78.33 82.05 80.06 70.99
CAPE, � = 1, ✏ = 0 77.46 81.14 80.49 72.13 73.35 77.90 76.36 64.95 64.84 69.84 68.45 57.31 78.80 81.84 80.58 70.53
CAPE, � = 1 77.70 81.01 80.38 73.06 72.88 77.67 76.23 67.35 64.79 70.25 69.36 59.59 78.16 82.22 80.96 72.07
CAPE, � = 0 77.35 81.08 80.50 73.11 73.05 77.59 76.73 67.25 64.98 69.75 69.14 59.01 78.32 81.88 81.00 72.04
CAPE, ✏ = 0 77.71 81.30 80.57 73.35 73.51 77.71 76.72 66.58 65.01 69.93 69.59 59.31 78.02 81.93 80.86 71.73
CAPE 77.14 81.01 80.33 73.43 72.37 77.59 76.60 66.99 63.94 69.65 69.43 59.56 77.37 82.00 81.02 72.12

abspos

3842
21.83 73.57 80.68 78.87 19.99 68.43 76.66 74.00 16.23 60.09 69.37 66.47 24.02 74.17 80.94 78.36

sinpos 7.71 75.55 82.42 80.73 7.16 70.87 78.82 76.21 5.26 62.29 71.32 68.82 8.72 75.57 82.82 80.47
CAPE, � = 1 31.98 75.38 82.55 80.94 28.47 71.00 78.97 75.85 23.51 62.40 71.55 69.02 34.15 76.25 82.77 80.60
CAPE 32.97 74.71 81.78 80.22 29.23 69.50 77.90 75.39 24.21 61.23 70.71 68.53 34.83 75.18 81.96 79.83

nopos+ft
2242

#
3842

46.10 75.74 80.38 78.89 41.42 71.72 76.69 74.16 33.82 62.81 69.04 67.06 47.87 76.58 80.92 78.69
abspos+ft 34.16 78.51 82.35 80.63 29.71 75.02 79.10 76.10 24.45 66.54 71.91 68.79 35.76 79.33 83.15 80.63
sinpos+ft 25.12 77.69 82.77 81.02 22.61 73.35 79.42 76.50 17.77 65.27 72.16 69.10 26.62 78.72 83.33 80.68
CAPE+ft, � = 1 57.80 78.63 82.67 81.28 53.25 74.87 79.19 77.30 44.91 67.07 72.21 70.20 59.69 79.72 83.60 81.59
CAPE+ft 58.46 78.14 82.46 80.94 53.55 73.89 79.40 76.89 44.82 65.30 71.74 69.71 60.05 78.76 83.08 81.53

UniViT, sinpos
mix

78.94 80.82 82.31 82.12 74.64 77.21 78.58 78.29 66.57 69.74 71.48 71.42 79.53 81.67 82.82 82.53
UniViT, CAPE � = 1 79.14 81.26 82.55 82.34 74.85 77.85 79.42 78.76 67.07 69.97 72.03 71.54 79.74 82.09 83.26 82.75
UniViT, CAPE 79.05 81.16 82.28 81.83 74.88 77.50 78.96 77.87 67.08 69.88 72.01 70.99 79.78 82.06 83.10 82.21

abspos-S 2242 74.89 79.46 77.83 64.32 70.89 75.83 73.45 57.40 62.04 68.12 65.86 49.22 76.15 80.54 78.52 63.24
UniViT-S, CAPE, � = 1 mix 76.05 79.00 80.64 80.31 72.57 75.56 77.59 76.66 64.00 67.31 70.25 69.41 78.13 80.44 81.98 81.30

abspos-Ti 2242 64.76 71.91 70.21 56.12 61.03 68.78 66.30 49.62 51.88 59.67 58.09 42.71 67.97 74.13 71.92 55.63
UniViT-Ti, CAPE, � = 1 mix 65.25 69.83 72.44 71.15 62.20 66.40 68.99 67.45 53.35 57.25 61.30 59.72 69.15 72.64 74.93 73.23

Table 4: Top-5 accuracy (%) for ViT and UniViT models evaluated on ImageNet validation set
and ImageNet-v2 test sets with images resized to different resolutions: 1602, 2242, 3842 and 6722.
Models trained on 2242 and further fine-tuned on 3842 resolution are marked with “+ft”. “-S” and
“-Ti” refer to small and tiny architectures [16], respectively.

