
3D-GPT: Procedural 3D Modeling with Large Language Models

Chunyi Sun1 Junlin Han2 Weijian Deng1 Xinlong Wang3

Zishan Qin1 Stephen Gould1

1Australian National University 2 University of Oxford 3 BAAI

Abstract

In the pursuit of efficient automated content creation, pro-
cedural generation, leveraging modifiable parameters and
rule-based systems, has emerged as a promising approach.
Nonetheless, this can be a demanding endeavor, given its
intricate nature necessitating a deep understanding of rules,
algorithms, and parameters. To reduce workload, we intro-
duce 3D-GPT, a framework utilizing large language mod-
els (LLMs) for instruction-driven 3D modeling. 3D-GPT
positions LLMs as proficient problem solving agents, dis-
secting the procedural 3D modeling tasks into accessible
segments and appointing the appropriate agent for each task.
3D-GPT integrates three core agents: the task dispatch agent,
the conceptualization agent, and the modeling agent. They
collaboratively achieve two objectives. First, they enhance
the concise initial scene descriptions, elaborating details
while dynamically adapting the text based on subsequent
instructions. Second, they integrate procedural generation,
extracting parameter values from enriched text to seamlessly
interface with 3D software for asset creation. Our empiri-
cal investigations confirm that 3D-GPT not only correctly
interprets instructions, delivering reliable results but also
collaborates effectively with human designers. Furthermore,
it integrates directly with Blender, unlocking expanded ma-
nipulation possibilities. Our work highlights the potential of
LLMs in 3D modeling, offering a basic framework for future
advancements in scene generation and animation.

1. Introduction
In the metaverse era, 3D content creation is vital for defin-
ing multimedia experiences in domains like gaming, virtual
reality, and cinema with intricately crafted models. Yet, de-
signers often grapple with a time-intensive 3D modeling
process, starting from basic shapes (e.g., cubes, spheres, or
cylinders) and employing software like Blender for metic-
ulous shaping, detailing, and texturing. This demanding
workflow concludes with rendering and post-processing to
deliver the polished final model. While procedural genera-
tion holds promise with its efficiency in automating content

creation through adjustable parameters and rule-based sys-
tems [4, 9, 10, 17, 30], it demands a comprehensive grasp
of generation rules, algorithmic frameworks, and individ-
ual parameters. Furthermore, aligning these processes with
the creative visions of clients, through effective communi-
cation, adds another layer of complexity. This underscores
the importance of simplifying the traditional 3D modeling
workflow to empower noivce creators in the metaverse era.

LLMs have shown exceptional language interpretation
capabilities, including planning and tool utilization [8, 14,
40, 41]. Furthermore, LLMs demonstrate outstanding profi-
ciency in characterizing object attributes, such as structure
and texture [6, 21, 27], enabling them to enhance details
from rough descriptions. Additionally, they excel at parsing
concise textual information and comprehending software
source code, while facilitating efficient and intuitive interac-
tions with users. Driven by these extraordinary capabilities,
we embark on exploring their innovative application to pro-
cedural 3D modeling. Our primary objective is to harness the
power of LLMs to exert control over 3D creation software
in accordance with natural language input from users.

In pursuit of this vision, we introduce 3D-GPT, a frame-
work to facilitate instruction-driven 3D content synthesis.
3D-GPT enables LLMs to function as problem-solving
agents, breaking down the 3D modeling task into small,
manageable components, and determining how to accom-
plish each component. 3D-GPT comprises three key agents:
the conceptualization agent, the 3D modeling agent, and the
task dispatch agent. The first two agents combine to fulfill
the roles of conceptualization and modeling by manipulating
the 3D generation API functions. Subsequently, the third
agent manages the system by taking the initial text input,
handling subsequent instructions, and facilitating effective
cooperation between the two aforementioned agents.

By doing so, 3D-GPT works towards two key objectives.
First, it enhances initial scene descriptions, guiding them to
more detailed and contextually relevant forms while adapt-
ing to subsequent instructions that refine the scene descrip-
tion. Second, instead of directly crafting every element of
3D content, we employ procedural generation, using adapt-
able parameters and rule-based systems to interface with

𝐿!

“A misty spring morning, where dew-
kissed flowers dot a lush meadow

surrounded by budding trees.”
𝐿"

“Transform the white flowers
into yellow flowers.” 𝐿#

“Eliminate the green trees and decrease
the number of yellow flower trees.”

𝐿$
“Create a cloudy weather.” 𝐿%

“Place trees on the mountain.” 𝐿&
“Translate the scene into a winter setting.”

Figure 1. Subsequence Instruction Editing Result. L0: Initial instruction-generated scene. L1-L5: Sequential editing steps with
corresponding instructions. Our method enables controllable editing and effective user-agent communication.

3D software. Our 3D-GPT is equipped with the capability
to understand procedural generation functions and extract
corresponding parameter values from the enriched text.

