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ABSTRACT

A major challenge in modern machine learning is theoretically understanding the
generalization properties of overparameterized models. Many existing tools rely
on uniform convergence (UC), a property that, when it holds, guarantees that the
test loss will be close to the training loss, uniformly over a class of candidate
models. Nagarajan & Kolter (2019b) show that in certain simple linear and neural-
network settings, any uniform convergence bound will be vacuous, leaving open
the question of how to prove generalization in settings where UC fails. Our main
contribution is proving novel generalization bounds in two such settings, one linear,
and one non-linear. We study the linear classification setting of Nagarajan & Kolter
(2019b), and a quadratic ground truth function learned via a two-layer neural
network in the non-linear regime. We prove a new type of margin bound showing
that above a certain signal-to-noise threshold, any near-max-margin classifier will
achieve almost no test loss in these two settings. Our results show that near-max-
margin is important: while any model that achieves at least a (1− ϵ)-fraction of
the max-margin generalizes well, a classifier achieving half of the max-margin
may fail terribly. Our analysis provides insight on why memorization can coexist
with generalization: we show that in this challenging regime where generalization
occurs but UC fails, near-max-margin classifiers contain both some generalizable
components and some overfitting components that memorize the data. The presence
of the overfitting components is enough to preclude UC, but the near-extremal
margin guarantees that sufficient generalizable components are present.

1 INTRODUCTION

A central challenge of machine learning theory is understanding the generalization of overparame-
terized models. While in many real-world settings deep networks achieve low test loss, their high
capacity makes theoretical analysis with classical tools difficult, or sometimes impossible (Zhang
et al., 2017; Nagarajan & Kolter, 2019b). Most classical theoretical tools are based on uniform
convergence (UC), a property that, when it holds, guarantees that the test loss will be close to the
training loss, uniformly over a class of candidate models. Many generalization bounds for neural
networks are built on this property, e.g. Neyshabur et al. (2015; 2017b; 2018); Harvey et al. (2017);
Golowich et al. (2018).

The seminal work of Nagarajan & Kolter (2019b) gives theoretical and empirical evidence that UC
cannot hold in natural overparameterized linear and neural network settings. The impossibility results
of Nagarajan and Kolter are strong: they rule out even UC on the smallest reasonable algorithm-
dependent family of models, that is, any possible models output by learning algorithm on typical
datasets. In particular, they prove that in an overparameterized linear classification problem, models
found by gradient descent will achieve small test loss, but any UC bound over these models will be
vacuous. In a two-layer neural network setting, Nagarajan & Kolter (2019b) empirically demonstrate
the same phenomenon for the 0/1 loss.

Many margin-based generalization bounds do not technically fit into the category of UC bounds
defined by Nagarajan and Kolter, but still may be intrinsically limited for similar reasons. Classical
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Figure 1: Thresholds for Uniform Convergence and Generalization.

margin-based generalization guarantees bounds (see eg. Shalev-Shwartz & Ben-David (2014);
Kakade et al. (2009)) and related margin bounds for neural networks (Wei & Ma, 2019a; 2020;
Bartlett et al., 2017; Golowich et al., 2018) scale inversely polynomially in the margin size, and are
typically proved via uniform convergence on a surrogate loss (eg. the hinge loss or ramp loss) that
upper bounds the 0/1 misclassification loss. Nagarajan and Kolter’s results show that any UC bound
on the ramp loss is vacuous in an overparameterized linear setting, suggesting (though not proving)
that classical margin bounds may not be useful. Muthukumar et al. (2021) shows empirically that
such margin bounds are vacuous in a broader linear settings. In light of this, it is very important to
develop theoretical tools to analyze generalization in settings where uniform convergence cannot
yield meaningful bounds.

In this paper we establish novel margin-based generalization bounds in regimes where UC provably
fails. These bounds guarantee generalization in the extremal case where the model has a near-
maximal margin, and thus we call them extremal margin bounds.Indeed, near max-margin solutions
are achievable by minimizing the logistic loss with weak ℓ2-regularization (Wei et al., 2019), and
minimizing the unregularized logistic loss with gradient descent converges to a stationary points of
the max-margin objective (Lyu & Li, 2019; Lyu et al., 2021). In linear settings, SGD converges to the
max-margin (Nacson et al., 2019).

Our results consider two settings, the linear setting of Nagarajan & Kolter (2019b), and a commonly
studied quadratic problem learned on by a two-layer neural network (Wei et al., 2019; Frei et al.,
2022b). In Theorems 3.1 and 3.2, we prove that above a certain signal-to-noise threshold κgen, near-
max-margin solutions will generalize. Below this threshold, max-margin solutions may not generalize
(Proposition 3.3). Below a second higher threshold, κuc, uniform convergence fails (Proposition 3.4).
In Figure 1 we illustrate these three regions; the main significance of our results is in the challenging
middle region between κgen and κuc where generalization occurs, but UC fails.

Additionally in this regime where UC fails, we show that classical margin bounds can only yield
loose guarantees, even for the max-margin solution (Proposition 3.5 and 3.6). We prove this by
showing the existence of models that achieve a large but non-near-max-margin (e.g., half the max-
margin), but do not generalize at all. This phase transition between good-margin and near-max-margin
cannot be captured by classical margin bounds where the generalization guarantee decays inversely
polynomially in the margin. Our extremal margin bounds are fundamentally different from classical
margin bounds and are not based on uniform convergence.

Prior works have also studied the challenging regime where uniform convergence does not work. In a
linear regression setting, Zhou et al. (2020) and Koehler et al. (2021) show that the test loss can be
uniformly bounded for all low-norm solutions that perfectly fit the data (this uses the data-dependent
interpolation condition to improve upon UC bounds); nevertheless, Yang et al. (2021) shows that
such bounds are still loose on the min-norm solution. Negrea et al. (2020) suggests an alternative
framework based on uniform convergence over a less complex family of surrogate models; they use
this technique to show generalization in a linear setting and in another high-dimensional problem
amenable to analysis. To our knowledge, our results are the first instance of theoretically proving
generalization in a neural network setting (that is not in the NTK regime) where UC provably fails.

We leverage near-max-margins in a unified way for both the linear and nonlinear settings, and we hope
that this approach will be useful more broadly in overparameterized settings. In the challenging regime
of generalization without UC, good learned models contain some generalizable signal components
and some overfitting components that memorize the data. Our main technique is to show that any
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near max-margin solution has to contain both signal components and overfitting components. The
overfitting component causes UC to fail, but fortunately, has a reduced influence on a random test
example, whereas the signal component has a similar influence on training and test examples.

1.1 ADDITIONAL RELATED WORK

A large body of work highlights challenges in using classical statistical theory to explain generalization
in deep learning. Experimental results (Zhang et al., 2017; Neyshabur et al., 2017a) point out that
despite being large in traditional capacity measures such as Rademacher complexities, deep networks
still generalize well, and new explanations are needed to understand this behavior. Belkin et al. (2018)
show that similar challenges hold in kernel methods. Beyond the work of Nagarajan & Kolter (2019b),
Bartlett & Long (2021) prove that in a linear interpolation setting, model-dependent generalization
bounds fail for the min-norm solution. Koren et al. (2022) show that SGD can exhibit a benign
underfitting phenomenon where the test loss is small but empirical loss is large.

One related body of work has focused on characterizing “benign overfitting”, where the model overfits
to noise in labels of the training data but still attains good test performance. Our setting differs from
benign overfitting because we study models that overfit prohibitively enough to preclude UC even
with clean data. For models that overfit to noise, (i) it still may be possible to for algorithm-dependent
notions of a UC bound to explain generalization on clean data, and (ii) if the overfitting is avoided with
regularization, UC bounds may also be possible. Most of the results in this area concern linear models:
Bartlett et al. (2020) analyze benign overfitting in regression problems by leveraging a closed form
expression for the min-norm solution. Muthukumar et al. (2021); Shamir (2022); Cao et al. (2021);
Wang & Thrampoulidis (2020); Chatterji & Long (2021) and Wang et al. (2021) study classification
settings. The setting of Chatterji & Long (2021) is particularly similar to ours since it considers
the max-margin solution under a Gaussians mixture. The works of Muthukumar et al. (2020) and
Shamir (2022) reveal that is often possible to have benign overfitting in classification, whereas in
regression for the same covariate distribution, the overfitting would imply poor generalization. Also
closely related to our work on linear classification is the work of Montanari et al. (2019), which
asymptotically characterizes the generalization of the max-margin solution as n, d → ∞. Benign
overfitting in neural networks has been shown in several simple settings. Frei et al. (2022a) analyzes
two-layer neural networks trained by gradient descent on linearly-separable data. Cao et al. (2022)
studies benign overfitting for a two-layer simplified convolutional network. Their techniques involve
decomposing the output of the network into a sum of two terms, one involving the signal feature, and
one involving the noise feature. Our techniques are very different because this decomposition is not
possible for a fully connected 2-layer neural network.

More broadly, a variety of new generalization bounds have been derived in hopes of explaining
generalization in deep learning. While none of these bounds have been explicitly proven to succeed
in regimes where UC fails, they leverage additional properties of the training data or the optimization
process and thus are not directly susceptible to the critiques of Nagarajan & Kolter (2019b). Among
these are works that leverage properties such as Lipschitzness of the model on the training data (Arora
et al., 2018; Nagarajan & Kolter, 2019a; Wei & Ma, 2019a;b), use algorithmic stability (Mou et al.,
2018; Li et al., 2019a; Chatterjee & Zielinski, 2022), or information-theoretic perspectives (Negrea
et al., 2019; Haghifam et al., 2021).

Finally, a body of work seeks to draw connections between optimization and generalization in deep
learning by studying implicit regularization effects of the optimization algorithm (see e.g. (Gunasekar
et al., 2017; Li et al., 2017; Gunasekar et al., 2018a;b; Woodworth et al., 2020; Damian et al., 2021;
HaoChen et al., 2020; Li et al., 2019b; Wei et al., 2020) and related references). Most relevent in this
literature is the aforementioned work connecting gradient descent and max-margin solutions.

2 PRELIMINARIES

Our work achieves results in two settings. The first is a linear setting previously studied by Nagarajan
& Kolter (2019b) where both the ground truth and the trained model are linear. In the second nonlinear
setting, studied before by Wei et al. (2019); Frei et al. (2022b), the ground truth is quadratic, and
the trained model is a two-layer neural network. In both settings, the data is drawn from a product
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distribution on features involved in the ground truth labeling function, and “junk” features orthogonal
to the signal. We formalize the two settings below.

Linear setting
▶ Data Distribution. Fix some ground truth unit vector direction µ ∈ Rd. Let x = z + ξ, where
z ∼ Uniform({µ,−µ}) and ξ is uniform on the sphere of radius

√
d− 1σ in d − 1 dimensions,

orthogonal to the direction µ. Let y = µTx, such that y = 1 with probability 1/2 and −1 with
probability 1/2. We denote this distribution of (x, y) on Rd × {−1, 1} by Dµ,σ,d.
▶ Model. We learn a model w ∈ Rd that predicts ŷ = sign(fw(x)) where fw(x) = wTx.

Setting for Two-Layer Neural Network Model with Quadratic “XOR” Ground Truth
▶ Data Distribution. Fix some orthogonal ground truth unit vector directions µ1 and µ2 in Rd.
Let x = z + ξ, where z ∼ Uniform({µ1,−µ1, µ2,−µ2}) and ξ is uniform on the sphere of
radius

√
d− 2σ in d − 2 dimensions, orthogonal to the directions µ1 and µ2. Let y = (µT

1 x)
2 −

(µT
2 x)

2 for some orthogonal ground truth directions µ1 and µ2 (see Figure 2(left)). We denote
this distribution of (x, y) on Rd × {−1, 1} by Dµ1,µ2,σ,d. We call this the XOR problem because
y = XOR

(
(µ1 + µ2)

Tx, (−µ1 + µ2)
Tx

)
. For instance, if µ1 = e1 and µ2 = e2, then y = x21 − x22.

As can be seen in Figure 2(left), this distribution is not linearly separable, and so one must use
nonlinear model to learn in this setting.

▶ Model. Fix a ∈ {−1, 1}m so that
∑

i ai = 0. The model is a two-layer neural network with m
hidden units and activation function ϕ, parameterized by W ∈ Rm×d. W (which will be learned)
represents the weights of the first layer and a (which is fixed) is the second layer weights. The model
predicts fW (x) =

∑m
i=1 aiϕ(w

T
i x), where wi ∈ Rd denotes the i’th column of W . We work with

activations ϕ of the form ϕ(z) = max(0, z)h for h ∈ [1, 2), and require that m is divisible by 41.

We define a problem class of distributions to be a set of data distributions. In this paper, we work
with the linear problem class Ωlinear

σ,d := {Dµ,σ,d : µ ∈ Rd, ∥µ∥ = 1}, and the quadratic problem
class ΩXOR

σ,d := {Dµ1,µ2,σ,d : µ1 ⊥ µ2 ∈ Rd, ∥µ1∥ = ∥µ2∥ = 1}. Here ∥ · ∥ denotes the ℓ2 norm.

We will sometimes abuse notation and say that x ∼ D instead of saying that (x, y) ∼ D.

Before proceeding, we make some comments on the parameter settings and compare to related work.

Large dimension assumption. In both the linear and non-linear settings, our focus is an overparame-
terized regime where the dimension d is at least a constant factor times larger than n, the number of
training samples. Such an assumption is mild relative to the assumptions made in related work, which
require d = ω(n) (see eg. (Cao et al., 2021; Wang & Thrampoulidis, 2020; Muthukumar et al., 2021;
Shamir, 2022; Chatterji & Long, 2021) on linear models; for neural networks, the closest related
works of Frei et al. (2022a) and Cao et al. (2022) assume that d ≥ n2 or stronger). When the dimen-

1The assumption that m is divisible by 4 is for convenience, and can be removed if m is large enough.
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sion is sufficiently large (in particular, at least ω(n)), with high probability, the max-margin solution
coincides with the min-norm regression solution (see Hsu et al. (2021)), meaning the max-margin
solution can be analyzed via a closed-form expression. Our work is fundamentally different from the
work on linear classification which operates in the d = ω(n) regime, because in our setting when
d = Θ(n), these two solutions do not coincide.

Assumption on Data Covariance. Many works on linear classification study more general data
models which allow arbitrary decay of the eigenvalues of the covariance matrix (eg. Muthukumar
et al. (2021); Wang & Thrampoulidis (2020); Cao et al. (2021)), or variance in the signal direction,
that is, xTµ ̸= y (eg. Shamir (2022)). We work with a simpler distribution, which is still challenging,
because it defies existing analyses built on UC or closed-form solutions.

2.1 BACKGROUND AND DEFINITIONS ON UNIFORM CONVERGENCE

In this subsection, we provide some definitions from Nagarajan & Kolter (2019b) on algorithm-
dependent UC bounds. We also provide some definitions and background on margin bounds.

For a loss function L : R × R → R, and a hypothesis h mapping from a domain X to R, we
define the test loss on a distribution D to be LD(h) := E(x,y)∼DL(h(x), y). For a set of examples
S = {(xi, yi)}i∈[n], we define LS(h) := Ei∈[n]L(h(xi), yi) to be the empirical loss.

Unless otherwise specified, we will use L to denote the 0/1 loss, which equals 1 if and only if the
signs of the two labels disagree, that is, L(y, y′) = 1(sign(y) ̸= sign(y′)).

Typically in machine learning one considers a global hypothesis class G that an algorithm may explore
(e.g., the set of all two-layer neural networks). A uniform convergence bound, defined below, may
hold over a smaller subset H of G, eg. the subset of networks with bounded norm.

Definition 2.1 (Uniform Convergence Bound). A uniform convergence bound with parameter ϵunif
for a distribution D, a set of hypotheses H, and loss L is a bound that guarantees that

Pr
S∼Dn

[sup
h∈H

|LD(h)− LS(h)| ≥ ϵunif ] ≤
1

4
. (2.1)

A uniform convergence bound can be customized to algorithms by choosing H to depend on the
implicit bias of an algorithm. For instance, if an algorithm A favors low-norm solutions, one could
choose H to be the set of all classifiers with bounded norm. Of course, if H is too small, it may not
be useful for proving generalization, because A will never output a solution in H. We formalize the
notion of choosing a useful algorithm-dependent set H as follows.

Definition 2.2 (Useful Hypothesis Class). A hypothesis class H is useful with respect to an algorithm
A and a distribution D if PrS∼Dn [A(S) ∈ H] ≥ 3

4 .

Remark 2.3. Our definition of a uniform convergence bound on a useful hypothesis class is essentially
equivalent to the definition of algorithm-dependent uniform convergence bound in Nagarajan &
Kolter (2019b). We introduce new terminology since we use it later in our results on margin bounds.

More generally, we can have generalization bounds that do not yield the same generalization guarantee
for all elements of H. Instead, their guarantee scales with some property of the hypothesis h and the
sample S. We call these data-dependent bounds. Such bounds are useful if the favorable property is
satisfied with high probability by the algorithm of interest.

One specific type of data-dependent bound depends on the margin achieved by the classifier on the
training sample. We recall the definition of a margin:

Definition 2.4 (Margin). The margin γ(h, S) of a classifier h on a sample S equals min(x,y)∈S yh(x).

In certain parameterized hypothesis classes it is useful to define a normalized margin. If fW is
h-homogeneous, that is, fcW (x) = chfW (x) for a positive scalar c, we define the normalized margin

γ̄(fW , S) :=
γ(fW , S)

∥W∥h
= γ(fW/∥W∥, S), (2.2)

where we define the norm ∥W∥ to equal
√

Ei∈[m][∥wi∥2], where wi is the i’th column of W .
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We will use γ∗(S) to denote the maximum normalized margin. When we are discussing the linear
problem, we let γ∗(S) be the max-margin over all vectors w ∈ Rd with norm 1, that is γ∗(S) :=
supw:∥w∥2≤1 γ(S, fw). In the XOR problem, we use γ∗(S) to denote the max-margin over all weight
matrices W ∈ Rm×d with norm 1, that is γ∗(S) := supW :∥W∥≤1 γ(S, fW ).

Most classical margin bounds prove that the generalization gap can be bounded by a term that scales
inversely linearly or quadratically in the margin (Koltchinskii & Panchenko, 2002; Kakade et al.,
2009). More generally, we will call margin bounds in which the generalization guarantee scales

with
(

1
γ(S,fW )

)p

for a constant p a polynomial margin bound. Such bounds usually rely on proving
uniform convergence for a continuous loss that upper bounds the 0/1 loss. As we will show in the
next section, such bounds are also intrinsically limited in regimes where UC fails on the 0/1 loss.

In contrast to this, in our work, we prove bounds for classifiers that achieve near-maximal margins.
Definition 2.5. A classifier h is a (1− ϵ)-max-margin solution for S if γ(h, S) ≥ (1− ϵ)γ∗(S).

We refer to a bound that holds for (1− ϵ)-max-margin solutions as a extremal margin bound.

3 MAIN RESULTS

In the following section, we state our main results for the linear and quadratic problems, and provide
intuition for our findings. As illustrated in Figure 1, and in more detail in Figure 2(right), our results
show different possibilities for a near max-margin solution depending on the size of κ := n

dσ2 , a
signal-to-noise parameter, where σ, d are as in Section 2. When κ is smaller than some threshold κgen
we are not guaranteed to have learning: even a near max-margin solution may not generalize. When
κ exceeds κgen by an absolute constant and when σ2 ≪ 1, our results show that any near max-margin
solution generalizes well. Finally, we show that if κ is smaller than a second threshold κuc, then
uniform convergence approaches will fail to guarantee generalization. All of our results additionally
include an overparameterization condition that d ≥ cn for a constant c, as is pictured in Fig 2(right).

The exact thresholds κgen and κuc depend on the problem class of interest, but in both the linear
setting and the nonlinear setting we study, we show that κuc > κgen. Thus we observe a regime where
uniform convergence fails, but generalization still occurs for near max-margin solutions.

For the linear problem, we define the universal constants

κlineargen := 0 and κlinearuc := 1. (3.1)

For the XOR problem with activation reluh, for h ∈ [1, 2), we define the constants

κXOR,h
gen := the solution to 2

1
h

√
2

κ
=

√
κ

4 + κ
+

√
16

κ (4 + κ)
and κXOR,h

uc := 4. (3.2)

The constants are pictured in Figure 2(right) as a function of h. Observe that for h ∈ (1, 2), we
have κXOR,h

gen < κXOR,h
uc , and κXOR,h

gen > 0. When h = 1 and the activation is relu, we have
κXOR,h

gen = κXOR,h
uc , and thus we do not expect to have a regime where uniform convergence fails,

but max-margin solutions generalize. We elaborate more intuitively on why h > 1 allows for
generalization without UC in Section A.