Model Train ImageNet ImageNet-v2-a ImageNet-v2-b ImageNet-v2-c

Res. 1602 2242 3842 6722 1602 2242 3842 6722 1602 2242 3842 6722 1602 2242 3842 6722

nopos

1602

93.20 93.99 92.43 83.69 91.71 92.64 90.22 77.75 84.88 86.39 83.96 71.52 94.60 95.02 93.09 82.41
abspos 94.06 94.37 91.60 81.26 92.66 93.14 88.97 75.19 86.07 86.76 82.27 67.75 95.30 95.31 92.27 80.53
sinpos 94.26 91.80 86.41 68.55 93.20 90.08 82.75 61.43 86.65 83.28 75.62 54.14 95.70 93.24 87.03 67.55
CAPE, � = 1 94.19 94.78 92.92 84.57 92.84 93.46 90.55 79.44 86.87 87.75 84.62 72.17 95.44 95.80 93.85 84.43
CAPE 94.15 94.80 93.03 85.32 92.95 93.65 90.82 80.48 86.68 87.86 85.22 73.47 95.27 95.72 94.06 84.92

nopos

2242

92.14 94.22 94.11 90.89 90.17 92.79 92.73 87.58 82.72 86.92 87.27 81.61 93.48 95.19 94.88 90.91
abspos 93.45 95.26 94.71 90.49 91.80 93.91 93.24 87.13 85.34 88.52 87.77 80.23 94.52 96.17 95.43 90.76
sinpos 93.29 95.44 94.52 89.77 91.48 94.22 92.84 85.33 84.52 88.75 87.22 78.37 94.48 96.46 95.23 89.03
CAPE, � = 1,� = 0 93.29 95.21 94.73 90.56 91.47 93.73 92.91 87.42 84.80 88.26 87.69 80.74 94.43 96.14 95.37 90.60
CAPE, � = 1, ✏ = 0 93.37 95.42 94.97 90.72 91.46 94.29 93.26 86.82 85.26 88.87 88.15 80.26 94.47 96.22 95.61 90.34
CAPE, � = 1 93.45 95.45 95.09 91.50 91.69 94.11 93.64 87.84 85.61 88.87 88.52 81.79 94.63 96.18 95.91 91.60
CAPE, � = 0 93.19 95.42 95.00 91.30 91.94 94.38 93.75 88.13 85.13 88.97 88.52 82.01 94.63 96.27 96.01 91.40
CAPE, ✏ = 0 93.26 95.32 94.94 91.25 91.92 94.24 93.63 87.80 84.88 88.64 88.26 81.10 94.65 96.18 95.51 90.99
CAPE 93.18 95.18 94.94 91.57 91.64 94.23 93.77 88.56 85.18 88.31 88.33 82.04 94.49 96.39 95.94 91.85

abspos

3842
38.45 90.69 94.99 93.89 35.76 87.99 93.39 91.93 30.10 80.81 88.09 86.19 40.91 91.60 95.58 94.49

sinpos 15.86 91.88 95.68 94.79 14.71 89.88 94.50 93.11 11.98 82.13 89.54 87.71 17.18 92.82 96.29 95.23
CAPE, � = 1 51.03 91.96 95.83 94.99 48.04 89.77 94.48 93.02 40.55 82.73 89.58 88.14 54.47 93.07 96.43 95.30
CAPE 51.82 91.29 95.40 94.53 47.32 88.62 94.07 92.52 40.21 81.29 88.75 87.64 53.95 92.16 96.09 94.94

nopos+ft
2242

#
3842

68.45 92.51 95.12 94.25 63.71 90.61 93.86 92.67 55.07 83.52 88.47 87.18 70.52 93.72 95.70 94.83
abspos+ft 54.06 93.96 95.96 95.11 49.48 92.58 95.11 93.60 42.31 86.42 90.19 88.39 56.36 95.12 96.85 95.80
sinpos+ft 42.80 93.57 96.08 95.19 38.91 91.85 95.08 93.80 33.17 85.54 90.03 88.28 44.75 94.76 96.98 95.68
CAPE+ft, � = 1 79.26 94.15 96.14 95.47 75.63 92.86 95.04 94.02 66.43 86.84 90.62 89.13 81.36 95.39 96.94 95.96
CAPE+ft 79.99 93.82 96.06 95.32 76.09 92.31 95.24 94.16 67.00 85.91 90.04 88.75 81.70 95.02 96.97 96.09