3D-GPT offers controllable and precise 3D generation
guided by users’ textual descriptions. It reduces the work-
load of manually defining each controllable parameter in
procedural generation, particularly within complex scenes
that encompass diverse aspects. Moreover, 3D-GPT en-
hances collaboration with users, making the creative process
more efficient and user-centric as demonstrated in Fig. 1.
Furthermore, 3D-GPT seamlessly interfaces with Blender,
granting users diverse manipulation capabilities: material
adjustments, primitive additions, object animations, mesh
editing, and physical motion simulations. Our contributions
are summarized as follows:
• Introducing 3D-GPT: A zero-shot and training-free

framework designed for 3D scene generation. 3D-GPT
leverages the innate multimodal reasoning capabilities of
LLMs, improving the efficiency of end-users engaged in
procedural 3D modeling.

• Exploration of Text-to-3D Generation: Our 3D-GPT
generates Python code to control 3D software, potentially
offering increased flexibility for real-world applications.

• Empirical Experiments: Demonstrate the great potential
of LLMs in reasoning, planning, and tool-using capabili-
ties for 3D content generation.

2. Related Work

Text-to-3D generation. With the recent advance in text-
to-image generation modeling, there has been a growing
interest in text-to-3D generation [18, 22, 26, 33, 35, 37].
The common paradigm of them is to perform per-shape
optimization with differentiable rendering and the guidance
of the CLIP model [28] or 2D diffusion models [32]. For

example, DreamFields [15] and CLIP-Mesh [24] explore
zero-shot 3D content creation using only CLIP guidance.
Dreamfusion [26] optimizes NeRF [23] with the guidance of
a text-to-image diffusion model, achieving remarkable text-
to-3D results. Further works in this direction have resulted
in notable enhancements in visual quality [18, 20], subject-
driven control [22, 31], and overall processing speed [15, 19].
Unlike the above approaches, our objective is not to generate
neural representations as the final 3D output. Instead, we
utilize LLMs to generate Python code that controls Blender’s
3D modeling based on the provided instructions.

Large Language Models (LLMs). LLMs are a promising
approach to capture and represent the compressed knowl-
edge and experiences of humans, projecting them into lan-
guage space [2, 3, 5, 25, 29]. LLMs exhibit the capability
to address intricate tasks that were once considered the ex-
clusive domain of specialized algorithms or human experts.
These tasks encompass areas such as mathematical reason-
ing [14, 36], medicine [16, 38], planning [8, 12, 13, 41],
and LaMDA [34] for dialogue applications. Our work ex-
plores the innovative application of LLMs in 3D modeling,
employing them to control 3D procedural generation.

Recent works have used LLMs for 3D scene model-
ing [1, 7, 11, 39], with SceneCraft [11] enabling interaction
with large asset pools and BlenderGPT [1] facilitating ba-
sic Blender operations. While they effectively use existing
3D asset libraries, they can be limited by the fixed nature
of these assets, which may restrict editing flexibility. By
integrating LLMs with procedural generation frameworks
like Infinigen [30], our method enables dynamic creation
and fine-grained manipulation of 3D assets, surpassing the
constraints of static libraries. This advancement opens new
possibilities for personalized content creation.

3. 3D-GPT

3.1. Task Formulation

The overall goal of this work is to generate 3D content
in a conversational manner through a sequence of short,
user-provided, natural language instructions, denoted as
L = ⟨Li⟩. The initial instruction, L0, serves as a concise
description of the 3D scene, such as “a misty spring morning,
where dew-kissed flowers dot a lush meadow surrounded by
budding trees.” Subsequent instructions are then employed
to modify the rendered scene, e.g., “transform the white flow-
ers into yellow flower” or “translate the scene into a winter
setting” to add desried detail.

To accomplish this objective, we introduce a framework
named 3D-GPT, which leverages LLMs as problem-solving
agents. We note that employing LLMs to directly create
every element of 3D content poses significant challenges.
LLMs lack specific pre-training data for proficient 3D mod-
eling and, as a result, may struggle to accurately determine
what elements to use and how to modify them based on given
instructions. To address this challenge, we employ proce-
dural generation to control the 3D content creation. This
makes use of adaptable parameters and rule-based systems to
interface with 3D software (e.g., Blender) so as to efficiently
conduct 3D modeling [4, 9, 10, 17, 30]. Nevertheless, there
are several challenges that remain such as identifying the
correct procedures to call and mapping of language to API
parameters. We solve these using multiple language agents
as will be discussed below.

Our approach considers the 3D procedural generation
engine as a set of functions, denoted as F = {Fj}, where
each function Fj takes parameters Pj . For example,
add trees(scene, density, distance min,
leaf type, fruit type) will add trees to a given
base scene with properties controlled by the four parameters
density, distance min, etc.

In our framework, for the initial user-provided instruction
(scene description) L0, we utilize the entire function set
F to construct the 3D scene. Subsequently, we infer the
corresponding parameters Pj for each function Fj within
this set. When the user provides subsequent instructions
Li (i > 0) for scene modifications, such as “transform the
white flowers into yellow flowers,” we adopt a more focused
approach to prevent undesired modifications and enhance
efficiency. In this example, the system should only select
functions related to flowers. Therefore, it selects a subset of
relevant functions, F̂ ⊆ F , from the original function set F .
Then, we proceed to infer the corresponding parameters Pj

for each function Fj within this subset. By addressing both
function selection and parameter inference for every sub-
instruction Li, 3D-GPT generates a Python script file that
allows Blender’s 3D modeling environment to render high-
quality scenes consistent with the instruction sequence L.