Our first theorem states that when κ > κgen, any near-max-margin solution generalizes.
Theorem 3.1 (Extremal-Margin Generalization for Linear Problem). Let δ > 0. There exist constants
ϵ = ϵ(δ) and c = c(δ) such that the following holds. For any n, d, σ and D ∈ Ωlinear

σ,d satisfying
κlineargen + δ ≤ κ ≤ 1

δ , and d
n ≥ c, then with probability 1− 3e−n over the randomness of a training

set S ∼ Dn, for any w ∈ Rd that is a (1− ϵ)-max-margin solution (as in Definition 2.5), we have
LD(fw) ≤ e−

n
36dσ4 + e−n/8.

Attentive readers may observe that since κlineargen = 0, Theorem 3.1 can guarantee asymptotic general-
ization for some sequences of parameters (ni, di, σi)i≥1 even when κi = ni

diσ2
i
= oi→∞(1), as long

as σ2
i decays fast enough. In Theorem C.4 in the appendix, we state a more detailed version of this

theorem which states the exact dependence of c and ϵ on δ, yielding precise results for κ = o(1).
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We prove a similar generalization result for XOR problem learned on two-layer neural networks.
Theorem 3.2 (Extremal-Margin Generalization for XOR on Neural Network). Let h ∈ (1, 2), and let
δ > 0. There exist constants ϵ = ϵ(δ) and c = c(δ) such that the following holds. For any n, d, σ and
D ∈ ΩXOR

σ,d satisfying κ = n
dσ2 ≥ κXOR,h

gen + δ and d
n ≥ c, then with probability 1− 3e−n/c over the

training set S ∼ Dn, for any two-layer neural network with activation function reluh and weight
matrix W that is a (1− ϵ)-max-margin solution (as in Definition 2.5), we have LD(fW ) ≤ e−

1
cσ2 .

This theorem guarantees meaningful results whenever σ is small enough. To see this, note that the
assumptions of the theorem require that d

n ∈
[
c, 1

σ2(κXOR,h
gen +δ)

]
. If σ is small enough (in terms of δ),

this interval is non-empty. Further, the generalization guarantee is good if σ is small enough (since
exp(−1/(cσ2)) tends to 0 as σ approaches 0). For instance consider a setting where d ≫ n, and
σ2 = n

d . Then our theorem guarantees that LD(fW ) ≪ 1.

Key intuitions for generalization theorems. We demonstrate the gist of the analysis for the
linear problems with some simplifications. It turns out that two special solutions merit particular
attention: (i) the good solution wg = µ that generalizes perfectly, and (ii) the bad overfitting
solution wb :≈ 1√

ndσ

∑
j yjξj that memorizes the “junk” dimension of the data, and satisfies

ξTi wb ≈ 1√
ndσ

yi|ξi|2 = yi

√
dσ2

n for all i. 2 We examine the margin of the two solutions and have

γ̄(wg, S) = 1 and γ̄(wb, S) ≈
√
dσ2

n
. (3.3)

At first glance, one might conclude that when γ̄(wg, S) < γ̄(wb, S), the max margin solution will be
wb, which does not generalize. However, our key observation is that any (near) max margin solution
w always contains a mixture of both wg and wb. When the wg component is small but non-trivial and
the wb component is large, the solution can simultaneously generalize but contain a large enough
overfitting component to preclude UC.

More concretely, suppose we consider the margin of a linear mixture w = αwg + βwb satisfying
α2 + β2 = 1 so that ∥w∥2 = 1. It is easy to see that the margin on the training set is

γ̄(w, S) = αγ̄(wg, S) + βγ̄(wb, S) (3.4)

Meanwhile, the margin on an test example x is only slightly affected by wb:

γ̄(w, x) ≈ αγ̄(wg, S)± βwT
b x ≈ αγ̄(wg, S)± βγ̄(wb, S)

√
n

d
. (3.5)

The effect wT
b x of the bad solution on the test sample is is smaller than γ̄(w, S) by a

√
n
d factor

because x is a high dimensional random vector, and thus mostly orthogonal to wb. Therefore, even if
the margin on the training set mostly stems from the bad overfitting solution, that is, αγ̄(wg, S) <

βγ̄(wb, S), the model may still generalize as long as αγ̄(wg, S) ≥ βγ̄(wb, S)
√

n
d .

The optimal α, β satisfying α2 + β2 = 1 that maximize the margin turns out to be proportional to the

original margin: α
β =

γ̄(wg,S)
γ̄(wb,S) , yielding a max-margin of

√
γ̄(wg, S)2 + γ̄(wb, S)2 ≈

√
dσ2+n

n .

Therefore, we have αγ̄(wg,S)
βγ̄(wb,S) =

γ̄(wg,S)2

γ̄(wb,S)2 . In other words, we should expect reasonable generalization

of near-max margin solutions as long as γ̄(wg,S)
γ̄(wb,S) > (nd )

1/4, which by eq. 3.3 occurs when n
dσ4 ≫ 1.

In Appendix A, we describe the challenges that arise when adapting these intuitions to nonlinear
setting, and our techniques for overcoming them.

Before proceeding to our lower bounds, observe that a typical margin bound for the linear setting

would yield |LD(w)− LS(w)| ≤ 2|x|√
nγ̄(S,w)

≈ 2
√
dσ
√

1+1/κ√
n

, which is at least 2 for κ ≤ κlinearuc = 1.

2More precisely, we will choose wb to be the rescaled min-norm vector satisfying ξTi wb = yi for all i. This
distinction is important in the case when d is only a constant factor larger than n, and the solution 1√

ndσ

∑
j yjξj

does not necessarily correctly classify the training data.
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We now proceed to present our lower bounds, which show when near max-margin solutions may not
always generalize, and when UC bounds and polynomial margin bounds are impossible.

If κ < κgen, it is possible that a near-max margin solution does not generalize at all. Since κgen = 0
in the linear setting, we only state this result for the XOR problem.
Proposition 3.3 (Region where Max-Margin Generalization not Guaranteed). Let h ∈ (1, 2), and let
ϵ > 0. There exists a constant c = c(ϵ) such that the following holds. For any n, d, σ and D ∈ ΩXOR

σ,d

satisfying κ ≤ κXOR,h
gen − ϵ and d

n ≥ c, with probability 1− 3e−n/c over S ∼ Dn, there exists some
W with ∥W∥ = 1 and γ(fW , S) ≥ (1− ϵ)γ∗(S) such that LD(fW ) = 1

2 .

Theorems 3.2 and Prop. 3.3 demonstrate that in the XOR problem, there is a threshold in κ above
which generalization occurs. If κ is above this threshold, we achieve generalization when σ2 ≪ 1.

The next proposition states that when κ < κuc, any algorithm-dependent uniform convergence bounds
will be vacuous, that is, its generalization guarantee will be arbitrarily close to 1. We state our results
for the linear and XOR neural network settings together; we state the more complicated XOR result
in full and then mention how the linear result differs.
Proposition 3.4 (UC Bounds are Vacuous). Fix any h ∈ (1, 2), and δ > 0. For any n, d, σ and
D ∈ ΩXOR

σ,d , if κXOR,h
gen + δ ≤ κ ≤ κXOR,h

uc − δ, there exist strictly positive constants ϵ = ϵ(δ) and
c = c(δ) such that the following holds. Let A be any algorithm that outputs a (1− ϵ)-max-margin
two-layer neural network fW for any S ∈ (Rd × {1,−1})n. Let H be any hypothesis class that is
useful for D (as in Definition 2.2). Suppose that ϵunif is a uniform convergence bound for D and H
that is, PrS∼Dn [suph∈H |LD(h)− LS(h)| ≥ ϵunif ] ≤ 1/4. Then if d

n ≥ c and n > c, we must have
ϵunif ≥ 1− δ.

A similar result holds for the linear problem with κlineargen + δ < κ < κlinearuc − δ and any D ∈ Ωlinear
σ,d .

In this case we achieve the guarantee that ϵunif ≥ 1− e−
n

36dσ2 − e−n/8.

Prop. 3.4 is proved using the same technique as in Nagarajan & Kolter (2019b): we show that with
high probability over S ∼ Dm, the hypothesis A(S) has good generalization, but on an “oppositite”
dataset ψ(S) with the junk components reversed, the empirical error of A(S) is close to 1. This large
gap between empirical error and generalization forces ϵunif-alg to be large.

Further extending this technique, we can also show the limitations of classical polynomial margin
bounds which achieve an bound that scales inversely polynomially with γ(h, S). We show that with
high probability over S ∼ Dm, the hypothesis A(ψ(S)) has a large margin on the set S (a constant
fraction times the max-margin), but poor generalization on D. Since any polynomial margin bound
cannot predict much better generalization for the max-margin solution than for a solution with a
constant-fraction of the max-margin, we conclude that any such margin bound is far from showing
good generalization for the max-margin solution.

One subtlety to this approach is that here (unlike in the work of Nagarajan & Kolter (2019b)), the
“opposite” data set ψ(S) is defined to be the data set with the signal features reversed. Thus we
can only show the limitations of polynomial margin bounds that are useful for both D and for its
“oppostite” distribution ψ(D), which has the opposite ground-truth vector(s), which is a slightly
stronger assumption than in the work of Nagarajan & Kolter (2019b). 3 Formally, if D = Dlinear

µ,σ ,
then we define ψ(D) := Dlinear

−µ,σ . If D = DXOR
µ1,µ2,σ , then ψ(D) := DXOR

µ2,µ1,σ .

The following results state that if κ < κuc, then certain types of margin bounds cannot yield better
than constant test loss on even the max-margin solution.
Proposition 3.5 (Polynomial Margin Bounds Fail for Linear Problem). Fix δ > 0. For any n, d, σ
and D ∈ Ωlinear

σ,d such that κlineargen + δ < κ < κlinearuc − δ and d
n ≥ c, the following holds. Let A be

any algorithm so that A(S) outputs a (1− ϵ)-max-margin solution fw for any S ∈ (Rd ×{1,−1})n.
3We believe considering such types of margin bounds is natural. Indeed, for most problems, the designer of

the generalization bound would not know in advance the ground truth distribution, but might know that the data
comes from some problem class, e.g., linearly separable distributions, or linearly separable distributions with a
sparse ground truth vector. In such cases, they would likely have to design a generalization bound that holds for
data coming from two distributions with opposite ground truths.

If we make this same stronger two-distribution assumption in Prop. 3.4, we can additionally rule out one-sided
UC bounds, which only upper bound LD − LS .
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Let H be any hypothesis class that is useful for A (as in Definition 2.2) on both Dlinear
µ,σ and Dlinear

−µ,σ .
Suppose that there exists an polynomial margin bound of integer degree p: that is, there is some G
that satisfies for D̃ ∈ {D, ψ(D)},

Pr
S∼D̃n

[
sup
h∈H

LD̃(h)− LS(h) ≥
G

γ(h, S)p

]
≤ 1

4
.

Then with probability 1
2 − 3e−n over S ∼ Dn, the margin bound is weak even on the max-margin

solution, that is, G
γ∗(S)p ≥ max

(
1
c , 1− e−

κ
36σ2 − e−n/8 − 3κ

c

)p

, which is more than an absolute
constant.

This theorem says that no polynomial margin bound will be able to show that the test error of the
max-margin solution is less than an absolute constant. We know however from Theorem 3.1 that in
this same regime, the test error of the max-margin solution can be arbitrarily small for small enough
σ. Thus no polynomial margin bound can predict this behaviour.

The attentive reader again may notice that if κ→ 0 as n and d grow, but generalization occurs, any
such margin bound is vacuous, in that G

γ∗(S)p → 1. In Prop ??, we prove a more precise version,
yielding the exact dependence of c and ϵ on the gap between κ and the boundaries κlinearuc and κlineargen .

We achieve a similar result in the XOR setting.
Proposition 3.6 (Polynomial Margin Bounds Fail for XOR on Neural Network). Fix an integer
p ≥ 1, and any ϵ > 0. There exists c = c(p, ϵ) such that the following holds for any n, d, σ and
D ∈ ΩXOR

σ,d with κXOR,h
gen + ϵ < κ < κXOR,h

uc − ϵ, d
n ≥ c and n ≥ c. Let H be any hypothesis class

such that for D̃ ∈ {D, ψ(D)},
Pr

S∼D̃n
[all (1− ϵ)-max-margin two-layer neural networks fW for S lie in H] ≥ 3/4.

Suppose that there exists an polynomial margin bound of degree p: that is, there is some G that
satisfies for D̃ ∈ {D, ψ(D)},

Pr
S∼D̃n

[
sup
h∈H

LD̃(h)− LS(h) ≥
G

γ(h, S)p

]
≤ 1

4
.

Then with probability 1
2 − 3e−n/c over S ∼ Dn, on the max-margin solution, the generalization

guarantee is no better than 1
c , that is, G

γ∗(S)p ≥ 1
c .

Remark 3.7. The polynomial margin impossibility results is slightly weaker for the XOR problem.
Namely, the hypothesis class H we consider is larger in the XOR problem: it must contain with
probability 3

4 any near max-margin solution, instead of just the one output by A.

The combination of our generalization results and our margin possibility results suggest a phase
transition in how the margin size affects generalization. If the margin is near-maximal, Theorems 3.1
and Prop. 3.2 show that we achieve generalization. Meanwhile, the proof of Props 3.5 and 3.6 suggest
that solutions achieving a constant factor of the maximum margin may not generalize.

The proofs of all of our results concerning the linear problem are given in Section C. The proofs for
the XOR problem are in Section D.

4 CONCLUSION

In the work, we give novel generalization bounds in settings where uniform convergence provably
fails. We use a unified approach of leveraging the extremal margin in both a linear classification setting
and a non-linear two-layer neural network setting. Our work provides insight on why memorization
can coexist with generalization.

Going beyond our results, it is important to find broader tools for understanding the regime near the
boundary of generalization and no generalization. We conclude with several concrete open directions
in this vein. One question is how to prove generalization without UC when d < n, but the model
itself (e.g. a neural network) is overparameterized, and thus can still overfit to the point of UC failing.
A second direction asks if we can prove similar results in the non-linear network setting for the
solution found by gradient descent, if this solution is not a near max-margin solution. Indeed, in a
non-convex landscape, it not guaranteed that that gradient descent will find the max-margin solution.
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A PROOF OVERVIEW

In our proof overview, we focus on the linear problem. While basic steps and intuitions remain the same for
the more complicated neural network problem, we add explanation of where we need additional techniques or
insights.

The starting observation is that any solution w can be decomposed into a signal component and a overfitting
component. For the linear problem, lets call those components u and v respectively, where u is in the subspace
containing µ, and v is orthogonal to µ, such that w = u + v. Conveniently in the linear problem, we have
fw(x) = wTx = fu(x) + fv(x). The proof of our main results can be divided into three main parts, which are
sketched in the next three subsections.

A.1 THE OVERFITTING COMPONENT ONLY SLIGHTLY AFFECTS GENERALIZATION.

Since the “junk” features (orthognal to µ) are high dimensional and have smaller variance, on a random
new sample drawn from the population distribution D, we have fw(x) ≈ fu(x). We formalize the affect
on generalization in the following lemma, which shows that non-trivial generalization can occur so long as
∥v∥2 ≲ 1

σ
uTµ. Notice that if σ2 ≪ 1, this means the v component can be a great deal larger than the u

component without affecting generalization.

Lemma A.1. Fix a distribution Dµ,σ,d ∈ Ωlinear
σ,d . For w ∈ Rd, let w = u+ v as above. Let q := uT µ

∥v∥2
. Then

for x ∼ Dµ,σ,d,

Pr[|fv(x)| ≥ yfu(x)] ≤ 2e
− q2

8σ2 + exp(−8d).
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We show a similar lemma for the two-layer neural network, proved in Section D.4.1. Recall that for a two-layer
neural network with weight matrix W ∈ Rm×d, we define fW (x) = Ei∈[m]aiϕ(w

T
i x), where the weights ai

are fixed, and wi is the ith row of W . Recall that ϕ(z) = max(0, z)h for h ∈ (1, 2).

Lemma A.2. Fix a distribution Dµ1,µ2,σ,d ∈ Ωh,XOR
σ,d . For W ∈ Rm×d, let W = U + V where V is

orthogonal to the subspace containing µ1 and µ2. Then for some universal constant c, for any t ≥ 1, with
probability at least 1− e−ct, on a random sample x ∼ Dµ1,µ2,σ,d,

|fW (x)− fU (x)| ≤ (8∥U∥+ 3) (t+ 1)σ2∥V ∥2 + 2
(
(t+ 1)σ2∥V ∥2

)h
2 .

A.2 ANY NEAR-MAX-MARGIN SOLUTION SHOULD LEVERAGE BOTH SIGNAL AND
OVERFITTING COMPONENTS.

A max-margin solution aims to maximize the minimum margin of any training example while holding the
norm of the solution constant. To get a sense of why such a solution must leverage both signal and overfitting
components, we consider first what would happen if we used a signal or overfitting component alone.

In the linear problem, setting v to be zero and only considering the signal direction, it is easy to check that the
max-margin solution is achieved by setting u = µ, leading to a margin γg of 1. We call this good solution wg.

If we optimize in the direction orthogonal to µ alone and set u to zero, the max-margin solution can be shown to
found by choosing v to be very near the vector

∑
j yjξj

∥
∑

j yjξj∥2
, which achieves a margin γb of roughly σ√

n
. We call

this bad overfitting solution wg.

Depending on the choice of σ, the margin γb might be larger that γg . Fortunately, this does not preclude
generalization. Indeed, we will show that combining these two solutions achieves an even larger margin! Consider
constructing the solution ŵ = αwg + βwb and α2 + β2 = 1. It is easy to check since fŵ(x) = fu(x) + fv(x)
that ŵ achieves a margin of α + β. The following simple optimization program characterizes the optimal
trade-off between α and β:

max αγg + βγb (A.1)

α2 + β2 ≤ 1. (A.2)

Analyzing this program shows that optimal values are achieved by choosing α
β
=

γg
γb

, which suggests that the
max-margin solution will include a significant component both of wg and wb.

While this alone is not enough to prove that any near-max-margin solution has a significant component of
µ, we can extend this argument to show that any solution that achieves a margin larger than γb must include
some component in the signal direction, and in particular, this component must be in the µ-direction. This is
formalized in Lemma C.2

The linear problem had two nice properties which unfortunately we will not be able to leverage in the non-linear
problem:

1. It is easy to understand the affect of linearly combining solutions from the signal space and the junk
space. That is, for any w = u+ v, we have fw(x) = fu(x) + fv(x).

2. Any component in the signal subspace which improves the margin is guaranteed to stand alone as a
good enough solution. That is, for any v, if the margin of fu+v is better than the margin of fv , then it
must be the case that fu generalizes. This is because any component in the signal subspace which
improves the margin must be in the direction of µ.

In the XOR problem, the failure of (1) to hold is challenging because it turns out that adding the max-margin
solutions in the signal space (which we call the “good” solutionWg) to the max-margin solution in the orthogonal
space (which we call the “bad” solution Wb) has the affect of partially cancelling each other’s margins out.
Ultimately, we will resolve this by showing that we can construct an alternate bad solution W ′

b that does not
cancel out the margin at all when combined with the good solution Wg . Even though alone W ′

b has a slightly
worse margin than Wb, we show that the benefit from combining Wg and W ′

b overcomes this loss. This benefit
scales with the convexity of the activation ϕ is the positive region. This is why we require that h, the power of
the activation, is strictly greater than 1.

The failure of (2) to hold is challenging because there are many weight matrices U in the µ1, µ2 subspace that
may improve the margin, but not stand alone well. For instance, U might just use the µ1 direction and not the µ2

direction, and thus still improve the margin, but not stand well alone. Fortunately, we can rule out this behavior
by arguing, similarly to before, that any solution that does not use both signal directions equally cannot exceed a
certain (non-maximal) margin. This argument takes the form of a series of lemmas presented in section D.1.
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Even more challenging however is the potential to have a component W1 that uses its component in the u1-
direction (or analogously in the u2-direction) only to improve the margin on points from one of the two positive
clusters (see Figure 2). We are able to rule out this behavior by reducing our understanding of max-margin
solutions on the neural net to a simpler 3-variable optimization problem which concerns a single neuron w ∈ Rd
and a pair of training examples xj and xj′ from the two positive clusters (see Figure 2(left)), that is, xj = µ1+ξj ,
and xj′ = −µ1 + ξj′ .

Definition A.3 (Trivariate Subproblem).

max ϕ(b+ c) + ϕ(−b+ d) : (A.3)

b2 +
κ

4
(c2 + d2) ≤ 1 (A.4)

In this problem, the variable b represents µTw, the strength of the signal component. The variable c represents
wT ξj , and d representswT ξj′ , the strengths of the overfitting components. This 3-variable optimization problem
can be viewed as an analog of the optimization problem in eq. A.1.

The following lemma argues that if the neuron w is on average good for both xj and xj′ , ie., the objective is
large, then for both xj and xj′ , a constant fraction of the activation must be explained by the component of w in
the µ1 direction.