UniViT, sinpos
mix

94.22 95.40 96.04 95.96 92.93 94.28 94.93 94.76 86.55 88.80 89.98 89.93 95.28 96.31 96.73 96.65
UniVit, CAPE, � = 1 94.39 95.56 96.18 96.02 93.02 94.48 95.23 95.19 86.72 88.91 90.30 90.33 95.29 96.40 97.00 96.84
UniViT, CAPE 94.35 95.44 96.04 95.72 92.92 94.36 95.11 94.69 86.76 89.18 90.45 89.68 95.50 96.42 96.87 96.37

abspos-S 2242 92.13 94.69 94.09 85.75 90.78 93.74 92.97 81.28 83.44 87.62 86.72 73.72 93.82 95.95 95.30 85.73
UniViT-S, CAPE, � = 1 mix 92.98 94.64 95.53 95.35 92.08 93.98 95.03 94.65 85.15 87.92 89.64 89.02 94.88 96.00 96.72 96.37

abspos-Ti 2242 86.54 90.93 90.16 80.80 85.59 90.13 88.48 76.10 76.50 82.39 81.41 68.03 89.74 93.25 91.81 81.00
UniViT-Ti, CAPE, � = 1 mix 86.94 89.74 91.33 90.80 86.03 88.79 90.35 89.25 77.33 80.97 83.42 82.41 90.17 92.31 93.44 92.37

17

For all ViT/UniViT models presented in Figures 2 and 3, and in the ablation study below, we report
their top-1 and top-5 accuracies in Tables 3 and 4, respectively, evaluated on the ImageNet validation
and ImageNet-v2 test sets and on images with different resolutions.

We train models in Flashlight framework6 where ViT/DeiT [47] training is reproduced following an
original implementation:7 initialization is set to the truncated normal distribution, Rand-Augment [10],
Mixup [56] and Cutmix [54], random erasing [58] and repeated augmentation [25, 4] are used as data
augmentations; training is done with AdamW optimizer for 300 epochs. All models use learnable
absolute positional embedding for the class token. We train ViT (UniViT) models on 16 GPUs, V100
32GB, with mixed-precision and batch size 64 per GPU for 19-56h (37h) depending on the input
resolution (3842 resolution is trained on 32 GPUs with batch size 32 per GPU).

In Figure 4 the throughput is measured as the number of images that can be processed per second on
single 16GB V100 GPU following the benchmarking method from [47]: for each image resolution
we pass the largest possible batch size and calculate the average time over 30 runs to process that
batch.

B.2 Finding the Best Resolution for UniViT Evaluation

In this section we describe an evaluation procedure that improves UniViT with CAPE performance
by resizing input images to an optimal resolution. We split ImageNet validation images into 8 bins,
according to their size s = min(h,w), where h and w are image height and width, respectively:
s 2 [54, 100], s 2 [101, 150], s 2 [151, 200], s 2 [201, 250], s 2 [251, 300], s 2 [301, 350],
s 2 [351, 384], s 2 [385, inf]. For each bin we consider several resizing strategies: i) resize all
images in a bin either to 1602, or 2242, or 3842; ii) resize all images to the minimum s value in a bin,
Min; iii) resize all images to the maximum s value in a bin, Max; iv) use image’s original size but still
perform a central rectangular crop in a similar manner as standard evaluation is done for ImageNet,
Original; v) use image’s original size, Original (no crop). For the bin with high resolution images
[385, inf] we use 5002 as the maximum resize value and apply neither iv) nor v) strategies as there
are images with s > 5000 px. We report top-1 accuracy for this evaluation procedure with different
strategies per each bin in Table 5: for the best strategy in each bin (table row) we report accuracy (%)
while for other strategies in the same bin we report absolute drop in accuracy compared to the best
value. Best values are additionally marked in bold.