3.2. Modeling Tool Preparation

In our framework, we use Infinigen [30], a Python-Blender-
based procedural generator equipped with a rich library of
generation functions. To allow LLMs to invoke the Infinigen
API, we provide following crucial language prompts for each
function Fj :
• Documentation (Dj): A comprehensive explanation of

the function’s purpose and clear description of its parame-
ters Pj as one would find in standard API documentation.

• API code (Cj): Restructured and readable function code,
ensuring that it is accessible and comprehensible to LLMs.

• Auxiliary parameter information (Ij): Outlines specific
information required to infer the function parameters to
assist LLMs in understanding the context and prerequi-
sites of each function. For example, in the case of a flower
generation function, Ij indicates the necessary visual prop-
erties for rendering, such as petal color, petal shape (e.g.,
size, curve, and length), and center appearance.

• Usage examples (Ej): Illustrative examples that demon-
strate how to infer parameters Pj from the accompanying
text descriptions and subsequently invoke the function.
Continuing with the example above, Ej would include a
practical demonstration of how to infer the parameters and
call the function based on input text like “a sunflower.”
By providing LLMs with these prompts, we enable them

to leverage their generative competencies in planning, rea-
soning, and tool utilization. Documentation (D) elucidates
functions in plain language, revealing their purpose and input
data types. API Code (C) offers practical implementation,
assisting the LLM in dissecting code. Auxiliary Parameter
Information (I) provides the necessary details for parameter
inference and can be harnessed by our agent to query and
infer supplementary context. Usage Examples (E) aid the
LLM in generating analogous code for novel tasks, uncov-
ering hidden usage patterns and best practices not always
evident in documentation. As a result, LLMs can effectively
harness Infinigen for 3D generation based on language in-
structions in a seamless and efficient manner. In the context
of our work, the function set F encompasses all functions
and subfunctions within the Infinigen scene generation script,
with the sole exception of the ’creatures’ class. These func-
tions play an indispensable role in our scene creation process.
In the supplemental material, we present a comprehensive
list of all the functions used to construct the scenes and
examples for some of these functions.

3.3. Multi-agents for 3D Modeling

With the necessary tool preparation (i.e., Dj , Cj , Ij and Ej)
in hand, 3D-GPT employs a multi-agent system to tackle
the task of language-guided procedural 3D modeling. This
system comprises three integral agents: (1) the task dispatch
agent, (2) the conceptualization agent, and (3) the modeling
agent, illustrated in Fig. 2. Together, these agents decom-

“A misty spring morning, where dew-
kissed flowers dot a lush meadow
surrounded by budding trees. ”𝐿!

…

…“Transform the white flowers
into yellow flowers.”𝐿" 𝐿#

“Translate the scene into a
winter setting.”

Procedure Function Set

Instructions Python
Code

Task Dispatch
Agent

Conceptualization
Agent

Modeling
Agent

Selected
Functions

Augmented
Text

3D Model

Figure 2. 3D-GPT Overview. 3D-GPT employs LLMs as a multi-agent system with three collaborative agents for procedural 3D generation.
These agents consult documents from the procedural generator, infer function parameters, and produce Python code. The generated code
script interfaces with Blender’s API for 3D content creation and rendering.

pose the modeling task into manageable pieces, with each
agent specializing in distinct aspects: planning, 3D reason-
ing, and tool utilization. The task dispatch agent plays a
pivotal role in the planning process. It queries function doc-
uments and subsequently selects the requisite functions for
execution from natural language user instructions. Once
functions are selected, the conceptualization agent engages
in reasoning to enrich the user-provided text description.
Building upon this, the modeling agent deduces the param-
eters for each selected function and generates Python code
scripts to invoke Blender’s API, facilitating the creation of
the corresponding 3D content. From there, images and video
flythroughs can be rendered directly using Blender.

Task Dispatch Agent for Planing. The task dispatch agent
utilizes a comprehensive knowledge base encompassing all
available functions F from documentation D. It also has
access to an illustrative example on how to select the appro-
priate function subset based on the given instructions. When
presented with an instruction, such as “translate the scene
into a winter setting,” the agent systematically interprets the
task. It analyzes the documentation for each function, align-
ing requirements with function capabilities, and learn from
in-context examples. Consequently, the agent efficiently
identifies the requisite functions for each instructional input,
such as add snow layer and update trees, while
excluding functions like add flowers and add rocks.
This pivotal role played by the task dispatch agent is in-
strumental in facilitating efficient coordination between the
conceptualization and modeling agents. Without it, the those
agents would have to analyze all provided functions F for
each given instruction. This not only increases the workload

for these agents but also extends processing time and can
potentially lead to undesired modifications.

The communication flow between the LLM system, the
user, and the task dispatch agent is outlined as follows:

Message: You are a proficient planner for se-
lecting suitable functions based on user instruc-
tions. You are provided with the following func-
tions: ⟨(F name

j , F usage
j)⟩ . Below are a few examples of

how to choose functions based on user instructions:
⟨E task dispatch⟩ . The user instruction is: ⟨Li⟩ .
Task Dispatch Agent: Given the instruction ⟨Li⟩,
we determine the sublist of functions F̂ that need to
be used for 3D modeling.

Here ⟨(F name
j , F usage

j)⟩ represents a list of function names
and concise function usage descriptions for all available func-
tions and examples ⟨Etask dispatch⟩ provide guided examples
for prompt-based instructions. A example is provided in the
supplemental material.