Lemma A.4 (Simplification of Lemma D.15). Suppose ϕ(x) = max(0, x)h for 1 < h < 2 and κ > κXOR,h
gen .

Then for any a sufficiently small constant ϵ = ϵ(κ), any (1− ϵ)-optimal solution to the program in Definition A.3
satisfies

1. ϕ(b) ≥ Ω(1)ϕ(b+ c); and

2. ϕ(−b) ≥ Ω(1)ϕ(−b+ d).

We note that this lemma is also the key step in arguing that signal solutions and in the overfitting solutions can
be combined efficiently enough that using a non-zero component in the signal-subspace is effective.

In Section D, we flesh out this argument in detail, making rigorous the reduction from the full neural net and the
full data-set to a the sub-problem in Definition D.6.

A.3 ANY NEAR-MAX-MARGIN SOLUTION SHOULD HAVE A LARGE ENOUGH OVERFITTING
COMPONENT TO PRECLUDE UC.

In order to show the failure of standard uniform convergence bounds on the problems we consider, we must
argue that the overfitting component of any near-max-margin solution roughly exceeds the size of the signal
component, as outlined in the Intuition section. The argument described in the previous subsection guarantees
this: for this linear problem it is enough to show that γb ≥ γg , and for the non-linear problem, we will need to
leverage the full version of Lemma D.15, which shows that c and d are large relative to b.

A larger overfitting component than signal component ensures the phenomenon similar to the one described in
the work of Nagarajan and Kolter: if the signal component of the data were changed, but the junk feature stayed
the same, the data would still be classified correctly by the classifier learned on the original data. Showing this
phenomenon is the key step in proving Theorems 3.4. To prove the margin lower bounds, we also need to show
that the this “opposite” dataset is still classified with a large margin by the original classifier.

B AUXILIARY LEMMAS

If M is a matrix, we use ∥M∥2 to denote the spectral norm of M .

We will use the following lemma throughout, on the concentration of random covariance matrices in both the
linear and XOR problems.

Lemma B.1 (Concentration of Random Covariance Matrix). There exists a universal constant CB.1 such that
the following holds. Suppose d > C2

B.1n and Ξ ∈ Rd×n, where each column of Ξ is a random vector distributed
uniformly on the sphere of radius

√
dσ in d dimensions. There exists a universal constant CB.1 such that with

probability at least 1− 3e−n the following two events hold:

1. ∥ 1
σ2d

ΞTΞ− I∥2 ≤ CB.1
√

n
d

2. For any c ∈ Rn, if v ∈ Rd is the minimum-norm vector v satisfying ΞT v = c exists and has

∥v∥22 ∈ ∥c∥22
σ2d

[
1

1+CB.1

√
n
d

, 1

1−CB.1

√
n
d

]
.
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The lemma still holds if the rows of Ξ are instead drawn i.i.d. from a sphere of dimension d − a of radius√
d− aσ in any subspace of dimension d− a, for a ∈ {1, 2}.

Proof. We prove this using a similar result for matrices with i.i.d. entries. Observe that Ξ = ZD, where
Z ∈ Rd×n is a random matrix with i.i.d. normal entries from N (0, σ2), and D ∈ Rn×n is the diagonal matrix
with Djj = σ

√
d

∥zj∥2
, where zj is the jth column of Z.

Thus ∥∥∥∥ 1

σ2d
ΞTΞ− I

∥∥∥∥
2

=

∥∥∥∥ 1

σ2d
DZTZD − I

∥∥∥∥
2

(B.1)

≤ ∥D∥22
∥∥∥∥ 1

σ2d
ZTZ −D−2

∥∥∥∥
2

(B.2)

≤ ∥D∥22
(∥∥∥∥ 1

σ2d
ZTZ − I

∥∥∥∥
2

+
∥∥D−2 − I

∥∥
2

)
(B.3)

Vershynin (2018) (see Theorem 3.1.1 and the discussion thereafter), states that for any j, for some universal

constant C, with probability 1− e−2n, | ∥zj∥
2

σ2d
− 1| ≤ C

√
n
d

. Vershynin (2018) (Ex. 4.7.3) also guarantees that
with probability 1 − 2e−n,

∥∥ 1
σ2d

ZTZ − I
∥∥
2
≤ C

√
n
d

. Unioning over the the first event occurring for all j,
and the matrix concentration even happening, we have (for some new constant C), with probability

1− 2e−n − ne−2n ≥ 1− 3e−n, (B.4)∥∥ 1
σ2d

ΞTΞ− I
∥∥
2
≤ C

√
n
d

.

For the second conclusion, it well-known that the min-norm solution to overparameterized linear regression
problem XT a = b satisfies argmina:XT a=b ∥a∥2 = X(XTX)†b, where † denotes the pseudo-inverse (see
eg. Bartlett et al. (2020), page 5). Observe that ΞTΞ is invertible since d > C2

B.1n and thus CB.1
√

n
d
< 1. It

follows by that we can solve explicitly for v, yielding v = Ξ(ΞTΞ)−1c. Hence,

∥v∥22 = cT (ΞTΞ)−1ΞTΞ(ΞTΞ)−1c = cT (ΞTΞ)−1c ∈ ∥c∥22
σ2d

[
1

1 + CB.1
√

n
d

,
1

1− CB.1
√

n
d

]
. (B.5)

To see that the lemma applies if the rows of Ξ are orthogonal to some subspace, it suffices to assume the
subspace is spanned by e1 or e1 and e2. Thus one can view the matrix Ξ as being in Rd−a×n, and the conclusion
follows by replacing d with d− a. The constant CB.1 can be adjusted so that the conclusion written holds for
a ∈ {1, 2}.

Lemma B.2. Let ϕ(x) = max(0, x)h for h ∈ (1, 2). For any values s, t, we have ϕ(s+t) ≤ (ϕ(s)+ϕ(t))2h−1

Proof. By homogeneity of ϕ,

ϕ(s) + ϕ(t)

ϕ(s+ t)
=
ϕ( s

s+t
) + ϕ( t

s+t
)

ϕ(1)
, (B.6)

so we need to show that ϕ(a) + ϕ(b) ≥ 21−h for any a + b = 1. Since ϕ is convex, subject to this linear
constraint, by the KKT condition, the minimum is attained when ϕ′(a) = ϕ′(b) which occurs when a = b = 1

2
.

(Note, we cannot have ϕ′(a) = ϕ′(b) = 0, since at least one of a and b must be positive.

C PROOFS FOR LINEAR PROBLEM

Throughout this section, since we are only concerned with the linear problem, we will abbreviate Ω = Ωlinear
σ,d ,

κuc = κlinear
uc , and κgen = κlinear

gen .

C.1 TECHNICAL LEMMAS

Throughout the following subsection, we assume Dµ,σ,d is fixed. For a vector w ∈ Rd, we let u = µµTw and
v = (I − µµT )w, such that w = u+ v.

Our training data is given by the matrix (X, y), where X ∈ Rd×n and y ∈ Rn, where xj = Xej , and (xj , yj)
denotes the jth training sample. Recall that we have xj = zj + ξj , where zj = µyj , yj ∼ Uniform(−1, 1),
and ξj is uniformly distributed on the sphere of radius σ

√
d− 1 in the d− 1 dimensions orthogonal to µ. We

use Ξ ∈ Rd×n to denote the matrix with columns ξj .
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Lemma C.1. On the event that the conclusion of Lemma B.1 holds for Ξ, for any v,

min
j
yjv

T ξj ≤
∥v∥2

√(
1 + CB.1

√
n
d

)
√
κ

(C.1)

Proof. Let γ := minj yjv
T ξj and suppose γ > 0; otherwise the lemma is immediate. Observe that ∥v∥2 must

be larger than the norm of least norm vector (call it w) achieving wT ξjyj ≥ γ for all j, which implies that
|wT ξj | ≥ γ for all j. Let c := wTΞ, such that ∥c∥2 ≥ nγ2. By Lemma B.1, on this event of the lemma,

∥v∥2 ≥ ∥w∥2 ≥ 1

1 + CB.1
√

n
d

∥c∥2

dσ2
≥ 1

1 + CB.1
√

n
d

nγ2

dσ2
≥ κ

1 + CB.1
√

n
d

(
min
j
yjv

T ξj

)2

. (C.2)

The conclusion follows.

Let κgen := 0, and let κuc := 1.

The following is our main technical lemma. It shows that if the margin is near-optimal and κ > κgen, then w
must have a large component in the µ direction. If additionally κ < κuc, then the spurious component must
explain more than half of the margin on every data point, or even more if κ is very small.
Lemma C.2 (Main Technical Lemma). For any κ > κgen, there exist a universal constant c such that if
ϵ ≤ 1

c
min

(
κ, 1

κ

)
and

√
n
d
≤ 1

c
min

(
κ, 1

κ

)
, with probability 1− 3e−n over (X, y), for any (1− ϵ)-margin

maximizing solution w with ∥w∥ = 1 we have

wTµ

∥v∥2
√
κ

≥ 2
√
2

3
. (C.3)

If additionally κ < κuc and ϵ ≤ 1
c
min

(
κ, 1

κ
, (κuc − κ)2

)
and

√
n
d

≤ 1
c
min

(
κ, 1

κ
, (κuc − κ)2

)
, then for

every j,

yjv
T ξj ≥ max

(
1 +

1

c
,
1

2κ

)
wTµ = max

(
1 +

1

c
,
1

2κ

)
yjw

T zj . (C.4)

Proof. We condition on the events that the outcome of Lemma B.1 (and hence Lemma C.1) hold of Ξ, which
occurs with probability at least 1− 3e−n. By Lemma C.1,

γ(w, S) = wTµ+min
j
yjv

T ξj (C.5)

≤ wTµ+
∥v∥2

√(
1 + CB.1

√
n
d

)
√
κ

. (C.6)

Further, we can lower bound the max-margin by constructing a solution ŵ in the following way:

Let ŵ = û+v̂
∥û+v̂∥ , where û = nµ, and v̂ is the min-norm solution to v̂TΞ = (dσ2)y. Since the conclusion of

Lemma B.1 holds, we have ∥v̂∥2 ≤ nσ2d
1−C

B.1
√

n
d

.

Thus we have

γ∗(S) ≥
(
1− CB.1

√
n

d

)
n+ dσ2

√
n2 + nσ2d

(C.7)

=

(
1− CB.1

√
n

d

)√
1 +

1

κ
. (C.8)

We prove the first conclusion of the lemma first. Putting together Equations C.5 and C.7, we have

wTµ+
∥v∥2

√(
1 + CB.1

√
n
d

)
√
κ

≥ (1− ϵ)γ∗(S) ≥ (1− ϵ)

√
1 +

1

κ

(
1− C

√
n

d

)
. (C.9)

Thus for some (different) universal constant C, we have

wTµ+
∥v∥2√
κ

≥
(
1− ϵ− C

√
n

d

)√
1 +

1

κ
(C.10)

=

(
1− ϵ− C

√
n

d

)√
1 +

1

κ

(√
(wTµ)2 + ∥v∥2

)
(C.11)
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For the remainder of the proof, let ϵ′ := ϵ+ C
√

n
d

. Letting q = wT µ
∥v∥2

, we have

q +
1√
κ

≥
(
1− ϵ′

)√
1 +

1

κ

(√
1 + q2

)
. (C.12)

Squaring and rearranging terms, we have

q2
(
1−

(
1− ϵ′

)2(
1 +

1

κ

))
+ q

(
2√
κ

)
+

(
1

κ
−
(
1− ϵ′

)2(
1 +

1

κ

))
≥ 0, (C.13)

or equivalently,

a

(
q√
κ

)2

+ 2

(
q√
κ

)
+ c ≥ 0, (C.14)

where

a :=
(
κ
(
1−

(
1− ϵ′

)2)−
(
1− ϵ′

)2) (C.15)

c :=
1

κ
−
(
1− ϵ′

)2(
1 +

1

κ

)
, (C.16)

Claim C.3. For a small enough constant δ, for any κ, n, d, ϵ > 0 such that
√

n
d

≤ δmin(κ,1/κ)
2C

and ϵ ≤
δmin(κ,1/κ)

2
, we have a < 0, and c ≤ − 2

√
2

3
.

Proof. Not that the conditions of the claim imply that ϵ′ ≤ δmin(κ, 1/κ). Thus for a small enough δ, we have

(
1− ϵ′

)2 ≥
(
1− δmin

(
κ,

1

κ

))2

≥ 1− 3δmin

(
κ,

1

κ

)
. (C.17)

Thus for a small enough δ,

c =
1

κ
−
(
1− ϵ′

)2(
1 +

1

κ

)
(C.18)

≤ 1

κ
−
(
1− 3δmin

(
κ,

1

κ

))(
1 +

1

κ

)
(C.19)

≤ −1 + 3δmin

(
κ,

1

κ

)(
1 +

1

κ

)
(C.20)

≤ −1 + 6δ < −2
√
2

3
, (C.21)

and similarly,

a = κ
(
1−

(
1− ϵ′

)2)−
(
1− ϵ′

)2 (C.22)

≤ κ (3δmin(κ, 1/κ))− (1− 3δmin(κ, 1/κ)) (C.23)
≤ −1 + 6δ. (C.24)

Viewing Equation C.14 as a quadratic function f of q√
κ

, if the claim above holds, then

q√
κ

≥ − f(0)

f ′(0)
=

−c
2

≥
√
2

3
. (C.25)

Since q was defined to be wT µ
∥v∥ , this proves the first part of the lemma for ϵ,

√
n
d
≤ min(κ, 1

κ
)

c
for a constant c

large enough.

We perform a similar argument for the second conclusion. Observe that by plugging in the contents of
Equation C.5 into Equation C.7, we have for some constant C (whose value changes throughout this equation,
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but does not depend on κ),

wTµ+min
j
yjv

T ξj ≥
(
1− ϵ− C

√
n

d

)√
1 +

1

κ

√
(wTµ)2 + ∥v∥2 (C.26)

≥
(
1− ϵ− C

√
n

d

)√
1 +

1

κ

√
(wTµ)2 +

κ (minj yjvT ξj)
2

1 + CB.1
√

n
d

(C.27)

≥
(
1− ϵ− C

√
n

d

)√
1 +

1

κ

√
(wTµ)2 + κ

(
min
j
yjvT ξj

)2

(C.28)

Let r := minj yjv
T ξj

wT µ
. Dividing through by wTµ and squaring, we obtain:

(r + 1)2 ≥
(
1− ϵ− C

√
n

d

)2(
1 +

1

κ

)
(1 + κr2), (C.29)

Rearranging, and multiplying by κ, we have

(rκ)2
(
1

κ
−
(
1 +

1

κ

)(
1− ϵ− C

√
n

d

)2
)

+ 2(rκ) +

(
κ− (κ+ 1)

(
1− ϵ− C

√
n

d

)2
)

≥ 0 (C.30)

Now, for κ < κuc = 1, for a small enough constant δ (independent of κ), if
√

n
d

≤ δκ(κuc−κ)2
2C

and ϵ ≤
δκ(κuc−κ)2

2
, we q = rκ, we have

q2
(
1

κ
−
(
1 +

1

κ

)(
1− 3δ(κuc − κ)2κ)

))
+ 2q +

(
κ− (κ+ 1)

(
1− 3δ(κuc − κ)2κ

))
≥ 0, (C.31)

so
−q2

(
1− 6δ(κuc − κ)2

)
+ 2q − (1− 6δ(κuc − κ)2) ≥ 0, (C.32)

or

−q2 + 2q

(1− 6δ(κuc − κ)2)
− 1 ≥ 0. (C.33)

Let x = 6δ(κuc − κ)2. The smallest root of this equation is given by

−(2 + x) +
√

(2 + x)2 − 4

−2
=

2 + x−
√
4x− x2

2
≥ 1−

√
x, (C.34)

so q ≥ 1−
√
6δ(κuc − κ).

Thus for a constant δ small enough, we have

minj yjv
T ξj

wTµ
=
q

κ
>

1 +
√
6δ(κ− 1)

κ
> max

(
1,

1

2κ

)
. (C.35)

The following lemma shows that the influence of the v on the label of a test example is small.

Lemma A.1. Fix a distribution Dµ,σ,d ∈ Ωlinear
σ,d . For w ∈ Rd, let w = u+ v as above. Let q := uT µ

∥v∥2
. Then

for x ∼ Dµ,σ,d,

Pr[|fv(x)| ≥ yfu(x)] ≤ 2e
− q2

8σ2 + exp(−8d).

Proof. For any x, we have fu(x) = uTµ. Now fv(x) is distributed like ∥v∥σ
√
d− 1 X√

X2+Y
, where X ∼

N (0, 1), and Y is a Chi-square random variable with d − 2 degrees of freedom. Thus we can bound the
probability that |fv(x)| ≥ yfu(x) by the probability that ∥v∥σX ≥ 1

2
yfu(x) plus the probability that X2 + Y

is smaller than d−1
4

.

Thus we have

Pr[|fv(x)| ≥ yfu(x)] ≤ Pr[|N (0, σ2∥v∥22)| ≥
1

2
yuTµ] + Pr

[
X2 + Y ≤ d

4

]
(C.36)

= Pr[|N (0, σ2)| ≥ |q|/2] + exp(−d/8) (C.37)

≤ 2e
− q2

8σ2 + exp(−d/8). (C.38)
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C.2 PROOF OF MAIN RESULTS

We use the results of the previous subsection to prove our main results in the linear setting.

First we prove our linear generalization result, Theorem 3.1, which we restate for the reader’s convenience.
Theorem 3.1 (Extremal-Margin Generalization for Linear Problem). Let δ > 0. There exist constants ϵ = ϵ(δ)
and c = c(δ) such that the following holds. For any n, d, σ and D ∈ Ωlinear

σ,d satisfying κlinear
gen + δ ≤ κ ≤ 1

δ
,

and d
n
≥ c, then with probability 1− 3e−n over the randomness of a training set S ∼ Dn, for any w ∈ Rd that

is a (1− ϵ)-max-margin solution (as in Definition 2.5), we have LD(fw) ≤ e
− n

36dσ4 + e−n/8.

We prove the following slightly stronger result, which implies Theorem 3.1, and gives the exact dependence of c
on δ.
Theorem C.4. There exists a universal constant c such that the following holds. For any n, d, σ and D ∈ Ωlinear

σ,d

such that κ = n
dσ2 > κlinear

gen and d
n
≥ cmax

(
1
κ2 , κ

2
)
, with probability 1− 3e−n over the randomness of a

training set S ∼ Dn, for any w ∈ Rd that is a (1 − ϵ)-max-margin solution (as in Definition 2.5), we have
LD(fw) ≤ e

− n
36dσ4 + e−n/8, where ϵ = 1

c
min

(
1
κ
, κ
)
.

Proof. The proof follows from combining Lemmas C.2 and A.1. Let c be the universal constant from Lem-
mas C.2. For any κ > κgen, by Lemmas C.2, for constants ϵ = 1

c
min

(
κ, 1

κ

)
, if d

n
> c2 max

(
κ2, 1

κ2

)
, with

probability 1− 3e−n, for any w which is a (1− ϵ) max-margin solution, we have

wTµ

∥v∥2κ
≥

√
2

3
. (C.39)

Now appealing to Lemma A.1, this means that LD(fw) ≤ 2e
− κ

36σ2 + exp(−d/8) ≤ 2e
− κ

36σ2 + exp(−n/8).

To prove our impossibility results, for any D = Dµ,d,σ ∈ Ω, we define the following mappings ψ and ψ̄. For
(x, y) ∈ Rd × {−1, 1}, where x = µy + ξ, define ψ((x, y)) = (−µy + ξ, y). This mapping swaps the signal
direction of the example, but maintains the label and junk component, and we will use it for our margin lower
bound. Define ψ̄((x, y)) = (µy − ξ, y), which swaps the signal direction of the example, but maintains the
label and junk component. We will use this for our UC lower bound.

For a set of training examples S, let ψ(S) (resp. ψ̄(S)) be the set where each example is mapped via ψ (resp.
ψ̄). Finally define ψ(D) := D−µ,d,σ . Thus ψ(D) is the distribution with the opposite signal direction, and
ψ̄(D) = D. It is immediate to check that for any classifier w ∈ Rd, LD(fw) = 1− Lψ(D)(fw). Note that ψ
and ψ̄ implicitly depend on D through the parameter µ. If it is not clear from context that we are speaking about
a specific D, we will use ψD or ψ̄D to denote the mapping associated with D.

We now prove the the linear part of Proposition 3.4. We restate a version which just includes the linear part, and
gives more precise dependence of c and ϵ on the distance between κ and the boundaries κuc and κgen.
Proposition C.5 (UC Bounds are Vacuous for Linear Problem (From Proposition 3.4)). There exists a universal
constant c for which the following holds. For any n, d, σ and D ∈ Ωlinear

σ,d such that κlinear
gen ≤ κ ≤ κlinear

uc ,
d
n

≥ c
κ2(κuc−κ)4

, the following holds for any ϵ ≤ κ(κuc−κ)2
c

. Let A be any algorithm that outputs w ∈ Rd

which is a (1− ϵ)-max-margin solution for any S ∈ (Rd × {1,−1})n. Let H be any hypothesis class that is
useful for A on D (as in Definition 2.2). Suppose that ϵunif is a uniform convergence bound for D and H, that is,

Pr
S∼Dn

[sup
h∈H

|LD(h)− LS(h)| ≥ ϵunif ] ≤ 1/4.