Table 5: UniViT with CAPE evaluation on ImageNet validation set with different strategies on input
resizing. Images are split into 8 bins by minimum spatial size. We report best top-1 accuracy (%) in
each row (bold) and the drop in accuracy compared to this best accuracy for other columns.

Images Min Res. Max Res. 1602 2242 3842 Min Max Original Original (no crop)

146 54 100 84.25 -0.69 -0.69 -19.86 -1.37 -6.16 -8.22
221 101 150 -0.81 -1.36 -0.45 -5.43 -2.71 -5.43 74.66

372 151 200 -1.61 -1.08 -2.42 -3.23 -2.42 78.49 -1.61
538 201 250 -3.16 -1.30 -1.49 -2.60 -1.86 81.97 -2.42
1090 251 300 -4.40 -1.47 -0.28 -1.56 -1.01 79.72 -0.37
8496 301 350 -3.83 -1.88 -0.48 -1.39 -1.08 83.57 -0.48

24538 351 384 -4.14 -1.88 -0.43 -0.79 -0.43 82.10 -0.13
14599 385 - -3.30 -1.25 -0.14 -0.13 84.46 - -

B.3 Visualization of Positional Embeddings

We visualize positional embeddings (excluding class token) for ViT models trained on 2242 input
resolution in Figure 9: for each positional embedding we plot every 20th among 768 components
(each row corresponds to a particular component) and visualize its values with the image of shape
(r/16)2 where r2 is an input image resolution. We consider input resolutions 1602, 2242 and 3842

shown as left, middle and right sub-columns for each positional embedding in Figure 9.

6https://github.com/flashlight/flashlight
7https://github.com/facebookresearch/deit

18

Figure 9: Visualization of positional embeddings for ViT models trained on 2242 resolution: abspos
(left), sinpos (middle) and CAPE (right). Each column consists of 3 sub-columns corresponding to
input resolutions 1602, 2242 and 3842. Only some components (each 20th out of 768) are shown.
When sinpos applied to low-resolution images, spacial aliasing is visible in latest components of
embeddings. CAPE’s augmentations destruct this patterns and prevent model from over-fitting.

B.4 Ablations

Both sinpos and CAPE first re-scale patch positions (x, y) to the [�1, 1] interval independently
from the image resolution. We study if an alternative re-scaling of patch positions during inference
improves performance on resolutions other than training ones. For ViT models trained with either
sinpos or CAPE on 2242 resolution we perform evaluation on r2 = 1602 and r2 = 3842 resolutions

19

by re-scaling (x, y) to [��, �]: � is set to either 1 (baseline strategy), r/224, or
p

(r/224). Results
of this comparison, Table 6, are consistent across models and suggest that for applying to smaller
resolution (1602) decreasing scale � to match density of patches on a plane to train-time is beneficial;
however, opposite effect is observed when model is applied to higher resolution (3842) inputs,
potentially because distances between patch positions in this case were not observed at training time.
For simplicity we use re-scaling to [�1, 1] in the rest of our experiments.

Table 6: Ablation study on re-scaling positions to the range [��, �] for ViT models trained on 2242

images with sinpos or CAPE. We report top-1 accuracy (%) on ImageNet validation set evaluated on
images scaled to 1602 and 3842 resolutions.

Model � Top-1, r = 160 Top-1, r = 384

sinpos
r/224 77.89 72.01p
r/224 77.11 76.94
1 77.15 79.72

CAPE, � = 1
r/224 77.96 80.18p
r/224 77.80 80.51
1 77.70 80.38

CAPE
r/224 77.28 80.20p
r/224 77.18 80.28
1 77.14 80.33

In Figure 10, we compare sinpos and CAPE for ViT models in more detail. Overall, CAPE performs
better or similar to sinpos on the training resolution while it significantly outperforms sinpos on
other resolutions. In Figure 11 we study the importance of scale � for CAPE in ViT models. Scale
�max > 1 slightly improves generalization for higher and lower resolutions.