Conceptualization Agent for Reasoning. User instruc-
tions often lack sufficient modeling details. For instance,
consider the instruction, “a misty spring morning, where
dew-kissed flowers dot a lush meadow surrounded by bud-
ding trees”. Here many required function parameters such
as tree branch length, tree size, and leaf type, are not directly
stated in the given text. When instructing the modeling agent
to infer parameters directly, we observed that it tends to
provide simplistic solutions, such as using default values
or copying values from prompting examples. This reduces
diversity in generation and complicates parameter inference.

To address this issue, we propose the conceptualization
agent that interacts with the task dispatch agent to augment
the user-provided text description (Li) with required infor-
mation list in Ij for each function. After the task dispatch
agent selects the required functions, we send the user in-
put text and the corresponding function-specific information
to the conceptualization agent and request augmented text.
For each function Fj , it enriches Li to produce detailed
appearance descriptions L̂i

j . The communication between
the system and the Conceptualization Agent for instructions
⟨Li⟩ and functions ⟨Fj⟩ is as follows:

Message : You are a skilled writer, especially
when it comes to describing the appearance of ob-
jects and large scenes. Given a text ⟨Li⟩ , provide
detailed descriptions for the following information
⟨Ij⟩ . For terms not mentioned in the description,
use your imagination to ensure they fit the text de-
scription.
Conceptualization Agent : Given the ⟨Li⟩ and
requested information ⟨Ij⟩ , the extended description
is: ⟨L̂i

j⟩ .

Modeling Agent for Tool Using. After conceptualization,
the 3D modeling processing is invoked to convert the detailed
natural language to machine-understandable API function
calls. For each function Fj and user instruction Li, the
task dispatch agent receive augmented context L̂i

j from the
conceptualization agent. Moreover, for each function Fj ,
we have the code Cj , function documentation Dj , and one
usage example Ej . The modeling agent uses this information
to select appropriate functions and deduce corresponding
parameters. Subsequently, the modeling agent generates
Python code that calls the selected function in the right
context (e.g., within a loop), passing in parameters inferred
from the text and of the proper data type. Communication
between System and Modeling Agent is as follows:

Message: You are a good 3D designer who can
convert long text descriptions into parameters, and
understand Python functions to manipulate 3D con-
tent. Given the text description ⟨L̂i

f ⟩ , we have the
following function codes ⟨Cj⟩ and the document for
function ⟨Dj⟩ . Below is an example bout how to
make function calls to model the scene to fit the de-
scription: ⟨Emodeling

j ⟩ . Understand the function, and
model the 3D scene that fits the text description by
making a function call.
Modeling Agent: Given the description ⟨L̂i

j⟩ , we
model the object by calling functions: ...

We have included a comprehensive communication ex-
ample between all three agents in the supplemental material.

Blender Rendering. The modeling agent ultimately con-
structs the Python function calls with inferred parameters,
which are supplied to Blender for controlling view ports and
rendering, and thereby resulting in production of the final
3D mesh and RGB results.

Implementation Detail. We implemented our system us-
ing the Infinigen [30] API. The specific function set F we
used is available in the generation script provided in the sup-
plemental material. Our modeling agent is developed with
the OpenAI’s ChatGPT API, and its code implementation
can also be found in the supplemental material, showcasing
the ease of system implementation.

4. Experiments
Our experimentation begins by testing the proficiency of 3D-
GPT in consistently generating results that align with user
instructions, encompassing scenarios involving both large
scenes and individual objects. Subsequently, we delve into
specific examples to illustrate how our agents effectively
comprehend tool functionalities, access necessary knowl-
edge, and employ it for precise control. As fruther analysis,
we conduct an ablation study to systematically examine the
contributions of each agent within our multi-agent system.

4.1. 3D Modeling

Large Scene Generation. We investigate the capability
of 3D-GPT to control modeling tools based on scene de-
scriptions without any training. To conduct this experiment,
we generated 100 scene descriptions using ChatGPT with
the following prompt: “You are a good writer, provide 10
different natural scene descriptions for me.” We collected
responses to this prompt 10 times to form our dataset.

In Fig. 3, we present the multi-view rendering results
of 3D-GPT. These results indicate that our approach is ca-
pable of generating large 3D scenes that align well with
the provided text descriptions and showcasing a noticeable
degree of diversity. Importantly, all 3D outcomes are di-
rectly rendered using Blender, ensuring that all meshes are
authentic, thereby enabling our method to achieve absolute
3D consistency and produce real ray-traced results.

Fine-detail Control for Single Class. Apart from gen-
erating large scenes from concise descriptions, we assess
3D-GPT’s capabilities for modeling objects. We evaluate
crucial factors such as curve modeling, shape control, and an
in-depth understanding of object appearances. To this end,
we report the results of fine-grained object control, including
nuanced aspects like object curves, key appearance features,

“The mountains, majestic and snow-capped,
stood like sentinels guarding the vast
expanse of the valley, their peaks
disappearing into the swirling mist that
clung to their rugged slopes.”

“The desert, an endless sea of shifting sands,
stretched to the horizon, its rippling dunes
catching the golden rays of the setting sun,
creating an ever-changing landscape of
shadows and light.”