Then ϵunif ≥ 1− e
− n

36dσ2 − e−n/8.

Proof. Let TD ⊂ 2(R
d×{−1,1})n be the set of training sets S on which the conclusion of Lemma C.2 holds

for S. Thus PrS∼Dn [S ∈ TD] ≥ 1 − 3e−n. Let H ⊂ 2(R
d×{−1,1})n be the set of training sets S on which

A(S) ∈ H. Thus PrS∼Dn [S ∈ H] ≥ 3
4

.

Let T ′
D be the set on which

|LD(h)− Lϕ(S)(h)| ≤ ϵunif ∀h ∈ H, (C.40)

where ϕ := ψ̄D . By assumption, PrS∼Dn [ϕ(S) ∈ T ′
D] = PrS∼Dn [S ∈ T ′

D] ≥ 3
4

. By a union bound, for
n ≥ 2,

Pr
S∼Dn

[S ∈ T ′
D ∧ S ∈ TD ∧ S ∈ H] ≥ 1−

(
1− 3

4

)
−
(
1− 3

4
+ 3e−n

)
=

1

2
− 3e−n > 0. (C.41)
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This is because the distribution of ψ̄(S) with S ∼ Dn is the same as the distribution of n samples from
ψ̄(D) = D.

Let S be any set for which the three event above hold, ie.,

S ∈ T ′
D ∧ S ∈ Tϕ(D) ∧ S ∈ H. (C.42)

With fw = A(S), we have by combining the results of Lemmas C.2 and A.1 that LD(fw) ≤ e
− n

36dσ2 − e−n/8.
Further, by the second conclusion of Lemma C.2, we know that Lϕ(S)(fw) = 1, since fw misclassifies every
point in S. It follows that ϵunif ≥ 1− e

− n
36dσ2 − e−n/8.

Finally we prove Proposition 3.5 via a similar technique, but using the mapping ψ instead of ψ̄.
Proposition 3.5 (Polynomial Margin Bounds Fail for Linear Problem). Fix δ > 0. For any n, d, σ and
D ∈ Ωlinear

σ,d such that κlinear
gen + δ < κ < κlinear

uc − δ and d
n
≥ c, the following holds. Let A be any algorithm so

that A(S) outputs a (1− ϵ)-max-margin solution fw for any S ∈ (Rd × {1,−1})n. Let H be any hypothesis
class that is useful for A (as in Definition 2.2) on both Dlinear

µ,σ and Dlinear
−µ,σ . Suppose that there exists an

polynomial margin bound of integer degree p: that is, there is some G that satisfies for D̃ ∈ {D, ψ(D)},

Pr
S∼D̃n

[
sup
h∈H

LD̃(h)− LS(h) ≥
G

γ(h, S)p

]
≤ 1

4
.

Then with probability 1
2
− 3e−n over S ∼ Dn, the margin bound is weak even on the max-margin solution, that

is, G
γ∗(S)p ≥ max

(
1
c
, 1− e

− κ
36σ2 − e−n/8 − 3κ

c

)p
, which is more than an absolute constant.

We prove the following slightly stronger result, which implies Proposition 3.5, and gives the conditions depending
on the distance between κ and the boundaries κuc and κgen.
Proposition C.6. There exists a universal constant c such that the following holds. For any n, d, σ and
D ∈ Ωlinear

σ,d such that κ < κlinear
uc and d

n
≥ c

κ2(κuc−κ)4
, the following holds. Let ϵ = κ(κuc−κ)2

c
, and let A

be any algorithm so that A(S) outputs a (1− ϵ)-max-margin solution fw for any S ∈ (Rd × {1,−1})n. Let
H be any hypothesis class that is useful for A (as in Definition 2.2) on both Dlinear

µ,σ and Dlinear
−µ,σ . Suppose

that there exists an polynomial margin bound of integer degree p: that is, there is some G that satisfies for
D̃ ∈ {D, ψ(D)},

Pr
S∼D̃n

[
sup
h∈H

LD̃(h)− LS(h) ≥
G

γ(h, S)p

]
≤ 1

4
.

Then with probability 1
2
− 3e−n over S ∼ Dn, the margin bound is weak even on the max-margin solution, that

is, G
γ∗(S)p ≥ max

(
1
c
, 1− e

− κ
36σ2 − e−n/8 − 3κ

c

)p
, which is more than an absolute constant.

Proof. For any D ∈ Ω, let TD ⊂ 2(R
d×{−1,1})n be the set of training sets S on which the conclusion of

Lemma C.2 holds for D and S. Thus for any D ∈ Ω, PrS∼Dn [S ∈ TD] ≥ 1− 3e−n. Let H ⊂ 2(R
d×{−1,1})n

be the set of training sets S on which A(S) ∈ H. Thus for any D ∈ Ω, PrS∼Dn [S ∈ H] ≥ 3
4

.

For any D ∈ Ω, let T ′
D be the set on which

LD(h) ≤ LS(h) +
G

γ(h, S)p
∀h ∈ H. (C.43)

By assumption, for any D ∈ Ω, PrS∼Dn [S ∈ T ′
D] ≥ 3

4
.

Now fix any D = Dµ,σ,d ∈ Ω. By a union bound, with ψ = ψD ,

Pr
S∼Dn

[S ∈ T ′
D ∧ ψ(S) ∈ Tψ(D) ∧ ψ(S) ∈ H] ≥ 1−

(
1− 3

4

)
−
(
1− 3

4
+ 3e−n

)
=

1

2
− 3e−n.

(C.44)

This is because the distribution of ψ(S) with S ∼ Dn is the same as the distribution of n samples from ψ(D).

Let S be any set for which the three events above hold, ie.,

S ∈ T ′
D ∧ ψ(S) ∈ Tψ(D) ∧ ψ(S) ∈ H. (C.45)

With fw = A(ψ(S)), we have by combining the results of Lemmas C.2 and A.1 that Lψ(D)(fw) ≤ e
− n

9dσ2 ,
and thus LD(fw) ≥ 1 − e

− n
9dσ2 . Further, by the conclusion of Lemma C.2, we know that for (xj , yj) ∈ S,

with µ being the direction of the distribution ψ(D), for some C > 0,
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yjv
T ξj ≥

(
1 +

1

C
,
1

2κ

)
wTµ. (C.46)

Observe that γ∗(ψ(S)) ≤ 1
1−ϵ (w

Tµ+ yjv
T ξj), and thus letting b = wTµ and a = minj yjv

T ξj , we have

γ(fw, S)

γ∗(ψ(S))
≥ (1− ϵ)

a− b

a+ b
> (1− ϵ)

max
(
1 + 1

C
, 1
2κ

)
− 1

max
(
1 + 1

C
, 1
2κ

)
+ 1

≥ (1− ϵ)max

(
1

3C
, 1− 4κ

)
≥ max

(
1

4C
, 1− 2ϵ− 8κ

)
,

(C.47)
since C is a constant and ϵ is sufficiently small.

It follows that for any such S, we must have

G ≥ (1− e
− n

9dσ4 )γ(fw, S)
p ≥ (1− e

− n
9dσ4 )max

(
1

4C
, 1− 2ϵ− 8κ

)p
γ∗(ψ(S))p. (C.48)

Thus for the distribution ψ(D), with probability at least 1
2
− 3e−n, the margin bound yields a generalization

guarantee no better than

(1− e
− n

9dσ4 )max

(
1

4C
, 1− 2ϵ− 8κ

)p
≥ max

(
1

c
, 1− e

− κ
9σ2 − 9κ

)p
, (C.49)

where we have assumed c is a sufficiently large constant, and plugged in the assumption that ϵ ≤ κ
c

.

D PROOFS FOR XOR 2-LAYER NEURAL NETWORK PROBLEM

Throughout this section, since we are only concerned with the XOR problem, we will abbreviate Ω = Ωh,XOR
σ,d ,

κuc = κXOR,h
uc , and κgen = κXOR,h

gen .

In subsection D.1, we present a series of technical lemmas. In subsection D.3, we prove our main theorems for
the XOR problem, assuming the technical lemmas. In subsection D.4, we prove the technical lemmas.

D.1 TECHNICAL LEMMAS

Notation. Throughout the following subsection, we assume D = Dµ1,µ2,σ,d ∈ Ω is fixed. For a weight
matrix W ∈ Rm×d, we define U = WΠspan(µ1,µ2) and V = WΠspan(µ1,µ2)⊥ , where ΠT is the orthogonal
projector onto T . For i ∈ [m], let wi ∈ Rd, ui ∈ Rd and vi ∈ Rd denote the rows of W , U and V respectively.
We use E to denote the expectation over i uniformly in [m]. Let H+ : {i : ai > 0}, and H− : {i : ai < 0}

Recall that our samples x1, . . . , xn are of the form xj = zj + ξj , where zj ∈ {µ1,−µ1, µ2,−µ2} and
ξj ⊥ span(µ1, µ2). Let P1, P−1, N1 and N−1 denote the four clusters of points, that is,

P1 = {j ∈ [n] : zj = µ1} (D.1)
P−1 = {j ∈ [n] : zj = −µ1} (D.2)
N1 = {j ∈ [n] : zj = µ2} (D.3)

N−1 = {j ∈ [n] : zj = −µ2} (D.4)

Let P = P1 ∪ P−1, and let N = N1 ∪ N−1. Let Ξ ∈ Rd×n be the matrix with jth column ξj . Let
nmin := min (|N1|, |N−1|, |P1|, |P−1|), and nmax := max (|N1|, |N−1|, |P1|, |P−1|) such that we expect
nmin and nmax to be close to n

4
, as per the Lemma D.1 below.

Assume throughout the following section that h ∈ (1, 2) is fixed, and recall that we have defined the activation
ϕ(z) = max(0, z)h.

Lemma D.1. For any β > 0, with probability as least 1 − 8e−8nβ2

over S ∈ Dn, for all clusters C ∈
P1,P−1,N1,N−1, we have ∣∣∣|C| − n

4

∣∣∣ ≤ βn, (D.5)

and thus for β ≤ 1
8

,
nmax

nmin
=

max (|P1|, |P−1|, |N1|, |N−1|)
min (|P1|, |P−1|, |N1|, |N−1|)

≤ 1 + 16β. (D.6)

This lemma follows immediately from Hoeffding’s inequality on Bernoulli random variables: To prove it, one
can apply Hoeffding’s inequality four times (once for each cluster), and take a union bound.
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D.1.1 OVERVIEW OF TECHNICAL LEMMAS.

Our goal will be to analyze near-optimal solutions to the following optimization program which is defined using
the n training examples.

Definition D.2 (Opt 1).
Parameter: P1

Variables: W ∈ Rm×d

max γ (D.7)

Eiaiϕ(wTi xj)yj ≥ γ ∀j (D.8)

Ei∥wi∥2 ≤ P1 (D.9)

In this subsection, we define a chain of optimization programs beginning from Opt 1. Each subsequent
optimization problem becomes simpler and involves fewer variables. The chaining lemmas in this section
typically show two conclusions:

1. If a solution is near-optimal for the ith optimization program in the chain, then that solution can be
transformed into a [series of] solutions that are [mostly] near-optimal for the (i+ 1)th optimization
program in the chain.

2. An optimal solution to the ith optimization program in the chain can be converted into a near-optimal
solution to the (i− 1)th optimization program in the chain.

Ultimately, in Lemma D.15 we study the optimal solution to the final simplest optimization program, which
only includes 3 variables. From this, using the first conclusion of the lemmas, we are able to chain back through
the optimization programs to analyze certain properties of any W which is a near-max-margin solution. This
analysis ultimately leads to Lemmas D.17 and Lemma D.18, which are our main tools in proving generalization
and the impossibility of UC bounds.

The second conclusion of the lemmas allows us to construct a near-max-margin solution Ŵ which satisfies
certain properties allowing us to show the the limitations of margin bounds, and the failure of generalization for
near-max-margin solutions when κ < κgen. This is captured in Lemmas D.25 and D.19.

Chain of Optimization Programs. We define the chain of Optimization Programs. Unless otherwise
specified, all variables and parameters lie in R. Like Opt 1, these programs all assume that the set of training
examples S = {(xj , yj)}j∈[n] is fixed.

Definition D.3 (Opt 2).
Parameter: P2

Variables: {cij}i∈[m],j∈[n], {si}i∈H+ , {ti}i∈H−

max γ (D.10)
1

2
Ei∈H+ϕ(si + cij) ≥ γ ∀j ∈ P1 (D.11)

1

2
Ei∈H+ϕ(−si + cij) ≥ γ ∀j ∈ P−1 (D.12)

1

2
Ei∈H−ϕ(ti + cij) ≥ γ ∀j ∈ N1 (D.13)

1

2
Ei∈H−ϕ(−ti + cij) ≥ γ ∀j ∈ N−1 (D.14)

1

2
Ei∈H+

[
s2i +

1

dσ2

∑
j∈P

c2ij

]
+

1

2
Ei∈H−

[
t2i +

1

dσ2

∑
j∈N

c2ij

]
≤ P2 (D.15)

Definition D.4 (Opt 3).
Parameter: P3
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Variables: {cij}i∈H,j∈S1∪S−1 , {bi}i∈H

max γ (D.16)
1

2
Ei∈Hϕ(bi + cij) ≥ γ ∀j ∈ S1 (D.17)

1

2
Ei∈Hϕ(−bi + cij) ≥ γ ∀j ∈ S−1 (D.18)

Ei∈H

b2i + 1

dσ2

∑
j∈S1∪S−1

c2ij

 ≤ P3, (D.19)

where sets S1, S−1 ⊂ [n] with |S1| = |S−1| = nmin, and H ⊂ [m] with |H| = m
2

.

Definition D.5 (Opt 4).
Parameter: P4

Variables: {ci}i∈H , {di}i∈H , {bi}i∈H

max γ (D.20)
1

2
Ei∈Hϕ(bi + ci) ≥ γ (D.21)

1

2
Ei∈Hϕ(−bi + di) ≥ γ (D.22)

Ei∈H
(
b2i +

nmin

dσ2
(c2i + d2i )

)
≤ P4, (D.23)

where H ⊂ [m] with |H| = m
2

.

Definition D.6 (Opt 5: Trivariate Simplification).
Parameter: P5

Variables: c, d, b

max
1

4
(ϕ(b+ c) + ϕ(−b+ d)) (D.24)

b2 +
κ̂

4
(c2 + d2) ≤ P5, (D.25)

where κ̂ = 4nmin
dσ2 .

For i ∈ {1, 2, 3, 4, 5}, let Di denote the domain of parameters and variables in the program Opt i. For an
instance of program Opt i in Di, we say it is (1− ϵ)-optimal if the objective value given by the variables is at
least (1− ϵ) times the maximum objective value for the parameters in the instance. We use Ii ∈ Di to denote
an instance of the program Opt i. When such an instance is fixed, we will freely use the names of the parameters
and the variables associated with Opt i to refer to the variables and parameters of Ii. For instance, if I1 ∈ D1,
then W is the variable associated with I1.

D.1.2 CHAINING LEMMAS.

Throughout the following section, we globally assume that d
n
≥ 4C2

B.1 and ϵ ≤ 1
4

, such that on the condition
that Lemma B.1 holds, we have CB.1

√
n
d
≤ 1

2
. Such conditions are assumed in the theorems that follow from

these lemmas, so there is no harm in making the assumption now. All of the lemmas in this section are proved in
Section D.4.2.

Lemma D.7 (Opt 1 ↔ Opt 2). Assume the conclusion of Lemma B.1 holds for Ξ.

Define the mapping ψ12 : D1 → D2 as follows. Given input I1 with variable W = U + V , output:

• P2 = P1

(
1 + CB.1

√
n
d

)
• cij = vTi ξj for all i ∈ [m], j ∈ [n]

• si = µT1 wi for all i ∈ H+

• ti = µT2 wi for all i ∈ H−

Define the mapping ψ21 : D1 → D2 as follows: Given input I2, output I1 as follows:

• P1 = P2

1−CB.1

√
n
d

.
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• For all i ∈ H+, let ui = siµ1, and choose vi to be the min-norm vector such that vTi ξj = cij for all
j ∈ P and vTi ξj = 0 for all j ∈ N .

• For all i ∈ H−, let ui = tiµ2, and choose vi to be the min-norm vector such that vTi ξj = cij for all
j ∈ N and vTi ξj = 0 for all j ∈ P .

Then with ϵ′ =
√

1− (1− ϵ)
(
1− CB.1

√
n
d

)h,

1. If I1 ∈ D1 is (1 − ϵ)-optimal, then ψ12(I1) is 1 − ϵ′-optimal on Opt 1 and has objective value at
most 1

1−ϵ′ larger than the objective of I1.

2. If I2 ∈ D2 is (1− ϵ)-optimal, then ψ21(I2) is 1− ϵ′-optimal on Opt 1.

The following lemma states that in a near-optimal solution to Opt 1, most of the contribution to the norm
constraint comes from the the variables that get used in the mapping ψ12 to Opt 2.
Lemma D.8. Assume the conclusion of Lemma B.1 holds for Ξ. Then any solution W = U + V to Opt 1 with
∥W∥ = 1 that is (1− ϵ)-optimal must satisfy:

1. 1
2
Ei∈H+

[
∥µT2 wi∥2 + 1

dσ2

∑
j∈N (vTi ξj)

2
]

+ 1
2
Ei∈H−

[
∥µT1 wi∥2 + 1

dσ2

∑
j∈P (vTi ξj)

2
]

<

(ϵ′D.8)
2

2. For at least a 1− ϵ′D.8 fraction of the data points j, we have 1
2
Ei:sign(ai)=−yj

[
(vTi ξj)

2
]
≤ 1

κ
· ϵ′D.8.

where ϵ′D.8 = ϵ′D.8(ϵ) :=
√

2CB.1
√

n
d
+ 2ϵ.

Lemma D.9 (Opt 2 ↔ Opt 3). Define the mapping ψ23 : D2 → D3 ×D3 as follows. Given input I2, output
I(1)
3 , I(2)

3 , where for I(1)
3 :

• H := H+

• P3 := 1
2
Ei∈H+

(
s2i +

1
dσ2

∑
j∈P c

2
ij

)
• Let S1 be an arbitrary set of nmin elements of P1, and let S−1 be an arbitrary set of nmin elements of
P−1. Define cij to be the same as in I2 for all j ∈ S1 ∪ S−1, i ∈ H+.

• bi = si for i ∈ H+,

and for I(2)
3 :

• H := H−

• P3 := Ei∈H−

(
t2i +

1
dσ2

∑
j∈N c2ij

)
• Let S1 be an arbitrary set of nmin elements of N1, and let S−1 be an arbitrary set of nmin elements

of N−1. Define cij to be the same as in I2 for all j ∈ S1 ∪ S−1, i ∈ H−.

• bi = ti for i ∈ H−,

Define the mapping ψ32 : D3 → D2 as follows. Given input I3, output I2, where

• P2 := P3

(
nmax
nmin

)
• Define an arbitrary bisections π+ and π− from H+ and H− respectively to H . Similarly define

surjections ρ+,1 : P1 → S1, ρ−,1 : P−1 → S−1, ρ+,1 : N1 → S1, ρ−,1 : N−1 → S−1, such that
for x ∈ {1,−1}, Ej∈PxEi∈Hc2iρ+,x(j) ≤ Ej∈SxEi∈Hc2ij , and similarly, Ej∈NxEi∈Hc2iρ−,x(j) ≤
Ej∈SxEi∈Hc2ij . For i ∈ H+, define si := bπ+(i) and cij := cπ+(i)ρ+,x(j) for all x ∈ {1,−1} and
j ∈ Px. For i ∈ H−, define ti := bπ−(i), and cij := cπ−(i)ρ+,x(j) for all x ∈ {1,−1} and j ∈ Nx.
Note that we here the cij variables we are defining come belong to I2, and they are define in terms of
the cij variables from I3.

Then with ϵ′ =

√
1− (1− ϵ)

(
nmax
nmin

)−h
25



Published as a conference paper at ICLR 2023

1. If I2 ∈ D2 is (1− ϵ)-optimal, then each instance of ψ23(I2) is (1− ϵ′)-optimal on Opt 3, and has
objective at most 1

1−ϵ′ times the objective of I2.