Figure 10: Comparison of top-1 accuracy between sinpos and CAPE trained on either 1602, or 2242,
or 3842 resolutions and evaluated across the board. Models trained on 2242 resolution and further
fine-tuned on 3842 resolution are marked with “+ft”.

In Figure 12 we study the importance of global � and local ✏ shifts for CAPE in ViT models
trained on 2242 resolution. On higher resolutions, 3842 and 6722, models with both shifts (solid)
perform similar or better than models trained with either local (dotted-dashed) or global (dashed)
shifts. Overall, only one of the shifts, global or local, can be used while the most important CAPE’s
parameter is the global scale. On the other hand, any combination of augmentations in CAPE clearly
outperforms sinpos on resolutions different from training one.

In Figure 13 we study if CAPE’s augmentations are beneficial for UniViT model, compared to using
UniViT with sinpos. Overall sinpos performs worst among UniViT models, while outperforming
UniViT with CAPE and global scaling on 6722 resolution. UniViT with CAPE and no global scaling
(�max = 1) performs the best on all resolutions, suggesting that variability in training resolutions
provides a sufficient base for generalization to higher resolutions.

20

Figure 11: Comparison of top-1 accuracy for CAPE with �max = 1 (dashed) and �max = 1.4 (solid)
trained on either 1602, or 2242, or 3842 resolutions and evaluated across the board. Models trained
on 2242 resolution and further fine-tuned on 3842 resolution are marked with “+ft”.

Figure 12: Comparison of top-1 accuracy between sinpos and CAPE with different configurations on
global, local shifts and global scaling trained on 2242 resolution.

Figure 13: Comparison of top-1 accuracy between sinpos and CAPE (with and without global scaling)
trained on the mixture of resolutions {1282, 1602, 1922, 2242, 2562, 2882, 3202}.

21

C Automatic Speech Recognition Experiments

C.1 Data

For WSJ data we consider the standard subsets si284, nov93dev and nov92 for training, validation
and test, respectively. We remove any punctuation tokens from si284 transcriptions before training.
TED-LIUM v3 dataset is based on TED conference videos. We use the last edition of the training set
(v3); validation and test sets are kept consistent (and thus numbers are comparable) with the earlier
releases. We follow the Kaldi recipe [39] for data preparation. In Tables 7 and 8 we present statistics
of the datasets used in Section 5.2. One could notice that TED-LIUM v3 validation and test sets have
samples with significantly longer duration and larger number of words in their transcriptions, which
makes these sets the most challenging among other public data.

Table 7: Statistics on datasets: sampling frequency, duration (in hours), and speech type.

Data kHz Train (h) Valid (h) Test (h) Speech

WSJ 16 81.5 1.1 0.7 read
TL 16 452 1.6 2.6 oratory
LS 16 - - 5.4+5.4 read
RV 16 - - 18.8+19.5 diverse

Table 8: Statistics on datasets: mean sample duration (in seconds) and mean sample transcription
length (in words).

Data Train µ± � (s) Valid µ± � (s) Test µ± � (s) Train µ± � (wrd) Valid µ± � (wrd) Test µ± � (wrd)

WSJ 7.8± 2.9 7.8± 2.9 7.6± 2.5 17± 7 16± 7 17± 6
TL 6± 3 11.3± 5.7 8.1± 4.3 17± 10 35± 20 24± 15
LS - - 7± 4.8 - - 19± 13

C.2 Acoustic Model Training

For all experiments we compute 80 log-mel spectrogram features for a 25ms sliding window, strided
by 10ms (unless we explicitly vary STFT hop distance). All features are normalized to have zero
mean and unit variance per input sequence before feeding into the neural network.

The self-attention dimension is 768 and the feed-forward network (FFN) dimension is 3072 in each
Transformer layer. We use dropout 0.3 after the convolution layer; for all Transformer layers, we use
dropout on the self-attention and on the FFN, and layer drop [19], dropping entire layers at the FFN
level. Transformer dropout and layer drop values are set to be 0.4 for WSJ and 0.1 for TED-LIUM
v3 training.