“The lake, serene and glassy, mirrored the
cloudless sky above, reflecting the
surrounding mountains and the graceful
flight of a heron, as lily pads floated like
emerald jewels upon its tranquil surface."

“A serene winter landscape, with snow-
covered evergreen trees and a frozen lake
reflecting the pale sunlight.”

“A vibrant autumn forest, with trees ablaze in
shades of red, orange, and gold, as a gentle
breeze rustles the fallen leaves.”

“A misty spring morning, where dew-
kissed flowers dot a lush meadow
surrounded by budding trees.”

Figure 3. Visual Examples of Instruction-Based 3D Scene Generation. 3D-GPT can construct large 3D scenes that align with the provided
initial instruction. We demonstrate that the rendered images contain various visual factors in line with the given instructions.

“African Marigold” “Blue Chrysanthemum” “Carnation” “Chamomile” “Dandelion” “Gerbera”

“Lake Lily” “Orange Tulip” “Pink Rose” “Red Rose” “Sunflower” “White Camellia”

Figure 4. Single Class Control Result. Our method effectively acquires the necessary knowledge for modeling, enabling precise object
control in terms of shape, curve, and key appearance capture. The generated results closely align with the given text.

and color, all derived from input text descriptions. We em-
ploy random prompts to instruct GPT for various real-world
flower types. As depicted in Fig. 4, our method adeptly
models each flower type, faithfully capturing their distinct
appearances. This study underscores the potential of 3D-
GPT in achieving precise object modeling and fine-grained
attribute control of object types and visual characteristics.

Subsequence Instruction Editing. Here, we test the abil-
ity of 3D-GPT for effective human-agent communication
and task manipulation. In Fig. 1, we observe that our method
can comprehend subsequence instructions and make accurate
decisions for scene modification. Note that, unlike the ex-
isting text-to-3D methods, 3D-GPT maintains a memory of
all prior modifications, thereby facilitating the connection of

new instructions with the scene’s context. Furthermore, our
method eliminates the need for additional networks for con-
trollable editings [42]. This study underscores the efficiency
and versatility of 3D-GPT in adeptly handling complex sub-
sequence instructions for 3D modeling.

Individual Function Control To evaluate the effective-
ness of 3D-GPT in tool utilization, we present an illustrative
example that highlights our method’s ability to control indi-
vidual functions and infer parameters. Fig. 5 exemplifies
the capability of 3D-GPT to model sky appearance based on
input text descriptions. It is worth noting that the function
responsible for generating the sky texture does not directly
correlate color information with sky appearance. Instead, it
relies on the Nishita-sky modeling method, which requires

(a). Solution: From the description of "clear
blue sky" and "not a cloud in sight", we can
infer that the sun_intensity should be high, the
sun_elevation should be around 90 (daytime),
the sun_rotation can be set to 0. The air_density
and dust_density should be low, so we can set
them to 1 and 0 respectively. Since there are no
clouds, the cloud_density should be 0. To make
the sky appear bluer, we can increase the ozone
value, so let's set it to 2.
We can model the sky by calling the following
function:
```python
sky_texture_node(sun_intensity='high', 
sun_elevation=90, sun_rotation=0, 
air_density=1, dust_density=0, ozone=2, 
cloud_density=0)
```

(d). “The sky is painted in shades of orange
and pink as the sun sets behind the island.”

(e). “The sky is a mixture of soft purples
and pinks as the sun rises.”

(f). “A canopy of stars fills the dark night
sky, with the island bathed in moonlight.”

(a). “The sun shines brightly in a clear
blue sky. Not a cloud in sight.”

(b). “Thick gray clouds cover the
entire sky, diffusing the sunlight.”

(c). “The sky appears hazy, with a soft,
diffuse sunlight filtering through.”

Figure 5. Single Function Control Result. Visual result (top) and modeling agent response example (bottom). Our method demonstrates a
high degree of accuracy in inferring algorithm parameters, even when they do not possess a direct connection to visual appearance.

The carnation is a charming flower known for its
delicate details. Its center size typically ranges
from 1 to 2 cm in diameter. The petals can vary in
length, averaging around 3-5 cm, and they
gracefully encircle the center. The petal width
measures approximately 1-2 cm, and it's usually
about half the length of the petals. The petals
exhibit a soft, rounded shape, lending the flower an
inviting openness. Carnation petals are known for
their unique and delicate fringed edges. These
fringes can give the petals a slightly wrinkled or
ruffled appearance, adding to their charm. .
Carnations come in a wide spectrum of colors,
from vibrant reds to pastel pinks, and their petals
are densely packed, creating lush, full blooms.

The dandelion, a common wildflower,
showcases unique characteristics. Its center,
typically 1-2 cm in diameter, anchors a
profusion of bright yellow petals. Each
petal averages 2-3 cm in length, about
twice the size of the center. Dandelion
petals are quite narrow, usually measuring
around 0.1 to 0.2 cm in width. Dandelion
petals display a gentle curvature,
contributing to the flower's spherical form.
They often appear slightly wrinkled along
the edges, adding a touch of texture. Their
vibrant yellow hue and densely clustered
petals create a stunning floral carpet in
open fields.