2. If I3 ∈ D3 is (1− ϵ)-optimal, then ψ32(I3) is (1− ϵ′)-optimal on Opt 2.

Lemma D.10 (Opt 3 ↔ Opt 4). Define the mapping ψ34 : D3 → Dnmin
4 as follows. Arbitrarily choose a list of

nmin pairs p = (j, j′) ∈ S1 × S−1, such that each j ∈ S1 appears in one pair, and each j′ ∈ S−1 appears in
one pair. Given input I3, output I(p)

3 for each pair p as follows:

• P4 := Ei∈H
(
b2i +

nmin
dσ2 (c2ij + c2ij′)

)
• Keep H and all the bi the same as in I3.

• Put ci := cij and di := cij′ for all i ∈ H .

In reverse, define the mapping ψ43 : D4 → D3 as follows:

• Put P3 := P4.

• Keep H and all the bi the same as in I3.

• For all i ∈ H , put cij := ci for all j ∈ S1 and cij := di for all j ∈ S−1.

Then:

1. If I3 ∈ D3 is (1− ϵ)-optimal, then on at least a 1−
√
ϵ fraction of the n

4
instances of ψ34(I4), the

instance is (1−
√
ϵ)-optimal on Opt 4 and has objective value at most 1

1−
√
ϵ

larger than the objective
of I3.

2. If I4 ∈ D4 is (1− ϵ)-optimal, then ψ43(I4) is (1−
√
ϵ)-optimal on Opt 3.

Lemma D.11 (Opt 5 ↔ Opt 4). define the mapping ψ45 : D4 → D
m
2
5 as follows. Given input I4, output m

2

instances I(i)
5 for i ∈ H with

• P
(i)
5 := b2i +

κ̂
4
(c2i + d2i ).

• (b, c, d)(i) = (bi, ci, di).

Define the mapping ψ54 : D5 → D4 as follows. Given input I5, output:

• P4 := P5

• For half of the i ∈ H , put (bi, ci, di) = (b, c, d).

• For the other half of the i ∈ H , put (bi, ci, di) = (−b, d, c).

Then:

1. If I4 ∈ D4 is (1− ϵ)-optimal, then the average objective value of the m
2

instances of ψ45(I4) is at
most 1

1−ϵ times larger than the objective of I4.

2. If I5 ∈ D5 is (1− ϵ)-optimal, then ψ54(I5) is (1−
√
ϵ)-optimal on Opt 4.

Our main tool in proving these chaining lemmas is the following analysis lemma. We first state a definition.
Definition D.12. An optimization program is q-homogeneous with with respect to a parameter P if the optimal
objective equals CP q , for some fixed value C.
Lemma D.13. Consider two optimization programs Opt A and Opt B with domains DA and DA with are
q-homogeneous with respect to parameters PA and PB respectively. Suppose for some positive integer k, we
have a mapping ψAB : DA → Dk

B and ψBA : DB → DA. Suppose for any feasible instances IA ∈ DA and
IB ∈ DB:

1. All k instances of ψAB(IA) are feasible, and have at least the same objective value as IA. Similarly
ψBA(IB) is feasible and has at least the same objective value as IB .

2. The average parameter PB of the k instances of ψAB(IA) it at most (1 + δ) times the parameter PA
of IA.
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3. PA(ψBA(IB)) ≤ (1+ δ)PB(IB). (Here the notation P (I) refers to the parameter P in an instance
I.)

Then letting ϵ′ =
√

1− (1− ϵ)(1 + δ)−2q ,

1. If IA is (1− ϵ)-optimal, then for at least a 1− ϵ′ fraction of the k instances ψAB(IB) are (1− ϵ′)-
optimal and have objective value at most 1

1−ϵ′ times the objective of IA.

2. If IB is (1− ϵ)-optimal, then ψBA(IB) is (1− ϵ′)-optimal.

In particular, if δ = 0, ϵ′ =
√
ϵ.

D.1.3 ANALYSIS OF OPT 5: TRIVARIATE PROGRAM.

The lemmas in this section are proved in Section D.4.3.

Define γ0(κ) := 2ϕ
(√

2
κ

)
, and let γ∗(κ) := ϕ

(√
κ

4+κ
+
√

16
κ(4+κ)

)
. It is straightforward to check that

γ0(κ̂) is 4 times the optimum of Opt 5 when P5 = 1, and we impose the additional constraint that b = 0.
Similarly, γ∗(κ̂) is 4 times the optimum of Opt 5 when we impose the additional constraint that d = 0.

Recall that we have defined κgen to be the threshold at which γ∗(κgen) = γ0(κgen), and κuc to be the threshold in

κ at which
√

κ
4+κ

=
√

16
κ(4+κ)

. Observe that κuc = 4.

The following lemma yields the optimal solution to the program Opt 5.

Lemma D.14. Let k := κ̂
4

and assume P5 = 1. If k > κgen/4, then if we impose the additional constraint
that b ≥ 0, the supremum of Opt 5 (in Definition D.6) and it is achieved uniquely at the point where d = 0,

b =
√

k
1+k

, and c =
√

1
k(1+k)

. Outside of any neighborhood of this point, the supremum is bounded away from
from the supremum of Opt 5.

If k < κgen/4, then supremum is achieved by some optimal point with b = 0.

Lemma D.15. There exists strictly positive constants ϵ = ϵ(κ̂), η = η(κ̂), and q = q(κ̂), such that any
(1− ϵ)-optimal solution to Opt 5 (in Definition D.6), the following holds. If κ̂ > κgen, then

1. ϕ(b) ≥ ηϕ(b+ c); and

2. ϕ(−b) ≥ ηϕ(−b+ d).

If additionally κ̂ < κuc, then any such solution also satisfies

1. ϕ(b) ≤ 1−q
2h
ϕ(b+ c); and

2. ϕ(−b) ≤ 1−q
2h
ϕ(−b+ d).

Finally, if κ̂ < κgen, then at the optimum, ϕ(b) = ϕ(−b) = 0.

The following lemma is a more tailored version of a chaining lemma between Opt 4 and Opt 5, which explicitly
leverages the previous lemmas on the solution of Opt 5.

Lemma D.16 (Opt 4 → Opt 5). Suppose κ̂ > κgen. There exists positive constants ϵ = ϵ(κ̂), η = η(κ̂), and
q = q(κ̂) such that for any (1− ϵ)-optimal solution to the program Opt 4 in Definition D.5,

Ei∈Hϕ(bi) ≥
η

2
Ei∈Hϕ(bi + ci); (D.26)

Ei∈Hϕ(−bi) ≥
η

2
Ei∈Hϕ(−bi + di). (D.27)

(D.28)

If additionally κ̂ < κuc,

Ei∈H [ϕ(bi)] ≤
(
1− q/2

2h

)
Ei∈H [ϕ(bi + ci)]; (D.29)

Ei∈H [ϕ(−bi)] ≤
(
1− q/2

2h

)
Ei∈H [ϕ(−bi + di)]. (D.30)

Here η(κ̂), q(κ̂) > 0 are the constants from Lemma D.15.
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D.2 KEY LEMMAS FOR MAIN RESULTS.

Putting together the results of Lemmas D.7-D.16, we carry out the chain of reductions from Opt 1 though Opt 5
to achieve the following results.

Lemma D.17 (Generalization Lemma). Assume κ > κgen. There exists strictly positive constants ϵ = ϵ(κ)
and c = c(κ) and η = η(κ) such that for any solution to Opt 1 which achieves a margin γ that is at least
(1− ϵ)-optimal, the following holds. For d

n
≥ c, with probability 1− 3e−n/c over the training data, we have

1. 1
2
Ei∈H+ [ϕ(µ

T
1 wi)] ≥ γη

2

2. 1
2
Ei∈H+ [ϕ(−µT1 wi)] ≥

γη
2

3. 1
2
Ei∈H− [ϕ(µT2 wi)] ≥ γη

2

4. 1
2
Ei∈H− [ϕ(−µT2 wi)] ≥ γη

2
.

Proof. Condition on the event in Lemma B.1 holding for Ξ and the event in Lemma D.1 holding for β =
1
c1

, for some constant c1 = c1(κ) > 8 to be chosen later. These events occur with probability at least

min(0, 1 − 3e−n − 8e−8n/c21) ≥ 1 − 3e−n/(c
2
1+1) for n ≥ 1. If we begin with an instance I1 which is

(1− ϵ)-optimal on Opt 1, then:

1. I2 := ψ12(I1) is 1 − ϵ2 :=

√(
(1− ϵ)

(
1− CB.1

√
n
d

)h) ≥

√(
(1− ϵ)

(
1− CB.1

√
1
c

)h)
-

optimal on Opt 2 (Lemma D.7)

2. Both instances (I(1)
3 , I(2)

3 ) := ψ23(I2) are 1 − ϵ3 := 1 −
√

1− (1− ϵ)
(
nmax
nmin

)−h
≥ 1 −√

1− (1− ϵ)
(
1 + 16

c1

)−h
-optimal on Opt 3 (Lemma D.9)

3. For at least one pair p = (j, j′) ∈ P1 × P−1, the instance I(p)
4 of ψ34(I(1)

3 ) indexed by that pair is
1− ϵ4 := 1−√

ϵ3-optimal on Opt 4. (Lemma D.10). The same holds for some (j, j′) ∈ N1 ×N−1

on ψ34(I(2)
3 ).

Now choose c1 large enough and ϵ small enough constants such that for c ≥ c1, we have κ̂ =
(
nmin
nmax

)
κ ≥

κgen+κ

2
, and ϵ4 is less than the value min

κ′∈
[
κgen+κ

2
,κ
] ϵ(κ′) from Lemma D.16. Thus applying Lemma D.16,

we observe that on the pair (j, j′) ∈ P1 × P−1, we have

Ei∈Hϕ(bi) ≥
η

2
Ei∈Hϕ(bi + ci) ≥

ηγ

2
; (D.31)

Ei∈Hϕ(−bi) ≥
η

2
Ei∈Hϕ(−bi + di) ≥

ηγ

2
, (D.32)

(D.33)

where γ is the objective value of I((j,j′))
4 , and η = η(κ) := min

κ′∈
[
κgen+κ

2
,κ
] ηD.16(κ′) where ηD.16(·) is the

positive constant called η from Lemma D.16. By definition of the mapping ψ34, this means that in I(1)
3 ,

Ei∈Hϕ(bi) ≥
ηγ

2
; (D.34)

Ei∈Hϕ(−bi) ≥
ηγ

2
, (D.35)

(D.36)

where γ is the objective value of I(1)
3 . By definition of the mapping ψ23, this means that in I2,

Ei∈H+ϕ(si) ≥
ηγ

2
; (D.37)

Ei∈H+ϕ(−si) ≥
ηγ

2
, (D.38)

(D.39)
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where γ is the objective value of I2. Finally by definition of ψ12, in I1,

1

2
Ei∈H+ [ϕ(µ

T
1 wi)] ≥

γη

2
(D.40)

1

2
Ei∈H+ [ϕ(−µ

T
1 wi)] ≥

γη

2
, (D.41)

where γ is the objective value of Opt 1. This yields the first two conclusions of the lemma. The second follows
via an identical argument on the pair (j, j′) ∈ N1×N−1. Choosing c = c21+1 yields the result with probability
at least 1− 3e−n/c.

We can now put together the results of the chain of reductions to prove the following:

Lemma D.18 (Phenomenon Lemma). Assume κgen < κ < κuc. For any constant δ > 0, there exists strictly
positive constants ϵ = ϵ(κ, δ) and c = c(κ, δ) and q = q(κ) such that for any solution to Opt 1 which achieves
a margin γ that is at least (1− ϵ)-optimal, the following holds. For d

n
≥ c, with probability 1− 3e−n/c over

the training data,

1

2
Ei∈H+ [ϕ(u

T
i µ1)] ≤

γ(1− q/4)

2h
; (D.42)

1

2
Ei∈H− [ϕ(uTi µ2)] ≤

γ(1− q/4)

2h
, (D.43)

and for at least a 1− δ fraction of j ∈ [n],

1

2
Ei:sign(ai)=yj [ϕ(v

T
i xj)] ≥

γ(1 + q/4)

2h
. (D.44)

Proof. Condition on the event in Lemma B.1 holding for Ξ and the event in Lemma D.1 holding for β =
1
c1

, for some constant c1 = c1(δ, κ) > 8 to be chosen later. These events occur with probability at least

min(0, 1− 3e−n − 8e−8n/c21) ≥ 1− 3e−n/(c
2
1+1). If we begin with an instance I1 which is (1− ϵ)-optimal

on Opt 1, then:

1. I2 := ψ12(I1) is 1 − ϵ2 :=

√(
(1− ϵ)

(
1− CB.1

√
n
d

)h) ≥

√(
(1− ϵ)

(
1− CB.1

√
1
c

)h)
-

optimal on Opt 2 (Lemma D.7)

2. Both instances (I(1)
3 , I(2)

3 ) := ψ23(I2) are 1 − ϵ3 := 1 −
√

1− (1− ϵ)
(
nmax
nmin

)−h
≥ 1 −√

1− (1− ϵ)
(
1 + 16

c1

)−h
-optimal on Opt 3 (Lemma D.9)

3. Let {I((p)
4 }p∈L1 := ψ34(I(1)

3 ) be the nmin instances of Opt 4 indexed by some list L1 of nmin pairs
p ∈ P1 × P−1. Similarly let {I((p)

4 }p∈L2 := ψ34(I(2)
3 ) for some list of nmin pairs in N1 ×N−1.

For at least and 1 − ϵ4 := 1 − √
ϵ3 fraction of pairs (j, j′) in L1, I((j,j′))

4 is 1 − ϵ4-optimal on
Opt 4. The same hols for a 1 − ϵ4 fraction of the pairs in L2. (Lemma D.10). For each cluster in
P1,P−1,N1,N−1, at least a nmin

nmax
≥ 1

1+ 16
c1

fraction of the points j in that cluster appear in a pair in

one of the lists L1 or L2.

Now choose c1 large enough and ϵ small enough constants such that for c ≥ c1, we have κ̂ =
(
nmin
nmax

)
κ ≥

κgen+κ

2
, and ϵ4

1+ 16
c1

is both less than δ and than min
κ′∈

[
κgen+κ

2
,κ
] ϵ(κ′), where ϵ(·) is the function from

Lemma D.16.

Applying this Lemma D.16, we observe that on at least a 1− ϵ4 fraction of pairs (j, j′) in the list L1, we have

Ei∈H [ϕ(bi)] ≤
(
1− q/2

2h

)
Ei∈H [ϕ(bi + ci)]; (D.45)

Ei∈H [ϕ(−bi)] ≤
(
1− q/2

2h

)
Ei∈H [ϕ(−bi + di)], (D.46)
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where q = q(κ) := min
κ′∈

[
κgen+κ

2
,κ
] qD.16(κ′) where qD.16(·) is the positive constant called q from

Lemma D.16. We first use this to prove the first conclusion the lemma for j (the argument is analogous
for j′). By definition of the mapping ψ34, this means that in I(1)

3 ,

Ei∈H [ϕ(bi)] ≤
(
1− q/2

2h

)
Ei∈H [ϕ(bi + cij)]; (D.47)

By definition of the mapping ψ23, this means that in I2,

Ei∈H+ [ϕ(si)] ≤
(
1− q/2

2h

)
Ei∈H [ϕ(si + cij)]; (D.48)

Finally, by definition of the mapping ψ12, this means that in I1,

Ei∈H+ [ϕ(µ
T
1 xj)] ≤

(
1− q/2

2h

)
Ei∈H+ [ϕ(µ

T
1 xj + vTi ξj)] =

(
1− q/2

2h

)
Ei∈H+ [ϕ(w

T
i xj)]. (D.49)

Now by Lemma B.2, for any values s, t, we have ϕ(s+ t) ≤ (ϕ(s) + ϕ(t))2h−1, and thus

Ei∈H+ [ϕ(u
T
i xj) + ϕ(vTi ξj)] ≥ 2−h+1Ei∈H+ [ϕ(w

T
i xj)] (D.50)

So by Equation D.49, we have

Ei∈H+ [ϕ(v
T
i ξj)] ≥

(
1 + q/2

2h

)
Ei∈H+ [ϕ(w

T
i xj)]. (D.51)

Now to relate Ei∈H+ [ϕ(w
T
i xj)] to γ, observe that by Lemma D.7, D.9, and D.10, the objective value of I(j,j′)

4 ,
which equals min

(
1
2
Ei∈H+ϕ(w

T
i xj),

1
2
Ei∈H+ϕ(w

T
i xj′)

)
, is at least γ and at most γ

(1−ϵ2)(1−ϵ3)(1−ϵ4)
. Now

we also know by the first conclusion of Lemma D.11 that ψ45(I(j,j′)
4 ) produces some instances I(i)

5 for i ∈ H+

with objective values γ(i), for which

Ei∈H+γ
(i) ≤ 1

1− ϵ4
min

(
1

2
Ei∈H+ϕ(w

T
i xj),

1

2
Ei∈H+ϕ(w

T
i xj′)

)
. (D.52)

Plugging in the fact that γ(i) = 1
4
(ϕ(bi + ci) + ϕ(−bi + di)) =

1
4

(
ϕ(wTi xj) + ϕ(wTi xj′)

)
, we have

1

4
Ei∈H+

(
ϕ(wTi xj) + ϕ(wTi xj′)

)
≤ 1

1− ϵ4
min

(
1

2
Ei∈H+ϕ(w

T
i xj),

1

2
Ei∈H+ϕ(w

T
i xj′)

)
. (D.53)

Since min(α, β) ≥ (1− ρ)a+b
2

implies that a, b ∈ max(a, b) ≤ 1+ρ
1−ρ , we must have that

1

2
Ei∈H+ϕ(w

T
i xj) ∈ γ

[
1,

1 + ϵ4
(1− ϵ2)(1− ϵ3)(1− ϵ4)2

]
. (D.54)

Thus for ϵ small enough in terms of q, we have ϵ2, ϵ3, and ϵ4 all small enough that from Equations D.49 and
D.51, we have

Ei∈H+ [ϕ(µ
T
1 xj)] ≤

(
1− q/2

2h

)
Ei∈H+ [ϕ(w

T
i xj)] ≤

(
1− q/4

2h−1

)
γ (D.55)

Ei∈H+ [ϕ(v
T
i ξj)] ≥

(
1 + q/2

2h

)
Ei∈H+ [ϕ(w

T
i xj)] ≥

(
1 + q/4

2h−1

)
γ. (D.56)

The argument holds for j′ in the pair with j, and we can also repeat an analogous argument for the 1 − ϵ4
fraction of pairs in the list of pairs L2 from N1 ×N−1. Now at least a 1− δ fraction of examples j lie in a pair
p from L1 or L2 for which I(p)

4 is (1− ϵ4)-optimal. This yields the second part of the lemma which involves
specific data points. The first point follows for the fact that EquationD.55 only needs to hold for a single example
j in each of the four clusters. Choosing c = c21 + 1 yields the result with probability at least 1− 3e−n/c.

Lemma D.19 (No Generalization Lemma). For any κ < κgen and ϵ > 0, there exists some positive constant
c(ϵ), such that if d

n
≥ c, with probability at least 1 − 3e−n/c over S ∼ Dn, there exists a classifier W with

∥W∥ = 1 such that

1. γ(fW , S) ≥ (1− ϵ)γ∗(S)
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2. U = 0.

Proof. We work backwards from Opt 5 through Opt 1. Condition on the event in Lemma B.1 holding for Ξ and
the event in Lemma D.1 holding for β = 1

c1
, for some constant c1(ϵ) > 8 to be chosen later. Given an optimal

solution I∗
5 to Opt 5, we can construct an instance I1 = ψ21(ψ32(ψ43(ψ54(I5)))), which is ϵ′-optimal over all

solutions W ′ with the same norm for ϵ′ =
√

1− (1− ϵ̂)(1− CB.1
√

n
d
)h, where ϵ̂ =

√
1−

(
nmax
nmin

)−h
≤√

1−
(
1 + 16

c1

)−h
. This can be seen via Lemmas D.7, D.9, D.10, D.11, which show that at each step of the

chain, we do not lose any optimality expect from from Opt 3 to Opt 2 and from Opt 2 to Opt 1.

Now recall from Lemma D.15 that since κ < κgen, for large enough c1, we have κ̂ < κgen, and thus the optimal
solution to Opt 5 has b = 0. Applying the four mappings above, in the instance I1, the variable W = U + V
has U = 0. Taking c1 large enough such that for c ≥ c1, we have ϵ′ ≤ ϵ. If we choose c(ϵ) = c21 + 1, then the
desired events hold with probability at least 1− 3e−n/c (see eg. Lemma D.17 for the computation). Scaling W
to have ∥W∥ = 1 concludes the lemma.