SpecAugment [37] is used for data augmentation during training: there are two frequency masks, and
ten time masks with maximum time mask ratio of p = 0.1, the maximum frequency bands masked by
one frequency mask is 30, and the maximum frames masked by the time mask is 50; time warping is
not used. We use the Adagrad optimizer [17]. All models are trained with dynamic batching (average
batch size is 240s/GPU) and mixed-precision computations on 16 GPUs (Volta 32GB) for 1 day on
WSJ and 3-4 days on TED-LIUM v3. All ASR experiments are done within Flashlight framework on
top of the publicly available training configurations8 for baselines with relpos from [30].

C.3 Padding-free ASR with CAPE and Variable STFT Hop Distance

We have implemented pipeline where padding is no longer used to form a batch from samples with
different input duration. For each audio in the batch short-time Fourier Transform (STFT) hop distance
H is set in a way that output number of frames is the same (except rounding) as for hypothetical
audio which has duration equal to the mean over batch and is processed with H = 10ms. Because

8https://github.com/flashlight/wav�letter/tree/master/recipes/rasr

22

Figure 14: Hop distance distribution for WSJ (left) and TED-LIUM v3 (right) data.

the hop distance is an integer number, number of frames after STFT is matched only approximately
within a batch, so we reduce the number of frames in each sample to match the shortest sample in the
batch by randomly and uniformly skipping frames. To have low variation of samples duration in a
batch (which implies limited vatiation in H) the following shuffling strategy is performed for every
epoch: i) compute perturbed sample duration by multiplying original sample duration by a random
number from U(0.85, 1.15); ii) sort samples by their perturbed duration; iii) batches are formed by
grouping sequential samples. Example of hop distance distribution after proposed shuffling strategy
for WSJ and TL data is shown in Figure 14. For both sinpos and CAPE embeddings we train models
with this new pipeline and observe mostly lower WER and improved generalization, especially on TL
test and RV data which are the most challenging among evaluation sets, Figures 15 and 16.9

Figure 15: Word error rate comparison for models trained on WSJ data with sinpos or CAPE (� = 1)
with classical pipeline (solid) or with variable STFT hop distance (dashed).

Figure 16: Word error rate comparison for models trained on TED-LIUM v3 data with sinpos or
CAPE (� = 1) with classical pipeline (solid) or with variable STFT hop distance (dashed).

9For all models evaluation the batch size is set to 1 and H = 10ms, thus padding never affects the performance
on validation and test sets.

23

As discussed in Section 5.2, STFT hop distance can be viewed as image resolution in vision and
padding-free ASR – as UniViT. By adjusting hop distance during inference for padding-free ASR
we can achieve higher throughput with similar recognition quality, see Figure 17. Moreover, it is
robust to STFT hop distance variation having almost the same WER for H 2 [5, 12]ms and less
performance degradation for H > 12ms.

Figure 17: Dependence between throughput and word error rate on TED-LIUM v3 test set for models
trained with CAPE (� = 1) on TED-LIUM v3 data: with classical pipeline (orange) and with variable
STFT hop distance (purple). Different throughput values correspond to different STFT hop distances
in ms (crosses) used during evaluation.

C.4 Ablations

First, we study dependence between the global shift value �max and model’s performance and
generalization abilities to the long duration. Varying the global shift we observe in Figure 18 that
larger global shift leads to a better generalization on longer audios, so that CAPE with 30-60s global
shifts is able to process 45s audio with the same performance as 10s on RV data.

Figure 18: Word error rate comparison for models trained on TED-LIUM v3 data with CAPE and
different global shifts which cover 15, 30 or 60s. The global scale is set to �max = 1.

Secondly, we study the necessity of the local shift in CAPE. In Figure 19 we observe that local shift
absence hurts the performance and generalization across the board.

Thirdly, we study the necessity of the global scaling in CAPE. In Figure 20 we observe that for
WSJ models global scaling hurts a bit performance on public data while performs and generalizes
better for RV data. In contrast, for TL models we observe in Figure 21 that overall the global scaling
improves performance on public data while hurts performance on RV data. Thus, the global scaling
should be tuned separately depending on the data type.