The Gerbera, renowned for its striking
beauty, boasts a center size of
approximately 3-5 cm. Its vibrant petals,
often measuring 7-12 cm, are notably larger
than the center. Petals exhibit a width of
about 1-2 cm, nearly half their length,
showcasing an elongated shape. They
possess a gentle curvature, enhancing their
roundness. The Gerbera's open bloom
creates a captivating display, revealing a
smooth and unwrinkled petal surface. Its
petals showcase a spectrum of colors, from
bold reds to soft pinks, and they are
densely packed, resulting in lush, eye-
catching floral arrangements.

“Gerbera”“Carnation” “Dandelion”

Figure 6. Conceptualization Agent Case Study. The enriched textual evidence demonstrates that the Conceptualization Agent provides
essential knowledge for parameter inference (highlighted in green). For each subfigure, we compare the 3D model without (Top) and with
(Bottom) agent. The models generated with the agent better match the text description than those without it .

a deep understanding of real-world sky and weather condi-
tions, considering input parameters. Our method extracts
relevant information from the textual input and comprehends
how each parameter influences the resulting sky appearance,
as evident in Fig. 5 (c) and (d). These results demonstrate
that our method can effectively use individual functions as
well as infer corresponding parameters.

Comparison with Text-to-3D. We provide a compari-
son with the state-of-the-art Text-to-3D method, Dreamfu-
sion [26], for scene generation, as shown in Fig. 7. Our
method produces visually more plausible results with out-
puts that are better aligned with the given text descriptions.

4.2. Ablation Study

We conduct separate ablation studies for the Conceptualiza-
tion Agent, the Task Dispatch Agent, prompting components,
types of LLMs, and number of examples. Our assessment
focused on CLIP scores [28], failure rates, and parameter
diversity, quantified using the categorical Shannon Diversity
Index. The CLIP score measures the alignment between
text and generated images. The failure rate represents the

(a) Task Dispatch Agent.

Method CLIP Score

w/o TDA 22.79
Ours 29.16

(b) Conceptualization Agent.
Method CLIP Score Failure Rate Para. Diversity

w/o CA 21.51 3.6% 6.32
Ours 30.30 0.8% 7.34

Table 1. Ablation Study on the Performance of Different Agents.
(a) Impact of removing the Task Dispatch Agent (TDA) on CLIP
Score. (b) Impact of removing the Conceptualization Agent (CA)
on CLIP Score, Failure Rate, and Parameter Diversity.

percentage of system failures due to issues such as incorrect
datatypes, wrong response patterns, or missing parameters
from the Modeling Agent. Parameter diversity aims to gauge
the diversity of generated outputs.

Case Study of Task Dispatch Agent. For the Task Dis-
patch Agent, the CLIP score is measured using 100 initial
scene descriptions, each appended with one additional sub-
sequence instruction for each scene. Tab. 1 (a) shows that
without the Task Dispatch Agent, the CLIP score dropped
from 29.16 to 22.79. It is important to note that the Task
Dispatch Agent primarily impacts the performance of subse-

“The mountains, majestic and snow-capped,
stood like sentinels guarding the vast expanse of
the valley, their peaks disappearing into the
swirling mist that clung to their rugged slopes.”

“The desert, an endless sea of shifting sands,
stretched to the horizon, its rippling dunes catching
the golden rays of the setting sun, creating an ever-
changing landscape of shadows and light.”

“The lake, serene and glassy, mirrored the cloudless
sky above, reflecting the surrounding mountains and
the graceful flight of a heron, as lily pads floated like
emerald jewels upon its tranquil surface."

“A serene winter landscape, with snow-covered
evergreen trees and a frozen lake reflecting the
pale sunlight.”

“A vibrant autumn forest, with trees ablaze in
shades of red, orange, and gold, as a gentle
breeze rustles the fallen leaves.”

“A misty spring morning, where dew-kissed
flowers dot a lush meadow surrounded by
budding trees.”

Ours DreamFusion Ours DreamFusion Ours DreamFusion

Figure 7. Comparison with Text-to-3D Method. This figure compares our method and DreamFusion [26], for generating various scenes.

Variants CLIP Score Failure Rate Parameter Diversity

w/o D 20.7 4.2% 6.94
w/o C 28.4 1.8% 6.74
w/o I 21.6 1.4% 6.38
w/o E 24.5 3.4% 7.89
Ours 30.3 0.8% 7.34

Table 2. Ablation Study on the Impact of Prompting Components
(D/C/I/E) on Model Performance.

quence instructions, as all functions are utilized for the initial
instruction. These findings underscore the pivotal role of the
Task Dispatch Agent in managing communication flow.

Case Study of the Conceptualization Agent. The Con-
ceptualization Agent’s effectiveness was evaluated using a
CLIP score measured from 100 initial scene descriptions.
As shown in Tab. 1 (b), the absence of the Conceptual-
ization Agent led to significant declines in text alignment
and parameter diversity, alongside a substantial increase in
the failure rate, which negatively impacts the efficiency of
the entire modeling process. Fig. 6 visually demonstrates
how the Conceptualization Agent aids in acquiring essential
knowledge for 3D modeling, comparing results with and
without its involvement. When the Conceptualization Agent
is utilized, the generated outputs closely match the intended
flower type’s appearance, underscoring its crucial role in
enhancing the overall quality and fidelity of 3D generation.