D.3 PROOFS OF MAIN RESULTS

Using Lemma D.17, Lemma D.8, and Lemma A.2, we can prove Theorem 3.2. We restate the theorem for the
reader’s convenience.
Theorem 3.2 (Extremal-Margin Generalization for XOR on Neural Network). Let h ∈ (1, 2), and let δ > 0.
There exist constants ϵ = ϵ(δ) and c = c(δ) such that the following holds. For any n, d, σ and D ∈ ΩXOR

σ,d

satisfying κ = n
dσ2 ≥ κXOR,h

gen + δ and d
n

≥ c, then with probability 1 − 3e−n/c over the training set
S ∼ Dn, for any two-layer neural network with activation function reluh and weight matrix W that is a
(1− ϵ)-max-margin solution (as in Definition 2.5), we have LD(fW ) ≤ e

− 1
cσ2 .

Proof of Theorem 3.2. First note that κgen = κXOR,h
gen . Let W = U + V be the decomposition of W into the

signal space and the orthogonal space, such that V ⊥ span(µ1, µ2). It suffices to consider W with ∥W∥ = 1.
Let γ be the margin achieved by fW , and observe that γ is at least a positive constant since we can achieve a
margin of 1

4
by choosing a solution that only uses components in the signal subspace.

Recall that ∥U∥ < 1 and ∥V ∥ < 1, and consider a random x ∼ D.

Choosing to c0 = c(κ) and ϵ(κ) to be the values from Lemma D.17, if d
n
≥ c0, with probability 1− 3e−n/c0

over the training data (and not x), the conclusion of Lemma D.17 and Lemma D.8 hold, and thus we have for
such a W :

1. 1
2
Ei:sign(ai)=y[ϕ(u

T
i x)] ≥ γη(κ)

2
by Lemma D.17, since κ > κgen.

2. 1
2
Ei:sign(ai)=−y[ϕ(u

T
i x)] ≤

(
2ϵ+ 2CB.1

√
n
d

)h
2 . This is by Lemma D.8, we have

1
2
Ei:sign(ai)=−y[∥uTi z∥2] ≤ 2ϵ + 2CB.1

√
n
d
, and thus by he homogeneity of the activation,

1
2
Ei:sign(ai)=−y[ϕ(u

T
i x)] ≤

(
2ϵ+ 2CB.1

√
n
d

)h
2 maxX:E[X2]=1 E[ϕ(X)].By Jenson’s inequality

maxX:E[X2]=1 E[ϕ(X)] ≤ maxX:E[X2]=1

(
E[X2]

)h
2 = 1.

Thus with probability 1− 3e−n/c0 over the training data,

yfU (x) = Ei:sign(ai)=y[ϕ(u
T
i x)]− Ei:sign(ai)=−y[ϕ(u

T
i x)] ≥

γη(κ)

2
−
(
2ϵ+ 2CB.1

√
n

d

)h
2

. (D.57)

For some constant c1 = c1(κ), by Lemma A.2, with probability 1− e−
1

c1σ2 over x, |fW (x)− fU (x)| < γη(κ)
4

.
Here we plugged in t = 1

100(γ
2
h +γ)

(
η(κ)

2
h +η(κ)

)
σ2

to Lemma A.2, and note that γ is at least a constant.

Thus for d
n
≥ c2 for some c2 = c2(κ), we have with probability at least 1− 3e−n/c0 ,

γη(κ)

2
−
(
2ϵ+ 2CB.1

√
n

d

)h
2

≥ γη(κ)

4
,

and thus the loss is at most 1− e
− 1

c1σ2 = 1− e
− κd

c1n . Choosing c = max(c0, c1, c2) yields the theorem.
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We now use Lemma D.18, Lemma D.8, and Lemma A.2 to prove Proposition 3.4(the XOR part) and Theorem 3.6
on the limitations of uniform convergence and inverse margin bounds.

To prove these results, we will demonstrate two phenomenons:

1. Given a near max-margin classifier fW for a a certain “opposited” dataset ψ̄(S), the classifier fW
completely misclassifies a certain the data set S while still achieving good margin on the distribution
from which S and ψ̄(S) are drawn.

2. Given a near max-margin classifier fW for a set S, the classifier fW correctly classifies a certain
“opposite” dataset ψ(S) while still achieving good margin on this opposite dataset.

We will use the first phenomenon to prove Proposition 3.4, and we will define the mapping ψ̄ as follows:
Definition D.20. For D = Dµ1,µ2,σ,d ∈ Ω, define the map ψ̄ : Rd → Rd to keep ξ the same, but map z to be
in an orthogonal direction, and reverse y as follows:

ψ̄((x, y)) =


(µ2 + ξ, 1) (x, y) = (µ1 + ξ,−1)

(−µ2 + ξ, 1) (x, y) = (−µ1 + ξ,−1)

(µ1 + ξ,−1) (x, y) = (µ2 + ξ, 1)

(−µ1 + ξ,−1) (x, y) = (−µ2 + ξ, 1).

(D.58)

We will use the second phenomenon to prove Proposition 3.6, and we will define the mapping ψ as follows:
Definition D.21. For D = Dµ1,µ2,σ,d ∈ Ω, define the map ψ : Rd → Rd to keep ξ the same, but map z to be
in an orthogonal direction, as follows:

ψ((x, y)) =


(µ2 + ξ, 1) (x, y) = (µ1 + ξ, 1)

(−µ2 + ξ, 1) (x, y) = (−µ1 + ξ, 1)

(µ1 + ξ,−1) (x, y) = (µ2 + ξ,−1)

(−µ1 + ξ,−1) (x, y) = (−µ2 + ξ,−1).

(D.59)

When it is clear that we have fixed D, we will just use ψ or ψ̄ to denote this mapping. Otherwise, we will specify
that we mean the mapping associated with D by denoting it ψD (or ψ̄D).

For ϕ ∈ {ψ, ψ̄}, we abuse notation and denote (ϕ(x), ψ(y)) := ϕ(x, y), and for a set S, use ϕ(S) to denote the
element-wise application of ϕ. For D = Dµ1,µ2,σ,d, we also denote ψ(D) = Dµ2,µ1,σ,d to be the distribution
with the opposite labeling ground truth. Thus the following claim is immediate:
Claim D.22. Fix D ∈ Ω. For any W , we have LD(fW ) = 1− Lψ(D)(fW ).

Observe also that ψ is a measure preserving bijection from D to ψ(D), and that ϕ̄(D) = D.

To prove Proposition 3.4 we will use the following lemma, which shows that with high probability, any
near-max-margin classifier does well on the “opposite” dataset, but has poor test loss on the opposite distribution.
Lemma D.23. Suppose κgen ≤ κ ≤ κuc. Let A be any algorithm which returns a (1− ϵ)-max margin solution.
For a dataset S ∼ Dn = Dn

µ1,µ2,σ,d
, consider the classifier W = A(S). For any constant δ > 0, there exists

constants ϵ(δ, κ) and c = c(κ, δ) such that if ϵ ≤ ϵ(δ, κ) and d
n
≥ c, with probability at least 1− 3e−n/c over

S ∼ Dn, we have

1. Lψ(D)(fW ) ≥ 1− e−
κd
cn .

2. Lψ(S)(fW ) ≤ δ.

3. Lψ̄(S)(fW ) ≥ 1− δ.

Proof. The first statement follows from Theorem 3.2, since the probability of classifying a example from ψ(D)
correctly is the same as the probability of misclassifying a example from D (Claim D.22).

We now prove the second statement. We expand the margin on the examples in ψ(S). For clarity, we will
assume we are expanding on a example from ψ(xj) where j ∈ P1, such that by definition of ψ, we have
ψ(xj) = µ2 + ξj . The same argument will apply to examples mapped from any other cluster by interchanging
the roles of the four vectors µ1,−µ1, µ2,−µ2 and the two sets H+ and H− accordingly.

ψ(yj)fW (ψ(xj)) = Ei[yjϕ(wTi ψ(xj))] (D.60)

=
1

2
Ei∈H+=yj [ϕ(w

T
i µ2 + vTi ξj)]−

1

2
Ei∈H− [ϕ(wTi µ2 + vTi ξj)] (D.61)
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By Lemma D.26 (second statement), we have the following:

|Ei∈H+ [ϕ(w
T
i µ2 + vTi ξj)]− Ei∈H+ [ϕ(v

T
i ξj)]| (D.62)

≤ 2Ei∈H+

[
ϕ(vTi ξj)

2 + 1
]√

Ei∈H+ [(wTi µ2)] + h
(
Ei∈H+ [(w

T
i µ2)

2]
)h

2
.

(D.63)

Similarly appealing to Lemma D.26 (first statement), we have

|Ei∈H− [ϕ(wTi µ2 + vTi ξj)]− Ei∈H− [ϕ(wTi µ2)]| (D.64)

≤
√

Ei∈H− [4(wTi µ2)2 + 2]
√

Ei∈H− [(vTi ξj)
2] + h

(
Ei∈H− [(vTi ξj)

2]
)h

2

(D.65)

≤
(
2∥U∥+

√
2
)√

Ei∈H− [(vTi ξj)
2] + h

(
Ei∈H− [(vTi ξj)

2]
)h

2 (D.66)

(D.67)

Thus

ψ(yj)fW (ψ(xj)) =
1

2
Ei∈H+ [ϕ(w

T
i µ2 + vTi ξj)]−

1

2
Ei∈H− [ϕ(wTi µ2 + vTi ξj)] (D.68)

≥ 1

2
Ei∈H+ [ϕ(v

T
i ξj)]−

1

2
Ei∈H− [ϕ(wTi µ2)]−

1

2
Ej , (D.69)

where

Ej := 2Ei∈H+

[
ϕ(vTi ξj)

2 + 1
]√

Ei∈H+ [(wTi µ2)2] + h
(
Ei∈H+ [(w

T
i µ2)

2]
)h

2 (D.70)

+ 4
√

Ei∈H− [(vTi ξj)
2] + h

(
Ei∈H− [(vTi ξj)

2]
)h

2
, (D.71)

(D.72)

where we have plugged in the fact that ∥U∥ ≤ ∥W∥ ≤ 1.

By the first and second conclusions of Lemma D.8, for κgen < κ < κuc, for at least a 1 − ϵD.8 a set of
examples T ⊂ S of size at least (1 − ϵ′D.8n), we have if j ∈ T , 1

2
Ei∈H+

[
(wTi µ2)

2
]
≤ (ϵ′D.8)

2 and
1
2
Ei∈H−

[
(vTi ξj)

2
]
≤ 1

κ
· ϵ′D.8, where ϵ′D.8 =

√
2CB.1

√
n
d
+ 2ϵ. Thus if j ∈ T ,

Ej ≤ 2Ei∈H+

[
ϕ(vTi ξj)

2 + 1
]√2ϵ′D.8

κ
+ h

(√
2ϵ′D.8

)h
+ 4

√
2ϵ′D.8
κ

+ h

(
2ϵ′D.8
κ

)h
2

(D.73)

≤ 8Ei∈H+

[
ϕ(vTi ξj)

2 + 1
]√2ϵ′D.8

κ
+ 4ϵ′D.8 (D.74)

for ϵ′D.8 small enough.

Now by Lemma D.18 applied to S, if ϵ ≤ ϵ(κ, δ/2) and d
n
≥ c(κ, δ/2), there exists a set T ′ ⊂ S size at least

(1− δ
2
)n on which the second conclusion of the lemma holds. Thus for the constant q = q(κ) in Lemma D.18,

1

2
Ei∈H+ [ϕ(u

T
i µ1)] ≤

(1− q/4)

2h
γ, (D.75)

1

2
Ei∈H− [ϕ(uTi µ2)] ≤

(1− q/4)

2h
γ, (D.76)

and if j ∈ T ′,

1

2
Ei∈H+ [ϕ(v

T
i xj)] ≥

(1 + q/4)

2h
γ. (D.77)

Thus

ψ(yj)fW (ψ(xj)) ≥
1

2
Ei∈H+ [ϕ(v

T
i ξj)]−

1

2
Ei∈H− [ϕ(uTi µ2)]−

1

2
Ej (D.78)

≥ γ(1 + q/4)

2h
− γ(1− q/4)

2h
− 1

2
Ej (D.79)

which is greater than zero for ϵ small enough and c large enough in terms of q and δ. (In particular, we will need
that Ej ≤ γq

2h+1 and ϵD.8 ≤ δ
2

, and note that γ is at least a constant).
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Thus fW correctly classifies each example ψ(xj) for j ∈ T ∩ T ′, which is at least a 1 − δ fraction of the
examples in ψ(S).

The final statement follows from the fact that ¯ψ(S) has the opposite labels as ψ(S), but is otherwise the
same.

We now prove Proposition 3.4 for the XOR problem. We restate the proposition below, and only include the
XOR part.

Proposition D.24 (UC Bounds are Vacuous for XOR Problem). Fix any h ∈ (1, 2), and δ > 0. For any n, d, σ
and D ∈ ΩXOR

σ,d , if κXOR,h
gen + δ ≤ κ ≤ κXOR,h

uc − δ, there exist strictly positive constants ϵ = ϵ(δ) and c = c(δ)
such that the following holds. Let A be any algorithm that outputs a (1 − ϵ)-max-margin two-layer neural
network fW for any S ∈ (Rd×{1,−1})n. Let H be any concept class that is useful for D (as in Definition 2.2).
Suppose that ϵunif is a uniform convergence bound for D and H that is,

Pr
S∼Dn

[sup
h∈H

|LD(h)− LS(h)| ≥ ϵunif ] ≤ 1/4.

Then if d
n
≥ c and n > c, we must have ϵunif ≥ 1− δ.

Proof. Let c = 3c0 and ϵ = 3ϵ0 where c0 and ϵ0 are the constants from Lemma D.23 for κ and δ.

Let TD ⊂ 2(R
d×{−1,1})n be the set of training sets S on which the conclusion of Lemma D.23 holds for D

and S. Thus PrS∼Dn [S ∈ TD] ≥ 1− 3e−n/c0 for some c0 = c(κ, δ). Let H ⊂ 2(R
d×{−1,1})n be the set of

training sets S on which A(S) ∈ H. Thus PrS∼Dn [S ∈ H] ≥ 3
4

.

Let T ′
D be the set on which

|LD(h)− Lϕ(S)(h)| ≤ ϵunif ∀h ∈ H, (D.80)

where ϕ := ψ̄. By assumption, PrS∼Dn [ϕ(S) ∈ T ′
D] = PrS∼Dn [S ∈ T ′

D] ≥ 3
4

. By a union bound, for any
D ∈ Ω, for n ≥ c = 3c0, with ϕ = ψ̄D ,

Pr
S∼Dn

[S ∈ T ′
D ∧ S ∈ Tϕ(D) ∧ S ∈ H] ≥ 1−

(
1− 3

4

)
−
(
1− 3

4
+ 3e−n

)
=

1

2
− 3e−n/c0 > 0.

(D.81)

Let S be any set for which the three events above hold, ie.,

S ∈ T ′
D ∧ S ∈ Tψ(D) ∧ S ∈ H. (D.82)

With fW = A(S), by the first conclusion of Lemma D.23, we have LD(fW ) ≤ e
− 1

c0σ2 . Further, by the third

conclusion of Lemma D.23, we know that Lϕ(S)(fW ) ≥ 1 − δ. It follows that ϵunif ≥ 1 − e
− 1

c0σ2 . Since
c > c0, this yields the proposition.

Lemma D.25 (Margin Lower Bound Lemma). For any κgen < κ < κuc and ϵ > 0, there exists some
positive constants q(κ) > 0, c = c(κ, ε) such that if d

n
≥ c with probability at least 1 − 3e−n/c over

S ∼ Dn = Dn
µ1,µ2,σ,d

, there exists a classifier W with ∥W∥ = 1 such that

1. γ(fW , S) ≥ (1− ϵ)γ∗(S)

2. Lψ(D)(fW ) ≥ 1− e
− 1

cσ2 .

3. γ(fW , ψ(S)) ≥ q(κ)γ∗(S)

Proof. We work backwards from Opt 5 through Opt 1. Condition on the event in Lemma B.1 holding for Ξ
and the event in Lemma D.1 holding for β = 1

c0
, for some constant c0(κ, ϵ) > 8 to be chosen later. We will

eventually choose c(κ, ϵ) ≥ c20 + 1, such that these events hold with probability at least 1 − 3e−n/c (see eg.
Lemma D.17 for the computation).

Given an optimal solution I∗
5 to Opt 5, we can construct an instance I1 = ψ21(ψ32(ψ43(ψ54(I5)))), which

is ϵ′-optimal over all solutions W ′ with the same norm for ϵ′ =
√

1− (1− ϵ̂)(1− CB.1
√

n
d
)h, where

ϵ̂ =

√
1−

(
nmax
nmin

)−h
≤
√

1−
(
1 + 16

c0

)−h
. This can be seen via Lemmas D.7, D.9, D.10, D.11, which

show that at each step of the chain, we do not lose any optimality expect from from Opt 3 to Opt 2 and from Opt
2 to Opt 1.
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This will yield the first statement in the lemma for c0 large enough in terms of ϵ and d
n
≥ c0. If we make ϵ′

small enough (in terms of κ), then we know from Theorem 3.2 that LD(fW ) ≤ e
− 1

c1σ2 for some c1 = c1(κ).
This yields the second conclusion (as long as c ≥ c1), since the probability of classifying an example from ψ(D)
correctly is equal to the probability of classifying an example from D incorrectly (Claim D.22).

We proceed to analyze the properties of fW to obtain the final conclusion.

Recall from Lemma D.15 that Since κ̂ ≤ κ < κuc, the optimal solution to Opt 5 has ϕ(b) ≤ 1−q1
2h

ϕ(b+ c) and
ϕ(−b) ≤ 1−q1

2h
ϕ(−b+ d) for some constant q1 = q1(κ). Let γj be the margin yjfW (xj), and observe that by

the symmetry of the backwards mapping γj is the same for all points j. We call this value γ.

Applying the four mappings above, in the instance I1, the variable W = U + V satisfies for all j ∈ P and
i ∈ H+,

ϕ(yjw
T
i µ1) ≤

1− q1
2h

ϕ(yjw
T
i µ1 + wTi ξj), (D.83)

and for all j ∈ N and i ∈ H−,

ϕ(yjw
T
i µ2) ≤

1− q1
2h

ϕ(yjw
T
i µ2 + wTi ξj), (D.84)

Further, by definition of the mapping ψ21, for i ∈ H+, we have wTi µ2 = 0 and wTi ξj = 0 for all j ∈ N .
Similarly, for i ∈ H−, we have wTi µ1 = 0, and wTi ξj = 0 for all j ∈ P .

Now we appeal to the fact that by Lemma B.2, for any values s, t, we have ϕ(s+ t) ≤ (ϕ(s) + ϕ(t))2h−1, and
thus (repeating the argument in Equations D.50 and D.51 of Lemma D.18, which we omit the details of here) for
all j ∈ P and taking expectation over i ∈ H+,

Ei∈H+ [ϕ(v
T
i ξj)] ≥

(
1 + q1
2h

)
Ei∈H+ [ϕ(w

T
i xj)] =

(
1 + q1
2h

)
(2γ). (D.85)

Similarly for all j ∈ N and i ∈ H−,

Ei∈H+ [ϕ(v
T
i ξj)] ≥

(
1 + q1
2h

)
Ei∈H+ [ϕ(w

T
i xj)] =

(
1 + q1
2h

)
(2γ). (D.86)

Finally, by inspecting the mapping in Lemma D.11, and the fact that all of the backwards mapping duplicate
solutions to the simpler problems, we have the following symmetry property of W :

Ei∈H+ [ϕ(w
T
i µ1)] = Ei∈H+ [ϕ(−w

T
i µ1)] = Ei∈H− [ϕ(wTi µ2)] = Ei∈H− [ϕ(−wTi µ2)]. (D.87)

We can now examine the margin on the flipped dataset ψ(S). Without loss of generality, consider an example
ψ(xj) where j ∈ P1, such that ψ(xj) = µ2 + ξj .

ψ(yj)fW (ψ(xj)) = Ei[yjaiϕ(wTi ψ(xj))] (D.88)

=
1

2
Ei∈H+ [ϕ(w

T
i µ2 + vTi ξj)]−

1

2
Ei∈H− [ϕ(wTi µ2 + vTi ξj)] (D.89)

=
1

2
Ei∈H+ [ϕ(v

T
i ξj)]−

1

2
Ei∈H− [ϕ(wTi µ2)] (D.90)

≥
(
1 + q1
2h

)
(γ)−

(
1− q1
2h

)
(γ) (D.91)

=
q1γ

2h−1
. (D.92)

Thus ψ(yj)fW (ψ(xj)) ≥ q1γ

2h−1 ≥ (1− ϵ′) q1γ
∗(S)

2h−1 , and the conclusion follows by choosing q = q1
2h

since we
have ϵ′ ≤ 1

2
for c0 large enough.

Proposition 3.6 (Polynomial Margin Bounds Fail for XOR on Neural Network). Fix an integer p ≥ 1,
and any ϵ > 0. There exists c = c(p, ϵ) such that the following holds for any n, d, σ and D ∈ ΩXOR

σ,d with
κXOR,h

gen +ϵ < κ < κXOR,h
uc −ϵ, d

n
≥ c and n ≥ c. Let H be any hypothesis class such that for D̃ ∈ {D, ψ(D)},

Pr
S∼D̃n

[all (1− ϵ)-max-margin two-layer neural networks fW for S lie in H] ≥ 3/4.