As an ablation study we perform additional experiments with relpos. First, we restrict relpos context
to small duration, 6s, to prevent over-fitting to relative positions: relpos 6s outperforms relpos on both
public and RV data for both models trained on WSJ and TL having significantly better generalization
to long audio durations. Relpos 6s is performing similar to abspos for duration > 20s while CAPE still

24

Figure 19: Word error rate comparison for CAPE models trained on WSJ data with global shift only
(solid) or with global and local shifts together (dashed). The global scale is set to be �max = 1.

Figure 20: Word error rate comparison for models trained on WSJ data with different positional
embeddings. Relpos first layer refers to a model where relpos is used only in the first Transformer
layer with 27.6s context to the left/right and no other positional embeddings are used.

Figure 21: Word error rate comparison for models trained on TED-LIUM v3 data with different
positional embeddings. Relpos first layer refers to a model where relpos is used only in the first
Transformer layer with 27.6s context to the left/right and no other positional embeddings are used.

outperforms relpos 6s on > 20s, Figures 20 and 21. Independently, we also tried sinusoidal relative
positional embedding [11] but it performed worse than learnable relative positional embedding.

Second, having in mind that nopos performs well for a model trained on TL and CAPE’s ability
to learn spatial relations using a single layer, we wonder if relpos should be used only in the
first Transformer layer (in literature relpos, when used, is applied in every attention layer). We
modify nopos model by injecting relpos embedding (27.6s context to the right/left) only in the first
Transformer layer: no any other Transformer layers use any positional embeddings, Figures 20 and 21.

25

This relpos first layer model behaves surprisingly well: for a WSJ model it outperforms CAPE on
both public and RV data; for a TL model it behaves similar to CAPE on public data and a bit better on
RV data. Both CAPE and relpos first layer have similar mostly uniform performance profiles across
different audio durations on RV data. This observation asks for reconsidering the standard usage of
positional embedding for CTC-based models in speech recognition.

C.5 No Positional Embedding Discussion

As demonstrated above in Figure 6, nopos performs similar to different positional embeddings on
both public and RV data while having reliable generalization to the long audio fragments. We figured
out that the key components of this phenomenon and nopos success are i) enough training data; ii)
sufficient model capacity and iii) CTC loss.

For the first point we saw that nopos model trained on WSJ, a 5x smaller dataset than TL, performs
poorly having 45-50% WER even on in-domain data. For the second point we perform an additional
ablation on WSJ data by decreasing dropout and layer drop in each Transformer layer from 0.4
to 0.1: with increased model capacity nopos reduces the WER by 30% and gets closer to other
positional embeddings, Figure 22. For the third point we perform another ablation by comparing
with sequence-to-sequence (seq2seq) training: we use exactly the same encoder HLe (with various
positional embeddings) but replace last linear layer and CTC loss with the decoder, encoder-decoder
attention, and cross-entropy loss where the probability distribution of the transcription is factorized as

p(y1, ..., yn) =
nY

i=1

p(yi | y0, ..., yi�1,H
Le)

where y0 is a special symbol indicating the beginning of the transcription. The decoder is a stack of 6
Transformer layers with encoding dimension 256, learnable relative positional embedding with 9.6s
left-only context and 4 attention heads. Dropout and layer drop in the decoder layers are set to 0.2.

Figure 22: Word error rate comparison for models trained on WSJ data with different positional
embeddings. Baseline models, nopos and CAPE, use 0.4 dropout and 0.4 layer drop in every
Transformer layer, while nopos, dropout=0.1 uses 0.1 for both values.

In Figure 23 we show comparison between CTC and seq2seq models trained on TL with either
nopos or relpos in the encoder.10 Seq2seq nopos performs significantly worse than seq2seq relpos
and moreover has higher WER variation on validation data. This result is opposite to the nopos
CTC-based training, suggesting that CTC loss is able to train with enough data or model capacity and
no positions provided.