Moreover, we conducted ablation studies examining
prompting components (See Tab. 2), types of Large Lan-
guage Models (See Tab. 3), and the number of examples
(See Tab. 4). Key findings include: (1) each prompting com-
ponent significantly contributes to the overall pipeline, (2)
the type of LLM used does not notably impact 3D generation

LLMs CLIP Score Failure Rate Parameter Diversity

LLAMA2 29.7 1.4% 6.97
GPT4 31.2 0.6% 7.23
GPT3.5 30.3 0.8% 7.34

Table 3. Ablation Study on the Performance of Different Large
Language Models. We report CLIP Score, Failure Rate, and Param-
eter Diversity across LLAMA2, GPT-4, and GPT-3.5.

Number CLIP Score Failure Rate Parameter Diversity

0 24.5 3.4% 7.89
1 30.3 0.8% 7.34
2 30.1 1.0% 7.23
3 30.2 0.8% 6.93

Table 4. Ablation Study on the Impact of Example Number.

results, and (3) there is no significant difference between one-
shot, two-shot, and three-shot prompts, though increasing
the number of examples slightly reduces parameter diversity.

5. Conclusion

We have introduced 3D-GPT, a novel framework for
instruction-driven 3D procedural scene generation, leverag-
ing pre-trained LLMs. Our approach involves coordination
between three agents functioning as a cohesive 3D modeling
team, ultimately yielding a 3D modeling file as output, as
opposed to conventional 3D neural representations. More-
over, our method consistently delivers high-quality results,
showcases adaptability to expansive scenes, ensures 3D con-
sistency, provides material modeling and editing capabilities,
and facilitates true ray tracing for achieving lifelike visualiza-
tions. Our empirical results show the potential of LLMs for
reasoning, planning, and tool use in procedural 3D modeling.

References
[1] https://github.com/gd3kr/BlenderGPT. 2
[2] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Jo-

hannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat
Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid
Palangi, Marco Tulio Ribeiro, and Yi Zhang. Sparks of ar-
tificial general intelligence: Early experiments with GPT-4.
arXiv preprint arXiv:2303.12712, 2023. 2

[3] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin Robin-
son, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan,
Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie
Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Olek-
sandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta,
Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. PaLM: Scaling language mod-
eling with pathways. arXiv preprint arXiv:2204.02311, 2022.
2

[4] Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs,
Kiana Ehsani, Jordi Salvador, Winson Han, Eric Kolve,
Aniruddha Kembhavi, and Roozbeh Mottaghi. ProcTHOR:
Large-scale embodied ai using procedural generation. Ad-
vances in Neural Information Processing Systems, 35:5982–
5994, 2022. 1, 3

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2

[6] Lijie Fan, Dilip Krishnan, Phillip Isola, Dina Katabi, and Yon-
glong Tian. Improving clip training with language rewrites.
arXiv preprint arXiv:2305.20088, 2023. 1

[7] Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Ar-
jun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and
William Yang Wang. Layoutgpt: Compositional visual plan-
ning and generation with large language models. Advances in
Neural Information Processing Systems, 36, 2024. 2

[8] Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane
Durante, Yusuke Noda, Zilong Zheng, Song-Chun Zhu,
Demetri Terzopoulos, Li Fei-Fei, and Jianfeng Gao. MindA-
gent: Emergent gaming interaction. arXiv preprint
arXiv:2309.09971, 2023. 1, 2

[9] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Ab-
hijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek)
Liu, Henning Meyer, Yishu Miao, Derek Nowrouzezahrai,

Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain,
Sara Sabour, Mehdi S. M. Sajjadi, Matan Sela, Vincent Sitz-
mann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang,
Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea
Tagliasacchi. Kubric: A scalable dataset generator. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3749–3761, 2022. 1, 3

[10] Ju He, Enyu Zhou, Liusheng Sun, Fei Lei, Chenyang Liu,
and Wenxiu Sun. Semi-synthesis: A fast way to produce
effective datasets for stereo matching. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2884–2893, 2021. 1, 3

[11] Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong
Yue, David A Ross, Cordelia Schmid, and Alireza Fathi.
Scenecraft: An llm agent for synthesizing 3d scenes as
blender code. In Forty-first International Conference on Ma-
chine Learning, 2024. 2

[12] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mor-
datch. Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents. In International
Conference on Machine Learning, pages 9118–9147, 2022. 2

[13] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li,
Jiajun Wu, and Li Fei-Fei. VoxPoser: Composable 3D value
maps for robotic manipulation with language models. arXiv
preprint arXiv:2307.05973, 2023. 2

[14] Shima Imani, Liang Du, and Harsh Shrivastava. Math-
prompter: Mathematical reasoning using large language mod-
els. arXiv preprint arXiv:2303.05398, 2023. 1, 2

[15] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel,
and Ben Poole. Zero-shot text-guided object generation with
dream fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 867–876,
2022. 2

[16] Katharina Jeblick, Balthasar Schachtner, Jakob Dexl, Andreas
Mittermeier, Anna Theresa Stüber, Johanna Topalis, Tobias
Weber, Philipp Wesp, Bastian Sabel, Jens Ricke, and Michael
Ingrisch. ChatGPT makes medicine easy to swallow: An
exploratory case study on simplified radiology reports. arXiv
preprint arXiv:2212.14882, 2022. 2