Suppose that there exists an polynomial margin bound of degree p: that is, there is some G that satisfies for
D̃ ∈ {D, ψ(D)},

Pr
S∼D̃n

[
sup
h∈H

LD̃(h)− LS(h) ≥
G

γ(h, S)p

]
≤ 1

4
.

Then with probability 1
2
− 3e−n/c over S ∼ Dn, on the max-margin solution, the generalization guarantee is

no better than 1
c

, that is, G
γ∗(S)p ≥ 1

c
.
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To prove Proposition 3.6 we use Lemma D.25.

Proof of Proposition 3.6. Let c = 3c0, where c0 = c(κ, ϵ) is the constant from Lemma D.25.

For any D ∈ Ω, let TD ⊂ 2(R
d×{−1,1})n be the set of training sets S on which the conclusion of Lemma D.25

holds for D and S. Thus for any D ∈ Ω, PrS∼Dn [S ∈ TD] ≥ 1 − 3e−n/c0 for some constant c. Let
H ⊂ 2(R

d×{−1,1})n be the set of training sets S on which all (1− ϵ)-max-margin two-layer neural networks
fW for S lie in H. Thus for any D ∈ Ω, PrS∼Dn [S ∈ H] ≥ 3

4
.

For any D ∈ Ω, let T ′
D be the set on which

LD(h) ≤ LS(h) +
G

γ(h, S)p
∀h ∈ H. (D.93)

By assumption, for any D ∈ Ω, PrS∼Dn [S ∈ T ′
D] ≥ 3

4
.

Now fix any D = Dµ,σ,d ∈ Ω. By a union bound, with ψ = ψD ,

Pr
S∼Dn

[S ∈ T ′
D ∧ ψ(S) ∈ Tψ(D) ∧ ψ(S) ∈ H] ≥ 1−

(
1− 3

4

)
− 3e−n/c0 −

(
1− 3

4

)
=

1

2
− 3e−n/c0 .

(D.94)

This is because the distribution of ψ(S) with S ∼ Dn is the same as the distribution of n samples from ψ(D).

Let S be any set for which the three events above hold, ie.,

S ∈ T ′
D ∧ ψ(S) ∈ Tψ(D) ∧ ψ(S) ∈ H. (D.95)

Let fW be the classifier produced by Lemma D.25 on input ψ(S) and distribution ψ(D), such that:

1. γ(fW , ψ(S)) ≥ (1− ϵ)γ∗(ψ(S)), and thus since ψ(S) ∈ H , we have fW ∈ H.

2. LD(fW ) ≥ 1− e
− 1

c0σ2 .

3. γ(fW , S) ≥ qγ∗(ψ(S)) for some constant q(κ).

It follows that for any such S, we must have

G ≥
(
1− e

− 1
c0σ2

)
γ(fW , S)

p ≥
(
1− e

− 1
c0σ2

)
γ∗(ψ(S))pqp (D.96)

Thus for the distribution ψ(D), with probability at least 1
2
− 3e−n/c0 , the margin bound yields a generalization

guarantee no better than (
1− e

− 1
c0σ2

)
qp. (D.97)

Taking c = max( 1

qp

(
1−e

− 1
c0σ2

) , c0, c0κ ) yields the proposition. Note that e
− 1

c0σ2 = e
− κd

c0n , so for d
n
≥ c0

κ
,

1− e
− 1

c0σ2 is bounded away from 0 and thus c only depends on κ and δ (since c0 additionally depends on c0).

Finally, we prove Proposition 3.3, which we restate.
Proposition 3.3 (Region where Max-Margin Generalization not Guaranteed). Let h ∈ (1, 2), and let ϵ > 0.
There exists a constant c = c(ϵ) such that the following holds. For any n, d, σ and D ∈ ΩXOR

σ,d satisfying
κ ≤ κXOR,h

gen − ϵ and d
n
≥ c, with probability 1− 3e−n/c over S ∼ Dn, there exists some W with ∥W∥ = 1

and γ(fW , S) ≥ (1− ϵ)γ∗(S) such that LD(fW ) = 1
2

.

Proof of Proposition 3.3. This follows directly from Lemma D.19, since for any Dµ1,µ2,σ,d, any classifier fW
with U = 0 must have a test loss of exactly 1

2
.

D.4 PROOF OF TECHNICAL LEMMAS

Throughout the following section we assume Dµ1,µ2,σ,d ∈ Ω is fixed, h ∈ (1, 2), and we use the same notation
defined in the notation section at the beginning of Section D.1.
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D.4.1 PROOF OF LEMMA A.2

We begin by proving Lemma A.2, for which we will need the following general analysis claim:
Claim D.26. For any random variables a and b, with ϕ(x) = max(0, x)h, we have

|E [ϕ(a+ b)− ϕ(b)]| ≤
√

E [4a2 + 2]
√

E [b2] + h
(
E[b2]

)h
2 (D.98)

and

|E [ϕ(a+ b)− ϕ(b)]| ≤ 2E [1 + ϕ(a)]
√

E [b2] + h
(
E[b2]

)h
2 . (D.99)

Proof. First note that for any a, b, we have:

|ϕ(a+ b)− ϕ(a)| ≤ ϕ′(a+ b)|b| ≤
(
ϕ′(a) + ϕ′(b)

)
|b| ≤ ϕ′(a)|b|+ h|b|h. (D.100)

and

ϕ′(a) =≤ 2|a|+ 1, (D.101)

|E [ϕ(a+ b)− ϕ(b)]| ≤ E
[
|ϕ′(a)b|

]
+ hE[|b|h] (D.102)

≤
√

E [(ϕ′(a))2]
√

E [b2] + hE[|b|h] (D.103)

≤
√

E [(2|a|+ 1)2]
√

E [b2] + hE[|b|h] (D.104)

≤
√

E [4a2 + 2]
√

E [b2] + hE[|b|h] (D.105)

≤
√

E [4a2 + 2]
√

E [b2] + h
(
E[b2]

)h
2 . (D.106)

Here we used Equation D.100 in the first inequality, Cauchy-Schwartz in the second, Equation D.101 in the
third, Jenson’s in the fourth, and Jensen’s again in the fifth inequality.

If instead of Equation D.100, we can obtain an alternative result.

(ϕ′(a))2 = h2 max(0, a)2h−2 ≤ 4(1 + ϕ(a)) (D.107)

This yields

|E [ϕ(a+ b)− ϕ(b)]| ≤
√

E [(ϕ′(a))2]
√

E [b2] + hE[|b|h] (D.108)

≤ 2
√

E [1 + ϕ(a)]
√

E [b2] + hE[|b|h] (D.109)

≤ 2E [1 + ϕ(a)]
√

E [b2] + h
(
E[b2]

)h
2 . (D.110)

We restate Lemma A.2 for the reader’s convenience.
Lemma A.2. Fix a distribution Dµ1,µ2,σ,d ∈ Ωh,XOR

σ,d . For W ∈ Rm×d, let W = U + V where V is
orthogonal to the subspace containing µ1 and µ2. Then for some universal constant c, for any t ≥ 1, with
probability at least 1− e−ct, on a random sample x ∼ Dµ1,µ2,σ,d,

|fW (x)− fU (x)| ≤ (8∥U∥+ 3) (t+ 1)σ2∥V ∥2 + 2
(
(t+ 1)σ2∥V ∥2

)h
2 .

Proof of Lemma A.2. We can write x = z + ξ for where z ∈ Span(µ1, µ2) and ξ ⊥ µ1, µ2, such that by
Claim D.26 we have

|fW (x)− fU (x)| =
∣∣∣Ei [ϕ(uTi z + vTi ξ)− ϕ(uTi z)

]∣∣∣ (D.111)

≤
√

Ei [4(uTi z)2 + 2]
√

Ei [(vTi ξ)2] + h
(
Ei[(vTi ξ)2]

)h
2 (D.112)

≤
√

Ei [8∥ui∥2 + 2]
√

Ei [(vTi ξ)2] + h
(
Ei[(vTi ξ)2]

)h
2
, (D.113)

where we have plugged ∥z∥2 ≤
√
2.

Now it suffices to get a high probability bound on Ei[(vTi ξ)2] = ξTEi[vivTi ]ξ for a random ξ. Let M :=
Ei[vivTi ]. We know by the Hanson-Wright Inequality that for some universal constant c,

Pr
[
ξTEi[vivTi ]ξ ≥ σ2 Tr (M) + t

]
≤ 2 exp

(
−cmin

(
t2

∥M∥2F
,

t

∥M∥2

))
(D.114)

≤ 2 exp

(
−cmin

(
σ2t2

Tr (M)2
,

σt

Tr (M)

))
, (D.115)
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where ∥∥F denotes the Frobenius norm, and ∥∥2 denotes the spectral norm. Thus for t ≥ 1,

Pr
[
ξTEi[vivTi ]ξ ≥ (t+ 1)σ2∥V ∥2

]
≤ 2 exp (−ct) . (D.116)

If follows that for any t ≥ 1, with probability 1− 2 exp (−ct),

|fW (x)− fU (x)| = (8∥U∥+ 3) (t+ 1)σ2∥V ∥2 + 2
(
(t+ 1)σ2∥V ∥2

)h
2 . (D.117)

D.4.2 PROOF OF CHAINING LEMMAS

Proof of Lemma D.8. To prove the lemma, we will begin with a (1− ϵ)-solution W to Opt 1. Assuming toward
a contradiction that items (1) or (2) in the lemma statement do not hold, we will construct a solution W ′′ for
Opt 1 that is more than a 1/(1− ϵ)-factor times better than W , contradicting the (1− ϵ)-optimality of W . We
condition on the event that the conclusion of Lemma B.1 holds for Ξ. Given a solution W to Opt 1, construct a
solution W ′ for Opt 1 as follows. First define cij := wTi ξj . For i ∈ H+, let w′

i = µ1µ
T
1 ui + v′i, where v′i is

the min-norm vector such that (v′i)
T ξj = cij for all j ∈ P , and (v′i)

T ξj = 0 for all j ∈ N . For i ∈ H−, let
w′
i = µ2µ

T
2 ui + v′i, where v′i is the min-norm vector such that (v′i)

T ξj = cij for all j ∈ N , and (v′i)
T ξj = 0

for all j ∈ P . Note that all such v′i are guaranteed to exist since the conclusion of Lemma B.1 holds.

Let si = ∥µ1µ
T
1 ui∥ and ti = ∥µ2µ

T
2 ui∥.

Observe that by Lemma B.1, we have:

∥w′
i∥2 ≤ s2i + ∥v′i∥2 ≤ s2i +

(
1 + CB.1

√
n

d

)
1

dσ2

∑
j∈P

c2ij ∀i ∈ H+ (D.118)

∥w′
i∥2 ≤ t2i + ∥v′i∥2 ≤ t2i +

(
1 + CB.1

√
n

d

)
1

dσ2

∑
j∈N

c2ij ∀i ∈ H− (D.119)

∥wi∥2 ≥ s2i + t2i + ∥vi∥2 ≥ s2i + t2i +

(
1− CB.1

√
n

d

)
1

dσ2

∑
j∈P∪N

c2ij . (D.120)

(D.121)

Ei[∥wi∥2] ≥
(
1− CB.1

√
n

d

)
D +

1

1 + CB.1
√

n
d

Ei[∥w′
i∥2], (D.122)

where

D :=
1

2
Ei∈H+

[
t2i +

1

dσ2

∑
j∈N

c2ij

]
+

1

2
Ei∈H−

[
s2i +

1

dσ2

∑
j∈P

c2ij

]
. (D.123)

Further observe that:

ϕ((w′
i)
Txj) = ϕ(wTi xj) ∀i : ai > 0, j ∈ P (D.124)

ϕ((w′
i)
Txj) = 0 ≤ ϕ(wTi xj) ∀i : ai < 0, j ∈ P (D.125)

ϕ((w′
i)
Txj) = 0 ≤ ϕ(wTi xj) ∀i : ai > 0, j ∈ N (D.126)

ϕ((w′
i)
Txj) = ϕ(wTi xj) ∀i : ai < 0, j ∈ N , (D.127)

(D.128)

thus W ′ satisfies the constraint that Eiaiϕ(wTi xj)yj ≥ γ. Indeed, we have by construction that have for all
j ∈ P that ∑

i

aiϕ(w
T
i xi)yj =

∑
i∈H+

ϕ(wTi xi)−
∑
i∈H−

ϕ(wTi xi) (D.129)

≥
∑
i∈H+

ϕ((w′
i)
Txi)−

∑
i∈H−

ϕ((w′
i)
Txi) (D.130)

=
∑
i

aiϕ((w
′
i)
Txi)yj (D.131)
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and similarly for all j ∈ N . If D ≥ 2CB.1
√

n
d
+ 2ϵ, then

E[∥w′
i∥2] ≤ E[∥w′

i∥2]−
(
1− CB.1

√
n

d

)
D (D.132)

≤ 1−
(
1− CB.1

√
n

d

)(
2ϵ+ 2CB.1

√
n

d

)
(D.133)

≤ 1− 2ϵ, (D.134)

where we have used the global assumptions that ϵ ≤ 1/4 and CB.1 ≤ 1/2. Thus we can scale W ′ up by a factor

of (Ei[∥wi∥2])
1
2

(Ei[∥w′
i∥

2])
1
2

to achieve a feasible solution W ′′ that has objective value 1

(1−2ϵ)
h
2

≥ 1
(1−ϵ) times better than

the solution given by W . This would contradict the (1− ϵ)-optimality of W , proving the first conclusion of the
lemma.

For the second part, suppose for greater than a
√

2CB.1
√

n
d
+ 2ϵ fraction of data points we have

1
2
Ei∈H−

[
(vTi ξj)

2
]
≥ 1

κ
·
√

2CB.1
√

n
d
+ 2ϵ (if j ∈ P) or 1

2
Ei∈H+

[
(vTi ξj)

2
]
≥ 1

κ
·
√

2CB.1
√

n
d
+ 2ϵ

(if j ∈ N ) . This would imply that D ≥
(√

2CB.1

√
n
d
+2ϵ

κ

)
1
dσ2

(
n
√

2CB.1
√

n
d
+ 2ϵ

)
= 2CB.1

√
n
d
+ 2ϵ,

which as we saw above contradicts the (1− ϵ)-optimality of W .

Proof of Lemma D.13. By homogeneity, there exists some value CB such that the optimum of any instance of
Opt B with parameter PB equals CBP qB . Thus by the properties of ψBA, given an optimal instance I∗

B ∈ DB
with parameter PB , we can construct and instance of Opt A with parameter at most (1 + δ)PB and optimum at
least CBP qB . Thus for some value CA ≥ CB(1 + δ)−q , the optimum of any instance of Opt A with parameter
PA equals CAP qA.

Suppose IA with parameter PA is (1 − ϵ)-optimal and I(1)
B , · · · , I(k)

B := ψAB(IA). Let γ be the objective
value of IA. Define P (1)

B · · ·P (p)
B to be the parameters PB of the k instances respectively, and let γ(p) be their

objective values. For p ∈ [k], let s(p) be the optimality of each I(p)
B times γ

γ(p)
. Then: s(p) = γ(p)

CB(P
(p)
B

)q

γ

γ(p)
,

so

s(p)CB(P
(p)
B )q ≥ (1− ϵ)CA(PA)

q ≥ (1− ϵ)(1 + δ)−qCB(PA)
q ∀p (D.135)

Ep∈[k][P
(p)
B ] ≤ (1 + δ)PA (D.136)

Here the first inequality in the first line follows from the fact that the objective value achieved by I(p)
B is at least

as large as the objective value of IA, which by assumption is at lease (1− ϵ)-optimal.

We now proceed by contradiction: Suppose for some set S ⊂ [k] of size at least kϵ′, we have s(p) ≤ 1− ϵ′.
Then

Ep∈[k][P
(p)
B ] ≥ 1

k

∑
p∈S

P
(p)
B +

1

k

∑
p/∈S

P
(p)
B (D.137)

≥ ϵ′
(
(1− ϵ′)

− 1
q (1− ϵ)

1
q (1 + δ)−1PA

)
+ (1− ϵ′)

(
(1− ϵ)

1
q (1 + δ)−1PA

)
(D.138)

= PA(1− ϵ)
1
q (1 + δ)−1

(
ϵ′(1− ϵ′)

− 1
q + (1− ϵ′)

)
(D.139)

Thus if (
ϵ′(1− ϵ′)

− 1
q + (1− ϵ′)

)
> (1 + δ)2(1− ϵ)

− 1
q , (D.140)

we will have a contradiction, since the equation above will be strictly greater than (1 + δ)PA.

Choosing ϵ′ =
√

1− (1− ϵ)(1 + δ)−2q , this produces the desired contradiction. Indeed, on can check that for
all ϵ′ ∈ (0, 1), we have

ϵ′(1− ϵ′)
− 1

q + (1− ϵ′) > (1− (ϵ′)2)
− 1

q , (D.141)

yielding the desired contradiction. Thus for at least a 1− ϵ′ fraction of p ∈ [k], we have
γ

γ(p)
× (optimality of I(p)

B ) ≥ 1− ϵ′,
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which implies that each of these two terms are greater that 1− ϵ′.

This proves the first conclusion.

To achieve the second conclusion, consider the mapping ψ′
AB : DB → DA which maps IA to the instance of

ψAB(IA) which has the smallest parameter PB . Necessarily, this value at most (1 + δ)PA, since the average
value of P (p)

B is at most (1 + δ)PA. Thus the pair of mappings ψBA and ψ′
AB and ψB satisfy the conditions

of the lemma, which we now apply with k = 1, and the roles of A and B reversed. The second conclusion
follows.

Proof of Lemma D.7. Recall that we have conditioned on the event that for any c ∈ Rn, the min-norm vector v

satisfying ΞT v = c has ∥v∥22 ∈ ∥c∥22
σ2d

[
1

1+CB.1

√
n
d

, 1

1−CB.1

√
n
d

]
.

Observe that the mappings ψ12(I1) produces a feasible instance, since for all i ∈ H+,

s2i +
1

dσ2

∑
j∈P

c2ij ≤ s2i +
1

dσ2

∑
j∈P∪N

c2ij (D.142)

≤ ∥ui∥2 +
1

dσ2

(
1 + CB.1

√
n

d

)
σ2d∥vi∥2 ≤

(
1 + CB.1

√
n

d

)
∥wi∥2. (D.143)

A similar statement holds for i ∈ H−, summing over j ∈ N . Further, the objective value of ψ12(I1) is at least
the objective value of I1.

The mapping ψ21 always maintains the exact same objective value, and is feasible because for i ∈ H+,
∥vi∥2 ≤ 1

1−CB.1

√
n
d

1
dσ2

∑
j∈P c

2
ij , and a similar statement holds for i ∈ H−.

Thus applying Lemma D.13 twice (with Opt A = Opt 1 and Opt B = Opt 2, and then in reverse, and with q = h
2

and 1 + δ = 1

1−CB.1

√
n
d

) yields the result.

Lemma D.9 (Opt 2 ↔ Opt 3). Define the mapping ψ23 : D2 → D3 ×D3 as follows. Given input I2, output
I(1)
3 , I(2)

3 , where for I(1)
3 :

• H := H+

• P3 := 1
2
Ei∈H+

(
s2i +

1
dσ2

∑
j∈P c

2
ij

)
• Let S1 be an arbitrary set of nmin elements of P1, and let S−1 be an arbitrary set of nmin elements of
P−1. Define cij to be the same as in I2 for all j ∈ S1 ∪ S−1, i ∈ H+.

• bi = si for i ∈ H+,

and for I(2)
3 :

• H := H−

• P3 := Ei∈H−

(
t2i +

1
dσ2

∑
j∈N c2ij

)
• Let S1 be an arbitrary set of nmin elements of N1, and let S−1 be an arbitrary set of nmin elements

of N−1. Define cij to be the same as in I2 for all j ∈ S1 ∪ S−1, i ∈ H−.

• bi = ti for i ∈ H−,

Define the mapping ψ32 : D3 → D2 as follows. Given input I3, output I2, where

• P2 := P3

(
nmax
nmin

)
• Define an arbitrary bisections π+ and π− from H+ and H− respectively to H . Similarly define

surjections ρ+,1 : P1 → S1, ρ−,1 : P−1 → S−1, ρ+,1 : N1 → S1, ρ−,1 : N−1 → S−1, such that
for x ∈ {1,−1}, Ej∈PxEi∈Hc2iρ+,x(j) ≤ Ej∈SxEi∈Hc2ij , and similarly, Ej∈NxEi∈Hc2iρ−,x(j) ≤
Ej∈SxEi∈Hc2ij . For i ∈ H+, define si := bπ+(i) and cij := cπ+(i)ρ+,x(j) for all x ∈ {1,−1} and
j ∈ Px. For i ∈ H−, define ti := bπ−(i), and cij := cπ−(i)ρ+,x(j) for all x ∈ {1,−1} and j ∈ Nx.
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Note that we here the cij variables we are defining come belong to I2, and they are define in terms of
the cij variables from I3.