These observations only partially overlap with known results: for seq2seq training it was shown
recently that relative positions can be modeled via a deep stack of convolutional layers in the
encoder [33] or via convolutions inserted directly in each encoder’s Transformer layer [57]. In
contrast to the listed works, our encoder has vanilla Transformer layers and only one convolutional
layer at the beginning. Thus, nopos model has very limited context to model relative positions, which
affects seq2seq training (it has to “locate” corresponding timepoint in audio with attention) more than

10Encoder remains the same for both CTC and seq2seq models; for seq2seq models decoder is also identical.

26

Figure 23: Word error comparison for CTC and seq2seq models trained on TED-LIUM v3 data with-
out any positional embedding in the encoder (nopos) or with learnable relative positional embedding
in every encoder-Transformer layer (relpos).

CTC-based, which uses explicit time ordering. In line with this interpretation, for the hybrid ASR
systems dropping positional information does not drive to significant deterioration of quality [51].

D Machine Translation

D.1 Technical Details

For machine translation experiments we have implemented CAPE within ADMIN’s [31, 32] open-
sourced code11 which is based on Fairseq12 toolkit [35]. We precisely follow open-sourced recipes
for ADMIN with sinpos13 including data preparation step; the only change we introduce is usage of
different positional embeddings. Besides, we do not perform model averaging as was done in [31, 32].

All English-German (DE) models are trained for 150 epochs on 4 GPUs (Volta V100 16GB) for 30h
(6l-6L) or 70h (18L-18L). English-French (FR) 6L-6L models are trained for 75 epochs on 8 GPUs
(Volta V100 16GB) for 60h. Each configuration is trained starting from 3 different random seeds.

As mentioned in Section 5.3 we scale positions of source language by a factor ↵ computed based
on train data statistics only as ↵ = # tokens in target corpus

tokens in source corpus 2 R: it is set to ↵ = 1.0337 for DE and ↵ =
1.1632 for FR. For all machine translation experiments with CAPE we skip the mean-normalization
step to have source and target sentences aligned at the first position and prepend “begin of sentence”
in the source sentences to give a hint of first position for the model’s decoder (as after global shift
there is no way to determine the first position from its positional embedding anymore). Additionally,
we do not apply any global scaling. For the global shift we sweep values 5, 10 and 50 while the local
shift is set to maximum to preserve positions order, ✏max = 0.5.

Table 9: Slowdown for relpos / no relpos. (Top) 1000 context left/right, (Bottom) 100 context
left/right. Run on V-100 GB32, 100 runs, 10 runs warmup, batch 50, emb 768, head 8.

Model FP16 Len-10 FP32 Len-10 FP16 Len-100 FP32 Len-100 FP16 Len-1000 FP32 Len-1000

Transformer layer 2.1 2.3 3.3 2.3 2.2 1.7

Encoder 2.2 2.2 2.6 1.7 2.0 1.6

Decoder 1.8 1.7 1.9 1.4 1.6 1.4

Transformer layer 2.1 2.1 1.9 1.2 1.4 1.2

Encoder 2.3 2.4 1.5 1.1 1.4 1.2

Decoder 1.7 1.7 1.2 1.1 1.2 1.1

11https://github.com/LiyuanLucasLiu/Transformer-Clinic
12https://github.com/pytorch/fairseq
13https://github.com/LiyuanLucasLiu/Transformer-Clinic/blob/master/nmt-experiments: wmt��_en-de.md and wmt��_en-fr.md

27

D.2 Computational Cost

For machine translation experiments we estimate the forward and backward time slowdown when
learnable relative positional embedding is used in Transformer layer compared to vanilla Transformer
layer. Besides we evaluate slowdown for entire encoder and decoder. Forward and backward time
benchmarking is done in Fairseq (PyTorch) for different input sequences length (10, 100, 1000),
for different context size of relative positional embedding (100 and 1000 tokens to left/right) in
full-precision (fp32) and half-precision (fp16) floating-point computations. We use Volta V-100
32GB GPU and report slowdown for average time of forward and backward passes measured across
100 updates with 10 updates of warmup, see Table 9. The batch size is set to 50, attention heads are
set to 8 and embedding dimension is 768 (typical use case), there are 6 Transformer layers in encoder
and decoder. Results in Table 9 demonstrate that relative positional embedding indeed has additional
computational cost which is even more pronounced with mixed-precision computations.

28