[17] Chenfanfu Jiang, Siyuan Qi, Yixin Zhu, Siyuan Huang, Jenny
Lin, Lap-Fai Yu, Demetri Terzopoulos, and Song-Chun Zhu.
Configurable 3D scene synthesis and 2D image rendering
with per-pixel ground truth using stochastic grammars. Inter-
national Journal of Computer Vision, 126:920–941, 2018. 1,
3

[18] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler, Ming-
Yu Liu, and Tsung-Yi Lin. Magic3D: High-resolution text-
to-3D content creation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 300–309, 2023. 2

[19] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Zexiang
Xu, Hao Su, et al. One-2-3-45: Any single image to 3D mesh
in 45 seconds without per-shape optimization. arXiv preprint
arXiv:2306.16928, 2023. 2

[20] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and An-
drea Vedaldi. Realfusion: 360 reconstruction of any object

from a single image. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 2023.
2

[21] Sachit Menon and Carl Vondrick. Visual classification via
description from large language models. arXiv preprint
arXiv:2210.07183, 2022. 1

[22] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and
Daniel Cohen-Or. Latent-NeRF for shape-guided generation
of 3D shapes and textures. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12663–12673, 2023. 2

[23] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
2

[24] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky,
and Tiberiu Popa. CLIP-Mesh: Generating textured meshes
from text using pretrained image-text models. In SIGGRAPH
Asia 2022 conference papers, pages 1–8, 2022. 2

[25] OpenAI. GPT-4 technical report, 2023. 2
[26] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall.

DreamFusion: Text-to-3D using 2D diffusion. arXiv preprint
arXiv:2209.14988, 2022. 2, 7, 8

[27] Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi.
What does a platypus look like? generating customized
prompts for zero-shot image classification. arXiv preprint
arXiv:2209.03320, 2022. 1

[28] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 2, 7

[29] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. 2

[30] Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei,
Mingzhe Wang, Yiming Zuo, Karhan Kayan, Hongyu Wen,
Beining Han, Yihan Wang, Alejandro Newell, Hei Law,
Ankit Goyal, Kaiyu Yang, and Jia Deng. Infinite photore-
alistic worlds using procedural generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12630–12641, 2023. 1, 2, 3, 5

[31] Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer,
Ben Mildenhall, Nataniel Ruiz, Shiran Zada, Kfir Aberman,
Michael Rubenstein, Jonathan Barron, Yuanzhen Li, and
Varun Jampani. DreamBooth3D: Subject-driven text-to-3D
generation. In Proceedings of the International Conference
on Computer Vision, 2023. 2

[32] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 2

[33] Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang,
Chin-Yi Cheng, Marco Fumero, and Kamal Rahimi Malek-
shan. CLIP-Forge: Towards zero-shot text-to-shape genera-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 18603–18613,
2022. 2

[34] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin,
Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee,
Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali,
Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin,
Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching
Chang, Igor Krivokon, Will Rusch, Marc Pickett, Pranesh
Srinivasan, Laichee Man, Kathleen Meier-Hellstern, Mered-
ith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju
Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prab-
hakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo,
Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya
Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray
Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak,
Ed Chi, and Quoc Le. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022. 2

[35] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. ProlificDreamer: High-fidelity
and diverse text-to-3d generation with variational score distil-
lation. arXiv preprint arXiv:2305.16213, 2023. 2

[36] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma,
Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou.
Chain-of-thought prompting elicits reasoning in large lan-
guage models. Advances in Neural Information Processing
Systems, 35:24824–24837, 2022. 2

[37] Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying
Shan, Xiaohu Qie, and Shenghua Gao. Dream3D: Zero-
shot text-to-3D synthesis using 3D shape prior and text-to-
image diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 20908–20918, 2023. 2

[38] Kailai Yang, Shaoxiong Ji, Tianlin Zhang, Qianqian Xie,
and Sophia Ananiadou. On the evaluations of ChatGPT
and emotion-enhanced prompting for mental health analy-
sis. arXiv preprint arXiv:2304.03347, 2023. 2

[39] Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Al-
varo Herrasti, Winson Han, Jiajun Wu, Nick Haber, Ranjay
Krishna, Lingjie Liu, et al. Holodeck: Language guided gen-
eration of 3d embodied ai environments. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16227–16237, 2024. 2

[40] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choro-
manski, Adrian Wong, Stefan Welker, Federico Tombari,
Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee,
Vincent Vanhoucke, and Pete Florence. Socratic models:
Composing zero-shot multimodal reasoning with language.
arXiv preprint arXiv:2204.00598, 2022. 1

[41] Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li,
Yihang Sun, Cheng Zhang, Zhaowei Zhang, Anji Liu, Song-
Chun Zhu, Xiaojun Chang, Junge Zhang, Feng Yin, Yitao

Liang, and Yaodong Yang. Proagent: Building proactive
cooperative ai with large language models. arXiv preprint
arXiv:2308.11339, 2023. 1, 2

[42] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
IEEE International Conference on Computer Vision (ICCV),
2023. 6

	. Introduction
	. Related Work
	. 3D-GPT
	. Task Formulation
	. Modeling Tool Preparation
	. Multi-agents for 3D Modeling

	. Experiments
	. 3D Modeling
	. Ablation Study

	. Conclusion