Then with ϵ′ =

√
1− (1− ϵ)

(
nmax
nmin

)−h
1. If I2 ∈ D2 is (1− ϵ)-optimal, then each instance of ψ23(I2) is (1− ϵ′)-optimal on Opt 3, and has

objective at most 1
1−ϵ′ times the objective of I2.

2. If I3 ∈ D3 is (1− ϵ)-optimal, then ψ32(I3) is (1− ϵ′)-optimal on Opt 2.

Proof of Lemma D.9. It is easy to check by the definition of the mappings that if an instance I2 ∈ D2 is feasible,
then so is ψ23(I2). Likewise, if instance I3 ∈ D3 is feasible, then so is ψ32(I3). Indeed, in ψ32(I3), we have

1

2
Ei∈H+

[
s2i +

1

dσ2

∑
j∈P

(c
(2)
ij )2

]
=

1

2
Ei∈H

b2i + nmax

nmin

1

dσ2

∑
j∈S1∪S−1

(c
(3)
ij )2

 ≤ nmax

nmin

P3

2
, (D.144)

where we have supersripted the variables cij in ψ32(I3) by (2), and those in I3 by (3). A similar statement
holds for the sum over N , such that

1

2
Ei∈H+

[
s2i +

1

dσ2

∑
j∈P

(c
(2)
ij )2

]
+

1

2
Ei∈H−

[
t2i +

1

dσ2

∑
j∈N

(c
(2)
ij )2

]
≤ nmax

nmin
P3 = P2. (D.145)

It is easy to check also that the objective value of ψ23(I2) is at least that of I2, and likewise the objective value
of ψ32(I3) is at least that of I3.

We can now apply Lemma D.13 with Opt A = Opt 2 and Opt B = Opt 3, q = h
2

, 1 + δ = nmax
nmin

, and k = 2.
This yields the result.

Proof of Lemma D.10. The proof is similar to the last lemma. It is straightforward to check the conditions of
Lemma D.13 Opt A = Opt 3, Opt B = Opt 4, the mappings ψ34 and ψ43, k = n

4
, q = h

2
, and δ = 0. The

conclusion follows from Lemma D.13.

Proof of Lemma D.11. We will eventually appeal to Lemma D.13. First observe that the mapping ψ54 yields an
program in D4 with the exact same objective value and parameter. We will construct an alternative mapping
ψ′

45 : D4 → D5 that preserves the parameter and maintains or increases the objective. We use ψ45. Let P4 and
γ be the parameter and objective of I4. First identify the instance I(i)

5 of ψ45(I4) which achieves the highest

ratio between objective value, which we denote γ(i), and P
2
h
5 . By the positivity of the of the γ(i) and P (i)

5 and
Jenson’s inequality, for at least one instance i, we have

γ(i)

(P
(i)
5 )

h
2

≥ E[γ(i)]

E[(P (i)
5 )

h
2 ]

≥ E[γ(i)]

(E[P (i)
5 ])

h
2

≥ γ

P
h
2
4

. (D.146)

Then scaling each variable in this instance by a factor of
√

P4
P5

to produce an instance feasible instance of Opt 5
with parameter P4 and objective value γ.

This suffices to apply Lemma D.13 with the mappings ψ54 and ψ′
45 and δ = 0. The second conclusion follows.

Now we prove the first conclusion. Let C4 and C5 be such that optimal value of Opt 4 equals C4P
h
2 and

the optimal value of Opt 5 equals C5P
h
2 . This holds by the homogeneity of the programs. The argument of

Lemma D.13 in the paragraph beginning “We now proceed”, applied using the mappings ψ54 and ψ′
45 shows

that C4 = C5.
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Observe that

E[γ(i)] ≤ E[C5(P
(i)
5 )

h
2 ] (D.147)

≤
(
E[C5(P

(i)
5 )]

)h
2 (D.148)

= C5P
h
2
4 (D.149)

= C4P
h
2
4 ≤ γ

1− ϵ
. (D.150)

Here the first line follows from homogeneity of Opt 5, the second follows from Jenson’s since h < 2, the third
line from observing that the mapping ψ45 produces instances with an average parameter equal to P4, and the
fourth from the fact that C4 = C5 and that I4 is (1− ϵ)-optimal.

This proves the first conclusion of the lemma.

D.4.3 PROOF OF LEMMAS ANALYZING OPT 5

We now prove the two lemmas analyze the trivariate program, Opt 5.

Proof of Lemma D.14. We consider two classes of feasible solutions. In the first, S1, we impose the constraint
that −b+ d > 0. In the second, S2, we have −b+ d ≤ 0.

For solutions in S1, it is easy to check that for any (b, c, d), we can increase the objective value via the solution

(b′, c′, d′), where d′ = 0, and c′ =
√

1−b2
k

> c.

The the optimum in S1 is achieved by setting d = 0. It is then easy to check via the KKT conditions of the
resulting convex program that the optimum in this set chooses b and c as in the claim.

We now consider the second set, S2. Our goal will be to re-parameterize the objective in terms of a single
variable α := c−d

c+d
, and then analyze the one-dimensional optimization landscape as a function of α. Recall that

γ0 = maxc,d:kc2+kd2≤1 (ϕ(b+ c) + ϕ(−b+ d)). Further define

γbd := max
b,c,d:0<b=d,kc2+kd2≤1

(ϕ(b+ c) + ϕ(−b+ d)) (D.151)

We proceed in a series of claims.

The first claim reduces this 3 variable program to a 2 variable program.

Claim D.27.

max
b,c,d:0≤b≤d,b2+k(c2+d2)≤1

ϕ(b+ c) + ϕ(−b+ d) (D.152)

≤ max

(
γ0, γbd, max

c,d:k(c−d)≤d≤c,k2(c−d)2+k(c2+d2)≤1
ϕ(k(c− d) + c) + ϕ(−k(c− d) + d)

)
(D.153)

(D.154)

Proof. This claim reduces to showing that any locally optimal solution in S2 that is not at one of the boundaries
b = 0 or b = dmust satisfy b = k(c−d). We proceed by contradiction. Suppose there was a feasible solution in
S2 with 0 < b < d which didn’t satisfy b = k(c− d). Then we can construct a new solution b′ = b+∆, c′ =
c−∆, d′ = d+∆. Then the objective value doesn’t change (ϕ(b′+c′)+ϕ(−b′+d′) = ϕ(b+c)+ϕ(−b+d)),
but for small enough ∆ with the correct sign (sign(−b+ k(c− d))) the constraint value decrease, since

(b′)2 + k
(
(c′)2 + (d′)2

)
− b2 − k(c2 + d2) = 2∆ (b− k(c− d)) + Θ(∆2) < 0. (D.155)

Thus is we make this change and then scale up the solution such that the constraint is satisfied with equality, we
will have increases the objective. Further, since b is bounded away from 0 and d, for ∆ small enough, we will
still have a point in S2. Note, also introduce a constraint that c ≥ d, since by the convexity of ϕ, we can switch
the values of c and d and increase the objective if c < d.

The next claim reduces the two-variable program to a single variable optimization problem.
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Claim D.28.

max
c,d:k(c−d)≤d≤c,k2(c−d)2+k(c2+d2)≤1

ϕ(k(c− d) + c) + ϕ(−k(c− d) + d) (D.156)

≤ max

γ0, γbd, max
0≤α≤ 1

2k+1
;f(α)=0

(
1(

k2 + k
2

)
α2 + k

2

)h
2 (

ϕ

((
k +

1

2

)
α+

1

2

)
+ ϕ

(
−
(
k +

1

2

)
α+

1

2

)) ,

(D.157)

where
f(α) := (1− α)ϕ′ ((2k + 1)α+ 1)− (1 + α)ϕ′ (− (2k + 1)α+ 1) = 0. (D.158)

Proof. First we reparameterize A = c− d and B = c+ d, such that we can upper bound by the optimum of the
following program:

max
A,B

ϕ

((
k +

1

2

)
A+

1

2
B

)
+ ϕ

(
−
(
k +

1

2

)
A+

1

2
B

)
(D.159)

s.t.

(
k2 +

k

2

)
A2 +

k

2
B2 ≤ 1 (D.160)

0 ≤ A ≤ B

2k + 1
(D.161)

Now by the KKT conditions, for any stationary point bounded away from the boundary of A = 0 or A = B
2k+1

,

we must have
∂g
∂A
∂g
∂B

=
∂f
∂A
∂f
∂B

, where f and g represent the objective and the constraint respectively. Thus at these

stationary points, we have

(2k2 + k)A

kB
=
k + 1

2
1
2

ϕ′ ((k + 1
2

)
A+ 1

2
B
)
− ϕ′ (− (k + 1

2

)
A+ 1

2
B
)

ϕ′
((
k + 1

2

)
A+ 1

2
B
)
+ ϕ′

(
−
(
k + 1

2

)
A+ 1

2
B
) , (D.162)

or equivalently, setting α := A
B

,

1 + α

1− α
=

ϕ′ ((k + 1
2

)
A+ 1

2
B
)

ϕ′
(
−
(
k + 1

2

)
A+ 1

2
B
) . (D.163)

This manipulation and reparameterization in terms of α is useful for analysis because it allows us to leverage the
homogeneity of ϕ without explicitly computing the KKT solution. Indeed, by homogeneity (and plugging in
α = A

B
), we have at stationary point,

1 + α

1− α
=

ϕ′ ((2k + 1)α+ 1)

ϕ′ (− (2k + 1)α+ 1)
, (D.164)

or

f(α) := (1− α)ϕ′ ((2k + 1)α+ 1)− (1 + α)ϕ′ (− (2k + 1)α+ 1) = 0 (D.165)

Now we check the boundary points. When A = 0, this corresponds to the point where c = d and b = 0, which
yields the objective value γ0. When A = B

2k+1
, this corresponds to the point when b = d, and thus yields the

objective value γbd.

In the next claim, we will show the single variable optimization program in terms of α achieves its maximum at
the boundaries.

Claim D.29.

max
0≤α≤ 1

2k+1
;f(α)=0

(
1(

k2 + k
2

)
α2 + k

2

)h
2 (

ϕ

((
k +

1

2

)
α+

1

2

)
+ ϕ

(
−
(
k +

1

2

)
α+

1

2

))
≤ max (γ0, γbd) .

(D.166)

Proof. First we show that f(α) = 0 has at most one strictly positive solution. To show this, since we know
f(0) = 0, it suffices to check that the second derivative of f(α) is always positive for 0 < α ≤ 1. Indeed, the
second derivative evaluates to

(2− h)(h− 1)t2
(

1 + α

(1− tx)3−h
− 1− α

(1 + tx)3−h

)
+2(h− 1)t

(
1

(1− tx)2−h
− 1

(1 + tx)2−h

)
. (D.167)
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where t := (2k + 1). Since h ∈ (1, 2) and t ≥ 0, this expression is positive for α > 0 since 1+α
(1−tx)3−h >

1−α
(1+tx)3−h and 1

(1−tx)2−h > 1
(1+tx)2−h .

Now, we will show the derivative of the objective, which we will call g(α), is positive at the boundary point
α = 1

2k+1
. At this value, the term inside the second ϕ evaluates to 0, and thus so does its derivative. The

remaining part of the objective evaluates to(
1(

k2 + k
2

)
α2 + k

2

)h
2

ϕ

((
k +

1

2

)
α+

1

2

)
=

1

k
h
2

(((
k +

1

2

)
α+

1

2

)2((
k +

1

2

)
α2 +

1

2

)−1
)h

2

,

(D.168)

so it suffices to check that ((
k +

1

2

)
α+

1

2

)2((
k +

1

2

)
α2 +

1

2

)−1

(D.169)

is increasing as a function of α. Indeed we can take the derivative to confirm this is the case for α ≤ 1.

Now since g(α) is increasing at the upper boundary α = 1
2k+1

and has at most one stationary point between 0
and the upper boundary, we conclude that this stationary point cannot be a maximum. Thus the maximum must
be obtained at the boundary. Again the boundary points correspond to when c = d and b = 0, yielding γ0 and
when b = d, yielding γbd.

These three claims have shown that the maximum inside S2 is obtained at one of the boundaries where b = 0 or
b = d. It is easy to check that any solution when b = d is suboptimal if d > 0, since we can decrease d and
increase c by a small amount which will improve the objective. Now if κ̂ > κgen, then by definition, γ0 < γ∗,
and thus the optimal solution with b ≥ 0 is given by choosing c and d as in the lemma.

If κ̂ < κgen, the greater solution of γ0 and γ∗ is given by γ0, and thus we choose c and d to be equal as in the
lemma.

Proof of Lemma D.15. Because of the homogeneity of each constraint, it suffices to prove the result for B4 = 1.
Consider some ϵ-optimal solution (b, c, d). Without loss of generality, by the symmetry of the problem and the
conclusion, we can assume b is non-negative.

Observe that for ϵ = ϵ(κ̂) small enough, by the continuity of the objective, any (1− ϵ)-optimal solution must be
arbitrarily close to the solution given in Lemma D.14, which we name (b∗, c∗, d∗).

This means that for κ̂ > κgen, we must have b arbitrarily close to
√

κ̂
4+κ̂

, c arbitrarily close to
√

16
κ̂(4+κ̂)

,and d
arbitrarily close to 0. Thus the first conclusion follows by the fact that

lim
ϵ→0

ϕ(b)

ϕ(b+ c)
=

ϕ(b∗)

ϕ(b∗ + c∗)
=

(
1

1 + 4
κ̂

)h
. (D.170)

The second one follows from the fact that in a neighborhood of b∗ and d∗, both sides are 0.

If additionally κ̂ < κuc, then by definition of κuc, we have that b∗ < c∗. So for small enough ϵ, b < c. Thus
ϕ(b) = 1

2h
ϕ(2b) < 1

2h
ϕ(b+ c), which yields the third conclusion. Again the fourth conclusion follows from

the fact that in a neighborhood of b∗ and d∗, both sides are 0.

The last conclusion (if κ̂ < κgen) follows immediately from the Lemma D.14.

Proof of Lemma D.16. For each i ∈ H , define an instance of Opt 5 by putting b = bi, c = ci, d = di,
and P5 = P

(i)
5 := b2i + κ(c2i + d2i ). Let γi denote the objective value of this instance of Opt 5, that is,

ϕ(bi + ci) + ϕ(−bi + di).

By the homogeneity of Opt 5, the optimum of Opt 5 equals C4P
h
2
5 for some value C4. Further, ClaimD.11

guarantees that the optimum of Opt 4 is at least 1
2
C4(P4)

h
2 , because it is possible to construct a solution

to Opt 4 from an optimal solution (b∗, c∗, d∗) of Opt 5 in the following way: For half the i ∈ H , take
(bi, ci, di) = (b∗, c∗, d∗). For the other half, take (bi, ci, di) = (−b∗, d∗, c∗). Then the objective value is
exactly half of the optimum of the optimum of Opt 5 with P5 = P4.

44



Published as a conference paper at ICLR 2023

For i ∈ H , let s(i) be the optimality of the respective instance of Opt 5, that is, γi

C4

(
P

(i)
5

)h
2

. If the solution to

Opt 4 is (1− ϵ)-suboptimal, then we have

Eis(i)C4

(
P

(i)
5

)h
2 ≥ (1− ϵ)C4(P4)

h
2 ; (D.171)

EP (i)
5 ≤ P4. (D.172)

Plugging the second equation into the first, and applying Jensen’s inequality to the concavity of the function
x→ xh/2, we obtain

Eis(i)
(
P

(i)
5

)h
2 ≥ (1− ϵ) (EP (i)

5 )
h
2 ≥ (1− ϵ)E(P (i)

5 )
h
2 . (D.173)

Let α(i) :=
(
P

(i)
5

)h
2 . In the remainder of the lemma, we use the α and s to denote random variables over the

randomness of i, and all expectation are over i uniformly from H .

For any δ, we have,

(1− ϵ)E[α] ≤ E[αs] (D.174)
= E[αs1(s ≥ 1− δ)] + E[αs1(s < 1− δ)] (D.175)
≤ E[α1(s ≥ 1− δ)] + (1− δ)E[α1(s < 1− δ)] (D.176)
= E[α1(s ≥ 1− δ)] + (1− δ) (E[α]− E[α1(s ≥ 1− δ)]) (D.177)
= δE[α1(s ≥ 1− δ)] + (1− δ)E[α], (D.178)

so

E[α1(s ≥ 1− δ)] ≥
(
1− ϵ

δ

)
E[α], (D.179)

and hence,

E[sα1(s ≥ 1− δ)] ≥ (1− δ)
(
1− ϵ

δ

)
E[α]. (D.180)

Let ϵD.15 and η be the constants ϵ and η from Lemma D.15. By Lemma D.15, for any i with s(i) ≥ 1− ϵD.15,
we have ϕ(bi) ≥ ηϕ(bi + ci). Thus

Ei∈H [ϕ(bi)] ≥ Ei∈H [ϕ(bi)1(s(i) ≥ ϵD.15)] (D.181)
≥ ηEi∈H [ϕ(bi + ci)1(s(i) ≥ 1− ϵD.15)] (D.182)
= η (Ei∈H [ϕ(bi + ci)]− Ei∈H [ϕ(bi + ci)1(s(i) < 1− ϵD.15)]) (D.183)
≥ η (Ei∈H [ϕ(bi + ci)]− Ei∈H [(ϕ(bi + ci) + ϕ(−bi + di))1(s(i) < 1− ϵD.15)]) (D.184)
= η (Ei∈H [ϕ(bi + ci)]− E[αs1(s < 1− ϵD.15)]) (D.185)
≥ η (Ei∈H [ϕ(bi + ci)]− E[α1(s < 1− ϵD.15)]) (D.186)

≥ η

(
Ei∈H [ϕ(bi + ci)]−

ϵ

ϵD.15
E[α]

)
(D.187)

We need one more claim:

Claim D.30. If the solution to Opt 4 is (1− ϵ)-optimal, then

Ei∈H [ϕ(bi + ci)] ≥
1

2
(1− ϵ)Ei∈H [ϕ(bi + ci) + ϕ(−bi + di)]. (D.188)

Ei∈H [ϕ(−bi + di)] ≥
1

2
(1− ϵ)Ei∈H [ϕ(bi + ci) + ϕ(−bi + di)]. (D.189)

Proof. Suppose without loss of generality that Ei∈H [ϕ(bi + ci)] = q (Ei∈H [ϕ(bi + ci) + ϕ(−bi + di)]) for
some q ≤ 1

2
.

Then the optimum of the program is at most q, so we have

qC4(2P4)
h
2 ≥ qEi∈H [ϕ(bi + ci) + ϕ(−bi + di)] ≥ (1− ϵ)

1

2
C4(2P4)

h
2 . (D.190)

The conclusion follows.

45



Published as a conference paper at ICLR 2023

Using the claim and Equation D.173,

Ei∈H [ϕ(bi + ci)] ≥
1

2
(1− ϵ)Ei∈H [ϕ(bi + ci) + ϕ(−bi + di)] =

1

2
(1− ϵ)E[αs] ≥ 1

2
(1− ϵ)2 E[α].

(D.191)

Thus plugging this into the Equation D.181, we have

Ei∈H [ϕ(bi)] ≥ η

(
Ei∈H [ϕ(bi + ci)]−

ϵ

ϵD.15
E[α]

)
(D.192)

≥ η (Ei∈H [ϕ(bi + ci)])

(
1− 2ϵ

ϵD.15(1− ϵ)2

)
. (D.193)

The second statement of the lemma can be proved identically, but using the second result of Lemma D.15.

Now we consider the case when additionally we have κ < κuc.

We can bound

Ei∈H [ϕ(bi)] ≤ Ei∈H [ϕ(bi)1(s(i) ≥ 1− ϵD.15)] + Ei∈H [ϕ(bi)1(s(i) < 1− ϵD.15)] (D.194)

≤
(
1 + q(κ)

2

)
Ei∈H [ϕ(bi + ci)1(s(i) ≥ 1− ϵD.15)] + Ei∈H [α(i)1(s(i) < 1− ϵD.15)]

(D.195)

≤
(
1 + q(κ)

2

)
Ei∈H [ϕ(bi + ci)] +

ϵ

ϵD.15
E[α] (D.196)

≤
(
1 + q(κ)/2

2

)
Ei∈H [ϕ(bi + ci)] (D.197)

for ϵ a small enough constant. Here in the second inequality we used Lemma D.15 and additionally the fact that
for any i, we have ϕ(bi) ≤ α(i) in any feasible solution. In the third inequality, we used Equation D.179. In the
final inequality, we used Equation D.191 and chose ϵ small enough in terms of q(κ) and ϵD.15.

The same argument holds for di and −bi.
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